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Abstract: Trend is growing towards using complex multimedia 
functions on smaller devices. In this study, we explore the effect of 
migrating legacy signal processing software applications algorithms 
from large form factor devices to the smaller one such as handheld 
mobile devices known as Energy Conscious Mobile Computing Systems 
(EConMCS). We concentrate on Source Code Volatility (SCV), 
including inherent algorithm complexity and the developer 
implementation. We identify code Transformation Steering Factors 
(TSF), such as loop unrolling factor, decision tree grafting factor and 
their relation to SCV. The impact of TSF is discussed for different 
multimedia applications in native Digital Signal Processor (DSP) 
compiler optimization while switching between different transformation 
schemes. Our results show that SCV can be minimized by using an 
architecture-centric algorithm that both enables the effective use of 
underlying hardware architectures and the memory access required to 
optimize energy consumption. The coded spatial access is implicitly 
dependent on layout, content and location of options and legibility that 
relates to a developer’s implementation of loops, code blocks and 
decision trees. The compiler-centric transformation model minimizes 
the effect of legacy code migration for multimedia applications. Results 
are exposed for the transformation of typical DSP applications and a 
video transcodec MPEG-4. 
 
Keywords: Multimedia Applications, Legacy Code, Embedded Systems, 

Source-to-Source Transformation (StS), Source Code Volatility (SCV) 
 

Introduction 

Several factors contribute to make the multimedia 
system a performance bottleneck. Increasing demand of 
intensive multimedia functions in a small form factor 
and pervasive computing has tightened the design space 
(Ye et al., 2000; Mehta et al., 1996; Chen et al., 2012). 
With the explosive growth of hand-held battery operated 
embedded systems, the issue of their energy 
consumption has gained importance. VLIW DSP 
processors are the most lucrative choice to such an 
application domain for their optimal performance delivery 
in high data throughput at low power (Chang et al., 2000; 
Klass et al., 2010; Mehta et al., 1987). 

Hitherto energy dissipation has mostly been addressed 
at hardware level (dynamic supply voltage scaling, 
operating frequency control) but the current drive towards 
ubiquitous computing shifted the focus to executing 
software running on underlying system hardware. 

Researchers (Esakkimuthu et al., 2000; Li and Henkel, 
1997; Cathoor et al., 2014; Tiwari et al., 2012) have 

revealed that a large fraction of the computational 
load imposed by applications is handled by the CPU 
and it is the largest contributor to the overall energy 
budget. In general, CPU energy consumption depends 
on the type of workload imposed by applications. 
Therefore a strong correlation between the application 
binary and underlying hardware architecture leads to 
an efficient Energy Conscious Mobile Computing 
System EConMCS as shown in Fig. 1.1. 

We define an energy-cycle cost model together with 

a source-to-source transformation methodology, suitable 

for embedded systems based on VLIW cores. The 

system level methodology includes generalized energy 

models for each module, composing the system 

architecture (processing unit, on-chip/off-chip memory 

units, address/data highway etc.) and SW application 

parameters as shown in Fig. 1.2. 

Unlike (Klass et al., 2010; Mehta et al., 1987; Lee et al., 

2011), we explore following aspects of application 

expression as compared to conventional techniques: 
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• The impact of algorithmic complexity and 
developer’s implementation: These effects are 
directly related to source code volatility and hence 
the architecture-application performance 

• Integration in DSP Native Compilation Environment 
(NCE). That utilizes the conventional Software 
Development Environment (SDE) to produce 
battery efficient embedded applications 

• Results are exposed for five optimization iteration at 
a typical signal processing algorithm 

 
The remainder of this study is organized as follows. 

Relevant previous research on energy estimation and 
optimization is summarized in the next section. A detailed 
energy cost model and a successive transformation 
methodology is proposed in section 3. Experimental 
results are reported in section 4, finally in section V we 
draw some conclusions and outline extensions as well as 
improvements to our future work. 
 

