

© 2014 The Naeem Zafar Azeemi. This open access article is distributed under a Creative Commons Attribution (CC-BY)

3.0 license.

American Journal of Applied Sciences

Original Research Paper

Android Based Energy Aware Framework for Porting Legacy

Applications

Naeem Zafar Azeemi

College of Engineering and Information Technology, Al Ain Univeristy of Science and Technology, Al Ain, UAE

Article history

Received: 24-09-2014

Revised: 15-12-2014

Accepted: 30-12-2014

Abstract: Trend is growing towards using complex multimedia
functions on smaller devices. In this study, we explore the effect of
migrating legacy signal processing software applications algorithms
from large form factor devices to the smaller one such as handheld
mobile devices known as Energy Conscious Mobile Computing Systems
(EConMCS). We concentrate on Source Code Volatility (SCV),
including inherent algorithm complexity and the developer
implementation. We identify code Transformation Steering Factors
(TSF), such as loop unrolling factor, decision tree grafting factor and
their relation to SCV. The impact of TSF is discussed for different
multimedia applications in native Digital Signal Processor (DSP)
compiler optimization while switching between different transformation
schemes. Our results show that SCV can be minimized by using an
architecture-centric algorithm that both enables the effective use of
underlying hardware architectures and the memory access required to
optimize energy consumption. The coded spatial access is implicitly
dependent on layout, content and location of options and legibility that
relates to a developer’s implementation of loops, code blocks and
decision trees. The compiler-centric transformation model minimizes
the effect of legacy code migration for multimedia applications. Results
are exposed for the transformation of typical DSP applications and a
video transcodec MPEG-4.

Keywords: Multimedia Applications, Legacy Code, Embedded Systems,

Source-to-Source Transformation (StS), Source Code Volatility (SCV)

Introduction

Several factors contribute to make the multimedia
system a performance bottleneck. Increasing demand of
intensive multimedia functions in a small form factor
and pervasive computing has tightened the design space
(Ye et al., 2000; Mehta et al., 1996; Chen et al., 2012).
With the explosive growth of hand-held battery operated
embedded systems, the issue of their energy
consumption has gained importance. VLIW DSP
processors are the most lucrative choice to such an
application domain for their optimal performance delivery
in high data throughput at low power (Chang et al., 2000;
Klass et al., 2010; Mehta et al., 1987).

Hitherto energy dissipation has mostly been addressed
at hardware level (dynamic supply voltage scaling,
operating frequency control) but the current drive towards
ubiquitous computing shifted the focus to executing
software running on underlying system hardware.

Researchers (Esakkimuthu et al., 2000; Li and Henkel,
1997; Cathoor et al., 2014; Tiwari et al., 2012) have

revealed that a large fraction of the computational
load imposed by applications is handled by the CPU
and it is the largest contributor to the overall energy
budget. In general, CPU energy consumption depends
on the type of workload imposed by applications.
Therefore a strong correlation between the application
binary and underlying hardware architecture leads to
an efficient Energy Conscious Mobile Computing
System EConMCS as shown in Fig. 1.1.

We define an energy-cycle cost model together with

a source-to-source transformation methodology, suitable

for embedded systems based on VLIW cores. The

system level methodology includes generalized energy

models for each module, composing the system

architecture (processing unit, on-chip/off-chip memory

units, address/data highway etc.) and SW application

parameters as shown in Fig. 1.2.

Unlike (Klass et al., 2010; Mehta et al., 1987; Lee et al.,

2011), we explore following aspects of application

expression as compared to conventional techniques:

Naeem Zafar Azeemi / American Journal of Applied Sciences 2014, 11 (12): 1980-1987

DOI: 10.3844/ajassp.2014.1980.1987

1981

• The impact of algorithmic complexity and
developer’s implementation: These effects are
directly related to source code volatility and hence
the architecture-application performance

• Integration in DSP Native Compilation Environment
(NCE). That utilizes the conventional Software
Development Environment (SDE) to produce
battery efficient embedded applications

• Results are exposed for five optimization iteration at
a typical signal processing algorithm

The remainder of this study is organized as follows.

Relevant previous research on energy estimation and
optimization is summarized in the next section. A detailed
energy cost model and a successive transformation
methodology is proposed in section 3. Experimental
results are reported in section 4, finally in section V we
draw some conclusions and outline extensions as well as
improvements to our future work.

Fig. 1.1. Correlation between software application and

hardware architecture

Fig. 1.2. A simplified methodology flow

Related Research

In recent years, numerous technique have evolved to

address the energy consumption issue at different

hardware specification layers (circuit, gate, register-

transfer or behavioral); an overview can be found in

(Ye et al., 2000). Many tools exist for power estimation

and optimization at these levels, more work is needed in

the area of energy analysis or optimizations at micro-

architecture, architecture or system level. Approaches

used in most of these tools can be broadly divided into

two categories; either simulation of functional units in a

processor or direct measurement of electrical parameters

on some target hardware.
 In simulation-based methods, energy consumption

is estimated by calculating the energy consumption of
various components in the target processor through
simulations at different levels. Simple Power
concentrates on modeling target architectures (Ye et al.,
2000). A functional unit based power profiler in
(Mehta et al., 1996) registers the history of previous
states, information about the current states of
functional units and correlated switching capacitance.
Cycle-level energy estimation is reported (Chen et al.,
2012), as an extension to (Mehta et al., 1996; Su et al.,
2013). A gate-level analysis tool is used to analyze the
effect of sequential execution of different instructions
in (Klass et al., 2010).

