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Abstract: The sizing of the lining of a tunnel requires to consider not only 

the static loads transmitted from the surrounding rock, but also the effects 

of earthquakes on the stresses and strains of the lining. The detailed 

evaluation of the interaction earthquake-lining using numerical methods 

typically requires very long calculation time and can be limited to the 

verification of the project final configuration. In this study a simplified 

procedure for the assessment of the effects of an earthquake on the tunnel 

lining is presented. This procedure is based on the calculation method 

Einstein and Schwartz and quickly allows the estimation of maximum 

moments induced by the earthquake in the lining. Through this procedure it 

was possible to develop a parametric analysis that allowed to evaluate the 

pseudo-static loads that is necessary to consider on the rock around the 

tunnel, according to the earthquake characteristics and to the geomechanic 

quality of the rock mass. A final calculation example illustrates the 

modalities for the analysis of a tunnel lining in the presence of a defined 

earthquake, using the charts developed in the present paper. 
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Introduction 

The analysis of an earthquake effect on the 

concrete lining is an important stage of the tunnel 

design (Power et al., 2004). Sophisticated numerical 

methods allow assessing in the detail the interaction 

between seismic waves and tunnel linings (Karakostas 

and Manolis, 2000; Penzien and Wu, 1998; Penzien, 

2000; Hashash et al., 2001; Do et al., 2015). The two 

and three dimensional numerical methods are 

widespread in the field of tunnels and underground 

works in general for many years (Do et al., 2013; Oreste, 

2002; Do et al., 2014a; 2014b). These methods are, 

however, quite complex and may require very long 

computation times when the behavior of the lining and of 

the rock around the tunnel is analizedin the dynamic field. 

The analytical methods, instead, generally provide a 

closed form solution or a simplified numerical solution, 

able to assess the stress and strain state of supporting 

structures or of the rock mass around the tunnel 

(Ribacchi and Riccioni, 1977; Lembo-Fazio and 

Ribacchi, 1986; Panet, 1995; Oreste, 2003a; 2003b; 

2009a; 2008; Osgoui and Oreste, 2007; 2010) or forward 

to the excavation face (Oreste, 2009b; 2013; 2014a). In 

recent times, many analytical methods have been 

developed in the tunneling field, to resolve static 

problems of great importance (Oreste, 2007; Do et al., 

2014c). The analytical methods require computing time 

remarkably low and permit, therefore, to develop 

parametric analyzes (Oreste, 2014b; 2014c), probabilistic 

ones (Oreste, 2005a) or back-analysis (Oreste, 2005b), 

all very useful in the design phase or during the 

construction of a tunnel. In these cases, the use of 

numerical modeling is limited only to the verification of 

the final configuration obtained by the dimensioning 

with analytical methods. 

In this study a new simplified analytical procedure for 
the assessment of the effects of an earthquake on the stress 
state of the tunnel lining, considering the presence of 
pseudo-static loads, is presented. After analyzing the 
magnitude of induced strains around the tunnel by the 
shear waves due to an earthquake, the formulations to 
derive the maximum bending moments in the lining, using 
the Einstein and Schwartz (1979) method, are shown. 
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An extensive parametric analysis has then allowed to 

evaluate the pseudo-static load that is necessary to apply 

to the rock mass around the tunnel, to account for the 

presence of an earthquake, according to the intensity of 

the earthquake (Power et al., 2004), the distance from the 

source and the GSI of the rock mass (Marinos et al., 2005; 

Hoek et al., 2013; Marinos and Hoek, 2000; Cai et al., 

2004). A calculation example, referring to a specific case, 

illustrates, finally, the procedures for verification of the 

lining, considering the loads both of static and dynamic 

nature (due to the presence of an earthquake). 