 
 
Fig. 1.1. Correlation between software application and 

hardware architecture 

 

 
 
Fig. 1.2. A simplified methodology flow 

Related Research 

In recent years, numerous technique have evolved to 

address the energy consumption issue at different 

hardware specification layers (circuit, gate, register-

transfer or behavioral); an overview can be found in 

(Ye et al., 2000). Many tools exist for power estimation 

and optimization at these levels, more work is needed in 

the area of energy analysis or optimizations at micro-

architecture, architecture or system level. Approaches 

used in most of these tools can be broadly divided into 

two categories; either simulation of functional units in a 

processor or direct measurement of electrical parameters 

on some target hardware. 
 In simulation-based methods, energy consumption 

is estimated by calculating the energy consumption of 
various components in the target processor through 
simulations at different levels. Simple Power 
concentrates on modeling target architectures (Ye et al., 
2000). A functional unit based power profiler in 
(Mehta et al., 1996) registers the history of previous 
states, information about the current states of 
functional units and correlated switching capacitance. 
Cycle-level energy estimation is reported (Chen et al., 
2012), as an extension to (Mehta et al., 1996; Su et al., 
2013). A gate-level analysis tool is used to analyze the 
effect of sequential execution of different instructions 
in (Klass et al., 2010). 

Numerous techniques have been discussed in (Li and 

Henkel, 1997) to explore the impact of source code 

transformations on families of hardware architectures 

(Mehta et al., 1987). They used instruction-level 

simulation to measure the effects of code transformation 

on energy (Mehta et al., 1987; Esakkimuthu et al., 

2000). On the other hand, considering the processor as 

the most energy-critical system component, other 

approaches (Li and Henkel, 1997) focused instead on the 

number of processor cycles. Thus, loop unrolling and 

procedure in-lining were used to reduce the number of 

processor cycles, while data locality was improved by 

cache size optimization. Implicitly assuming data 

memory access as the dominant factor for both energy 

and performance researchers in (Cathoor et al., 2014) 

applied extensive loop transformations to improve 

locality and hence reduction in data accesses. 
Direct measurement-based techniques are more 

fine-grained approaches than the simulation based 
methods. In these approaches software is 
characterized by examining the energy consumption 
obtained from real hardware. 

A current measurement based technique is used in 
(Tiwari et al., 2012). However, recording this inter-
instruction effect significantly enhance the table volume. 
Attention has also been given to exploring architecture-
level models to be used with higher level tools or as part 
of a simulation environment. Microprocessors 
(Esakkimuthu et al., 2000; Gebotys and Gebotys, 2011), 



Naeem Zafar Azeemi / American Journal of Applied Sciences 2014, 11 (12): 1980-1987 

DOI: 10.3844/ajassp.2014.1980.1987 

 

1982 

controllers (Su et al., 2013), instruction registers, 
memory units, are prominent contributor to power 
dissipation. Researchers have tried to schedule operations 
(Su et al., 2013), or swap operands (Tiwari et al., 2012) 
to reduce data bit switching. Researchers have also 
employed parallel instructions to improve performance 
which also reduced energy such as using parallel data 
transfer instructions (Lee et al., 2011). 

Only a few researchers have verified these values 

as actual physical savings in energy (Lee et al., 2011; 

Gebotys and Gebotys, 2011). An instantaneous power 

measurement model is presented in (Russell and 

Jacome, 1998). There, a software energy (Mehta et al., 

1987) estimation model is proposed by measuring 

electrical parameters on a digitizing oscilloscope. 

In contrast to above approaches (Gebotys et al., 

2000; Gebotys and Gebotys, 1998) used a regression 

analysis to predict the energy consumption of software. 

The prediction is used to minimize the energy 

consumption with respect to the average current drawn. 

Some researchers (Gebotys et al., 2000; Sami et al., 

2000) tried to model the complex energy behavior of 

VLIW processors. The estimation of a given 

transformation impact (Gebotys and Gebotys, 1998; 

Tiwari et al., 2007; Loveman, 1976) on low energy is the 

most critical part in code restructuring and this study 

proposes a strategy to this issue in the next section. 

Source Code Transformation Methodology 

As discussed above, a SW application may be 

subjected to real time performance constraints of time, 

space and energy targeting execution on high 

performance DSP processors. Constraint-driven 

optimization to the application can be achieved by set of 

rules for manipulating various representations of a 

program. These rules allow exploitation of local or 

global invariance within the program according to a 

measured or a speculated performance cost function. In 

this section we shall propose an energy-cycle cost 

formulation for source-to-source transformation to 

improve energy-cycle performance of an application. 

We have assumed that any typical multimedia 

algorithm can be coded as a tree-structured 

representation of a program and that the source-to-source 

transformations are expressible as pattern-directed 

rearrangements of coded text. 

Figure 3.1 depicts the methodology framework. The 

VDF file contains instruction set operation code, implicit 

latencies and their mnemonics, the operations, opcodes, 

slot assignment schemes, processor operating frequency, 

instruction cache feature (associativity, block size, 

number of sets) and main memory features (size, order, 

read/write latencies). All naming conventions specific 

to VLIW architecture we used here are followed in 

(TM1300 Data Book, 1999). 

 

 
 
Fig. 3.1. Transformation methodology 
 

The transformation space for steering parameter can 

be represented in following vector notations: 
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where, ( ), ,j pk
w w wθ θ θ are static and runtime parameters 

and mwθ are transformation operation.  

A User Constraint File (UCF) holds the result of 

transformed outcome that is the desired values for code, 

execution time, energy and allowed percentage cache miss. 

If the transformation outcome is not sufficient to 

satisfy the accuracy constraints (i.e., given in UCF file), 

the quality of transformation controlling factor 

(elaborated in section III.C) changed and verified 

through simulation. 



Naeem Zafar Azeemi / American Journal of Applied Sciences 2014, 11 (12): 1980-1987 

DOI: 10.3844/ajassp.2014.1980.1987 

 

1983 

Additional benefits are gained by combining 
traditional compiler optimization algorithm, such as 
constant and variable propagation, dead code 
elimination, strength reduction etc. 

Transformation Cost Model 

Our first goal is to simplify the complexity of the 
processor energy model without sacrificing the accuracy of 
the results. The second goal is to introduce a methodology 
that automatically rebinds the instruction set with respect to 
the average functional energy cost, in order to converge to a 
highly effective design space. 

For a given Mediabench application θ composed of a 

finite number of code blocks, transformation space is 

defined as: 
 

( )( ), , mj pk
S w w w wθθ θ θ  

 

We obtain jwθ  from processor datasheet (TM1300 

Data Book, 1999), 
k

wθ is acquired after the pre-compiler 

and profiler stage in Figure 3.2. whereas pwθ is an 

outcome of the simulation at the target hardware. 

For an MPEG-4 example these measured values are 

shown in Table 1. The parameter mwθ is processed in a 

feedback loop where transformation cost is analyzed 

followed by a transformation engine that decides 

whether the code should be transformed as proposed. 

We assume that the application θ can be broken down 

into a set of blocks B e.g., decision blocks, data blocks, 

computation blocks. The total application execution time 

for the baseline version can be written as: 
 

0 0 0 0 0

1 1

0

0 ( ) (( ) ) ,

m n

ij ij j ij ij

j i

z q B m nτ θ η ρ θ
= =

= + + ∀ ∈∑∑  (1) 

 
Where: 

0

i
z  = Instruction cycle count,  

0

i
q  = Number of instructions in block 0

i
B ,  

0

i
η and 0

i
ρ  = Number of instruction and data cache stall 

cycles respectively. 

 

 
 

Fig. 3.2. Loop tiling-an ijk loop example; original loop (left), blocking for i loop (right) (Lam et al., 2011) 

 
Table 1. Successive transformations for MPEG-4 example 

Parameters Iter-1 (%) Iter-2 (%) Iter-3 (%) Iter-4 (%) Iter-5 (%) 

Size of binary 0 11 -2 10 17 

Time of execution 33 63 63 72 75 

Energy 7 23 15 28 30 

Slot utilization 10 12 41 32 53 

Scheduling factor 0 0 1 32 95 

Highway usage 46 170 179 266 303 

Instruction cache miss 1 2 2 3 4 

Data cache miss 0 2 2 2 4 

Data cache conflict 0 -100 -100 -200 0 

Data bank alignment -60 -240 -280 -540 -760 
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All of them are an outcome of the static and runtime 

execution of application as shown in Table 1. 

For any p-th transformation (iteration) with cycle 

reduction function ϕp>0, the execution time can be 

written as: 
 

0

0( ) ( )p

p pτ θ ϕ τ θ=  

 
And for optimization: 

 
0

0( ) ( )p

pτ θ τ θ<  

 
Similarly the energy dissipation for baseline version 

can be written as: 
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Where 

 p0 = Power consumption of the idle target processor. 

pmp = Power consumption of the monitor program.  

pq/q-1 = Power consumption of instruction q while q-1 

has been executed. 
 

For any p-th transformation (iteration) with energy 

reduction function Ψp>0, the energy dissipation can be 

written as: 
 

0

0( ) ( )p

p pε θ ψ ε θ=  

 
And for optimization: 

 
0

0( ) ( )p

pε θ ε θ<  

 

Convergence Criteria for Optimization 

Now given an instance to optimize both execution 

time and energy of application software, the 

transformation space is very complex. 