Materials and Methods 

In deep tunnels realized in a rock mass, the more 

dangerous seismic waves are represented by the shear 

waves. These waves have a peak particle velocity vs, a 

peak particle acceleration as and a propagation speed Cm 

that can be obtained from the following equations 

(Power et al., 2004): 
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where, amax: Maximum particle acceleration due to shear 

waves, detected on a rocky outcrop at the surface 

(Sadigh and Egan, 1998; Power et al., 2004): 

 

[ ]
100

/
s

s
sv m

a

g
β= C

C

 (2) 

 

Where: 

 

( )

( )

( )

2 2

2

0.0020 0.0166

0.0622 0.7844 1.7771

2.8835 71.036 279.47

W

W W

W W

M

d M M

d M M

β ≅ −

+ − + −

+ − + −

C C

C C C

C C

 

 

g = 9.81 m/s
2
 

MW = Earthquake intensity 

d = distance of the earthquake point source from the 
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E: Elastic modulus of the rock mass; for the 

estimation of this value, is generally used the following 

formulation, which depends on the GSI, on the 

disturbance factor D and on the uniaxial compressive 

strength of the intact rock σci (Hoek et al., 2002): 
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ν = Poisson ratio of the rock mass 

γ = Specific weight of the rock 

 

In the case of deep tunnel and for wavelength 

larger than the tunnel diameter, on the basis of vs and 

Cm is possible to obtain an estimate of the maximum 

shear strain induced in the rock mass around the 

tunnel (Power et al., 2004): 
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This maximum shear strain, when multiplied by the 

shear deformation modulus G, allows to obtain the shear 

stresses acting on the rock, or directly the normal 

stresses applied to the rock around the tunnel, according 

to the simplified load scheme of Fig. 1 (El Naggar et al., 

2008; Penzien and Wu, 1998): 

 

,maxdyn sq Gγ= C  (5) 

 

The lining ovalization produced by the shear wave is 

critical when the direction of the wave is equal to λ=±π/4 

with respect to the vertical direction. In that case the 

maximum moment that develops in the crown or on the 

sides of the tunnel due to the presence of an earthquake, is 

added to the maximum moment due to static loads. 

The maximum moment produced by the load 

scheme of Fig. 1 can be evaluated with the method of 

Einstein and Schwartz (1979). This method provides a 

closed form solution of the stress state in the lining; it 

considers the medium around the tunnel as 

homogeneous and isotropic with an elastic behavior. 

The state of stress is applied to the ground at a great 

distance from the tunnel. The lining is represented by a 

closed ring with its own axial and flexural stiffnesses 

which depend on the constituent material elastic 

modulus and the lining thickness. 

Adopting the solution of Einstein and Schwartz (1979), 

which refers to an allowed relative displacement lining-rock 

(full slip case), the maximum moment that develops in the 

crown (when the angle λ=±π/4) is obtained: 
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Fig. 1. Simplifiedload scheme of the rock around the tunnel, to simulate the dynamic effects of the presence of an earthquake on the 

lining of a circular and deep tunnel. Key: qdyn is the normal stress that simulates the presence of an earthquake; R: The tunnel 

radius (El Naggar et al., 2008; Penzien and Wu, 1998) 
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Asup = The area of the lining section: Asup= 

tsup·1 

Isup = The inertia moment of the lining section: 

Isup= tsup
3
·1/12 

Esup and νsup  = The elastic modulus and Poisson's ratio 

of the material constituting the lining 

 

According to the Einstein and Schwartz analytical 

method (Einstein and Schwartz, 1979) and for the 

assumptions made, in particular for the eligibility of 

lining-tunnel wall relative displacements (full slip 

case), the normal forces induced by the earthquake in 

the lining are everywhere equal to zero. That fact is a 

consequence of the simplified calculation model 

adopted: Actually values of normal force, even if low 

and negligible, can be detected even when it is allowed 

a lining-rock relative displacement. 

The presence of an earthquake, therefore, could produce 

an increase of the positive moment in the crown, leading to 

an aggravation of the stress conditions of the lining. 

It is, therefore, essential to be able to assess with a 

certain precision the effect of an earthquake on the 

stress state of the tunnel lining, with particular 

reference to what can happen on the crown, when the 

direction of the wave has an angle λ=±π/4 with 

respect to the vertical. 

Results 

In order to evaluate the trend value of the normal 

stresses qdyn due to an earthquake varying the parameters 

most influential, a parametric analysis was performed 
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considering five different values of Geological Strength 

Index (GSI) (GSI = 40 to 80) (Marinos et al., 2005; 

Hoek et al., 2013; Marinos and Hoek, 2000; Cai et al., 

2004), three values of the maximum particle acceleration 

amax (amax = 0.4 to 0.6⋅g), 5 values of the earthquake intensity 

(MW = 6.5 to 8.5) and different values of the distance from 

the source (d = 10 to 100 km) (Power et al., 2004). 

In the parametric analysis has been considered a 

strength of the intact rock σci variable with the GSI: σci = 35 

MPa for GSI = 40; σci = 60 MPa for GSI = 50; σci = 85 MPa 

for GSI = 60; σci = 110 MPa for GSI = 70; σci = 135 MPa 

for GSI = 80 (Hoek and Brown, 1980; 1997; Hoek, 2006; 

2007). The disturbance factor D was considered equal to 

zero, assuming a rock mass not disturbed by the excavation 

of the tunnel (Hoek et al., 2002). 
In Fig. 2-6 are shown the results of the parametric 

analysis. 
It is noted as qdyn tends to increase with the 

increase of the geomechanical properties of the rock 
mass (i.e., the value of GSI), with the increase of the 
distance from the earthquake source and obviously with 
the increase of the maximum particle acceleration on the 
surface and of the earthquake intensity. Figures 2-6 can be 
used for the estimation of qdyn also for intermediate values 
of the influential parameters, different from those 
considered in the parametric analysis, through the use of 
the linear interpolation. 

 

 
 
Fig. 2. qdyn load trendvarying the distance d from the earthquake source, the GSI and the maximum particle acceleration on the 

surface, for an earthquake intensity of MW = 6.5 

 

 
 
Fig. 3. qdyn load trendvarying the distance d from the earthquake source, the GSI and the maximum particle acceleration on the 

surface, for an earthquake intensity of MW = 7.0 
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Fig. 4. qdyn load trendvarying the distance d from the earthquake source, the GSI and the maximum particle acceleration on the 

surface, for an earthquake intensity of MW = 7.5 
 

 
 
Fig. 5. qdyn load trendvarying the distance d from the earthquake source, the GSI and the maximum particle acceleration on the 

surface, for an earthquake intensity of MW = 8.0 
 

 
 
Fig. 6. qdyn load trend varying the distance d from the earthquake source, the GSI and the maximum particle acceleration on the 

surface, for an earthquake intensity of MW = 8.5 
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Discussion 

From the carried out study, it is noted that the loads 
acting on the lining are greater when the geomechanic 
quality of the rock mass is better and, therefore, when its 
stiffness is higher. The dynamic effects of the earthquake 
are greater, then, when the static loads are lower. In fact, 
in a tunnel excavated in a rock mass of good quality, the 
static loads applied to the lining are generally modest, 
while the dynamic effects of an earthquake can produce 
loads that are likely to become critical for the stability of 
the lining and, therefore, also of the tunnel. 

Also the tunnel radius is an important parameter. The 
moments due to the presence of a seismic wave, in fact, 
depend on the square of the tunnel radius. 

In order to illustrate how to check the effect of an 
earthquake on a concrete lining of a circular and deep 
tunnel excavated in a rock mass, the following calculation 
example, based on the results of Fig. 2-6, is shown. 

It refers to a tunnel radius of 3.5 m, excavated into a 
rock mass with GSI = 55 at a depth of 200 m (p0 = 5.2 
MPa). The uniaxial compressive strength of the intact rock 
is equal to 72 MPa and the rock mass disturbance factor D 
is equal to 0. The elastic modulus for the rock mass is 
estimated to be 11315 MPa (Hoek et al., 2002) and 
Poisson's ratio ν = 0.3. Also the following parameters for 

cohesion (2.88 MPa) and friction angle of the rock mass 
(27°) (Hoek, 2006), relevant for the evaluation of the 
static load acting on the 40 cm thick concrete lining 
(without reinforcing), are evaluated. The study was 
conducted using the convergence-confinement method 
(Ribacchi and Riccioni, 1977; Oreste, 2003a; 2009a; 
2014b; 2014c) and has led to an estimate of the static 
vertical load acting on the lining equal to 1.06 MPa. 