Finding solution to this is clearly NP-complete; as 

parameters defined in space S have a large number of 

possibilities to get optimal solution for our goal. 

We solve this problem by defining 5-tuple 

transformation rule as shown below: 
 

{ }, , , ,r codeSize executionTime Energy cacheMiss slotUsage=  

 
Each individual tuning parameter in r can have a 

value from {1,0,-1}, 

For example in an idct example cycle driven rϕ could 

be: 
 

{ }1, 1,0, 1,1− −  

It allows successive transformation steps to 

increase code size, lower execution time, maintain 

same level of energy as obtained in the previous 

iteration, decrease cache miss and exploit more 

parallelism with higher slot usage. 

We shall discuss more formation of the rule tuple in 

section III.D. Now we shall formulate steering factors 

that control transformations in mwθ . 

Methodology Control Variables and Their 

Relations 

In this section, we describe the cost estimators of 

the transformation techniques which determine when 

to cease iterations in the transformation engine shown 

in Fig. 3.2. 

Loop unrolling (k), we propose a simple and novel 

unrolling strategy to find the optimal unrolling factor 

with a single set of profiling measurements. A 

successive loop unrolling factor for the i-th iteration is 

shown here: 

 

( )

( )

.

/ . .

K loopSize VLIWinstSizei

cacheBlockSize associativity noOfSets

=
 

 

In our case the instruction cache block size is 64, 

associativity 8 and number of sets are 64. While 

instruction cache hit ratio is obtained during simulation 

as shown in Table 1. 

Decision tree is the scheduling equivalent of an 

extended basic block. It is a code region that has a single 

entry point and zero or more exit edges leading to other 

decision trees or function exits. 

We compute the grafting depth ς in terms of code 

size Ω, probability of execution edges in a tree ϑ and 

number of execution counts ν. For a decision tree block 

j, grafting depth is formulated as: 

 

j  j j jς ν ϑ=Ω  

 

Based on cache size we decide the maximum depth 

factor ςmax. ςmax is the largest depth factor not to 

increase the code size larger than the instruction cache 

size that i.e.,: 

 

max j  instructionCacheSize /ς ς=  

 

Thus, the optimal depth factor ςopt is the greatest 

divisor of Ω but smaller than ςmax.  

Block algorithms use data and computation 

diagrams, rectangular parallelepipeds that shows the 

iteration space of an algorithm with the operations 

inside and the data on the faces. 
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A typical threefold nested counting loop (ijk-loop) 

is shown in Figure 3.2. The arrows show the order of 

operations and accesses to data. In this case a block 

algorithm can be obtained by performing two 

transformations to the algorithm. First, each of the three 

original nested loops is partitioned into two loops, an 

internal computation loop and an external control loop.  

We use two performance metrics closely related to 

each other (Lam et al., 2011). On one side, we use Cycle 

Per Instructions (CPI) that is computed from number of 

execution cycle and code size both are obtained from 

profiler. On the other side data cache misses and data 

bank conflicts count. Both of them show directly block 

algorithm performance in terms of cache overhead. 

Methodology Flow-Case Study 

For a typical MPEG-4 example we obtain an initial 

measurement after simulating the baseline code once. This 

provides code size, execution time, both instruction and 

data cache miss rate, data bank conflicts, scheduling factor 

and energy. There are many other parameters that are 

obtained directly or indirectly from the profiler are not 

tabulated for e.g., foreground memory (internal register) 

used, number of slot assigned in individual cycle. 
We will use them to refine our model to high 

granularity in future. In the transformation cost analyzer 
block all these measurements are used to compute the 
unrolling factor K, grafting depth ς and block 
performance metrics. At the transformation engine they 
are further used to decide, whether the current code 
should go for code conversion or not. 

Example 

If measured energy is higher, then the energy 
constraints are set by the user in user constraint file 
then further unrolling, tiling and grafting would be 
required. In this case the energy driven transformation 
rule for rΨ will be {1,0,-1,0,1}, that can be interpreted 
as for next iteration code size shall be increased, 
number of execution cycle shall constant, energy 
count shall go lower, cache hit shall remain same and 
slot usage will be increased further. Each successive 
transformation shall bring all cost factors close to the 
user constrained region as defined in the user 
constrained file. 