Adopting this value of static load at the crown and a 
coefficient of lateral thrust k0 = 0.5 in the Einstein and 
Schwartz (1979) method (full slip case), it was possible 
to estimate the maximum moment in the crown due to 
static loads (Mmax, stat = 0.0336 MN·/m), associated with a 
normal force N = 3.65 MN/m. Figure 7 shows the trend 
of the bending moment in the lining only due to the 
static load with a variation of ϑ angle. 

Assuming thereafter an earthquake of intensity equal 
to MW = 8.5, with a distance from the source point of 80 
km and a maximum particle acceleration on the surface 
amax = 0.5⋅g, from Fig. 6 a dynamic load qdyn equal to 
about 1.85 MPa is obtained. From Equation 6 the 
maximum moment produced in the crown of the lining 
by the considered earthquake can then be evaluated: 
Mmax,dyn= 0.0369 MN·m/m. Figure 8 shows the trend of 
the bending moment in the lining only due to the 
dynamic load with a variation of ϑ angle. 

 

 
 
Fig. 7. Trend of the bending moment along the lining progress, for the studied case, with a variation of the ϑ angle (ϑ = 0on the right 

side of the tunnel, ϑ increasing counterclockwise), in static conditions. The trend of the bending moment was calculated 
 

 
 
Fig. 8. Trend of the bending moment along the lining progress, for the studied case, with a variation of the ϑ angle (ϑ = 0on the right 

side of the tunnel, ϑ increasing counterclockwise), in dynamic conditions. The trend of the bending moment was calculated 
by the Einstein and Schwartz (1979) method (full slip case) 
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Fig. 9. Comparison of the lining stress state in static conditions (point A) and in static+dynamics conditions (point B), with the 

strength domain of the concrete section (0.4 m×1 m) in the absence of armature (blue solid line) 

 
The value of the maximum moment due to dynamic 

loads is greater than the value of the maximum moment 

obtained in the static field. In order to verify the 

suitability of the assumed lining to bear the static and 

dynamic loads together, a comparison is necessary 

between the induced moments and axial forces obtained 

from the calculation and the concrete section strength 

(Fig. 9). In the present case and for the hypothesized 

earthquake, the assumed lining would be considered 

suitable to jointly withstand the loads produced by the 

earthquake and the static ones. Points A and B of Fig. 9 

have the same value of the normal force, since the 

dynamic load produced by the earthquake had no effect 

on the axial forces that develop within the lining. 

Conclusion 

The verification of the ability of a tunnel lining to 

withstand the action of an earthquake is an important 

stage of the tunnel design. Detailed analysis of the 

interaction between the earthquake and the lining can 

be conducted with two-dimensional or three-

dimensional numerical methods. These methods, 

when used in the dynamic field, may require very long 

calculation times and for this reason a detailed 

numerical dynamic analysis is limited to the final 

configuration identified by the project. 

In the field of tunnels, very useful are the analytical 

calculation methods, since they allow to obtain useful 

results with reduced calculation times. For this reason 

they are often used to develop parametric analyzes, 

probabilistic ones or back-analysis. 

In this study is presented a simplified analytical 

procedure for the evaluation of the effect of an 

earthquake on the lining of a tunnel excavated in rock 

mass. This procedure has also allowed to evaluate, 

through an extensive parametric analysis, the pseudo-

static loads that is necessary to consider in the 

calculations according to the type of earthquake and the 

qualitative characteristics of the rock mass. These results 

have been summarized in some abacuses easy to use. 

A final example has shown the modalities to estimate 

the maximum bending moments in a tunnel lining due to 

an earthquake, using the abacuses developed in this study. 
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