Experimental Platform 

Typically, VLIW core based evaluation boards have 

dual supply voltages, one for the core Vdd and other for 

peripherals Vcc. Therefore, its power dissipation contains 

two components of currents, i.e., Idd and Icc. 
The core voltage in our target processor board 

based on Star Core SC1100 is Vdd = 2.5V, whereas 
Peripheral voltage Vcc is adjustable to 3.3V or 5.0V 
(we set it to 3.3V). 

Although traditional digital multimeter (e.g., FLUKE 
85) can be used to measure processor currents (Idd and 
Icc), switching activity between multitudes of states in 
VLIW processors cannot be observed by these dual-
slope mode slow sampling measurement devices. 

In order to record the impact of non-periodic 
behavior of programs, we use HP54720 Hewlett Packard 
Programmable digitizing oscilloscope, HP54721A 
Hewlett Packard Amplifier plug-in and PNX1302 
evaluation board. 

Results 

In line with the proposed methodology described 
above, we measured static and architecture driven 
application parameters in different profiling stages 
enlisted in Table 1. 

There are several cogent observations that can be 
made from our study to test applications, e.g., 
transformations are not applied in random order; an 
attempt to transformation is only made when 
transformation engine decides controlling parameter (K, 
ς and block performance metrics) are within limits and 
desired performance variables (execution time, energy) 
are closely approached. 

Table 1 shows results for successive transformations 
applied to the baseline version of a typical MPEG-4 
example. Note that the code size is increased in the 
beginning due to loop unrolling but it does increase 
processor functional unit utilization. Successive application 
of transformation based on 5-tuple rules improves 
instruction rebinding that increases scheduling factor. 

Note that scheduling factor is computed as a relative 
measure, which is ration between the mappings at 
available functional units (mentioned in VDF file) to the 
infinite functional units (and ideal machine). This gives 
us better cycle improvement upto 75% (shown as 
executionTime) and lower energy consumption to 30%. 

An inappropriate 5-tuple rule selection could lead to 
underutilization of internal registers and hence adds an 
offset to energy consumption in comparison to the 
previous iteration; one such observation can be made as 
from iter-2 to iter-3. The payoff for both energy and 
cycle cost factors (Ψ, ϕ) in this particular case are 
depicted in Figure 4.1. 

Here, we summarize some interesting conclusions 
from Figure 4.1. 

First we have found that the most difficult problems 
are concerned with transformation ordering and 
information gathering. 

Second, although a transformation may be applicable, it 
may not win an improvement in the program. 

Third, the distraction between machine-dependent 
and machine-independent portions of our 
transformation methodology is more subtle than it 
appears. A transformation on a program may be 
machine independent, in the usual sense, but the 
reason for applying it may well depend on the target 
machine architecture. 
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Fig. 4.1.  Energy-cycle reduction factor versus Transformations (for MPEG-4 example) 

 
Table 2.  Energy-cycle cost factor for optimized applications 

App/Transf. fir iir Dct idct nlivq m100 

Size 1.76 1.38 0.99 1.54 1.03 2.32 

Φ 0.90 0.67 0.55 0.98 1.01 0.74 

Ψ 0.97 0.93 0.83 0.84 1.10 0.85 

 

Fourth, a number of interesting transformations were 

identified. In particular the concept that a variable use 

may on occasion be replaced by an expression 

representing an assertion about the value of the variable 

is quite powerful. 
We apply our technique to well know computational 

intensive examples from Mediabench fir, iir, dct, idct 
and two data intensive applications: Nonlinear vector 
quantization (nlivq) for image zooming application and 
matrix multiplication (m100). 

Results energy/cycle cost factor for optimal 
transformation are shown in Table 2. 

Conclusion 

In this study, we explore the effect of migrating 

legacy signal processing software applications 

algorithms from large form factor devices to the smaller 

one such as handheld mobile devices. We concentrate on 

source code volatility, including inherent algorithm 

complexity and the developer implementation. 

Successive transformations are steered by a set of rules, 

generated in each iteration based on loop unrolling 

factor, grafting depth and blocking factor. 

The proposed methodology facilitates the programmer 

to be the strategist. A goal-driven canned set of 

transformations may improve the application significantly. 

The approach is illustrated using functional unit usage 

within a VLIW architecture and identifies a new operation 

rebinding technique for low power which improves 

energy dissipation for a MPEG-4 example. This 

improvement is primarily achieved by improving the 

number of CPU cycles (execution time), cache memory 

access (both instruction and data cache) and exploiting 

architectural usage especially increasing slot utilization. 

The approach is general and results are verified with 

real power measurements at StarCore Media Processor. 
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