Numerous techniques have been discussed in (Li and

Henkel, 1997) to explore the impact of source code

transformations on families of hardware architectures

(Mehta et al., 1987). They used instruction-level

simulation to measure the effects of code transformation

on energy (Mehta et al., 1987; Esakkimuthu et al.,

2000). On the other hand, considering the processor as

the most energy-critical system component, other

approaches (Li and Henkel, 1997) focused instead on the

number of processor cycles. Thus, loop unrolling and

procedure in-lining were used to reduce the number of

processor cycles, while data locality was improved by

cache size optimization. Implicitly assuming data

memory access as the dominant factor for both energy

and performance researchers in (Cathoor et al., 2014)

applied extensive loop transformations to improve

locality and hence reduction in data accesses.
Direct measurement-based techniques are more

fine-grained approaches than the simulation based
methods. In these approaches software is
characterized by examining the energy consumption
obtained from real hardware.

A current measurement based technique is used in
(Tiwari et al., 2012). However, recording this inter-
instruction effect significantly enhance the table volume.
Attention has also been given to exploring architecture-
level models to be used with higher level tools or as part
of a simulation environment. Microprocessors
(Esakkimuthu et al., 2000; Gebotys and Gebotys, 2011),

Naeem Zafar Azeemi / American Journal of Applied Sciences 2014, 11 (12): 1980-1987

DOI: 10.3844/ajassp.2014.1980.1987

1982

controllers (Su et al., 2013), instruction registers,
memory units, are prominent contributor to power
dissipation. Researchers have tried to schedule operations
(Su et al., 2013), or swap operands (Tiwari et al., 2012)
to reduce data bit switching. Researchers have also
employed parallel instructions to improve performance
which also reduced energy such as using parallel data
transfer instructions (Lee et al., 2011).

Only a few researchers have verified these values

as actual physical savings in energy (Lee et al., 2011;

Gebotys and Gebotys, 2011). An instantaneous power

measurement model is presented in (Russell and

Jacome, 1998). There, a software energy (Mehta et al.,

1987) estimation model is proposed by measuring

electrical parameters on a digitizing oscilloscope.

In contrast to above approaches (Gebotys et al.,

2000; Gebotys and Gebotys, 1998) used a regression

analysis to predict the energy consumption of software.

The prediction is used to minimize the energy

consumption with respect to the average current drawn.

Some researchers (Gebotys et al., 2000; Sami et al.,

2000) tried to model the complex energy behavior of

VLIW processors. The estimation of a given

transformation impact (Gebotys and Gebotys, 1998;

Tiwari et al., 2007; Loveman, 1976) on low energy is the

most critical part in code restructuring and this study

proposes a strategy to this issue in the next section.

Source Code Transformation Methodology

As discussed above, a SW application may be

subjected to real time performance constraints of time,

space and energy targeting execution on high

performance DSP processors. Constraint-driven

optimization to the application can be achieved by set of

rules for manipulating various representations of a

program. These rules allow exploitation of local or

global invariance within the program according to a

measured or a speculated performance cost function. In

this section we shall propose an energy-cycle cost

formulation for source-to-source transformation to

improve energy-cycle performance of an application.

We have assumed that any typical multimedia

algorithm can be coded as a tree-structured

representation of a program and that the source-to-source

transformations are expressible as pattern-directed

rearrangements of coded text.

Figure 3.1 depicts the methodology framework. The

VDF file contains instruction set operation code, implicit

latencies and their mnemonics, the operations, opcodes,

slot assignment schemes, processor operating frequency,

instruction cache feature (associativity, block size,

number of sets) and main memory features (size, order,

read/write latencies). All naming conventions specific

to VLIW architecture we used here are followed in

(TM1300 Data Book, 1999).

Fig. 3.1. Transformation methodology

The transformation space for steering parameter can

be represented in following vector notations:

, ,

,

,max ,

max ,

, ,

,

j

k

p

freq instructionCacheFeatures
w

dataCacheFeatures mainMemoryFeatures

codeSize UnrollingFactor
w

GraftingDepth cacheLineSize

executionTime Energy
w

slotUtiliztion schedulingFactor

θ

θ

θ

=

=

=

{ }, ,mw decisionTreeGrafting loopUnrolling loopBlockingθ

=

where, (), ,j pk
w w wθ θ θ are static and runtime parameters

and mwθ are transformation operation.

A User Constraint File (UCF) holds the result of

transformed outcome that is the desired values for code,

execution time, energy and allowed percentage cache miss.

If the transformation outcome is not sufficient to

satisfy the accuracy constraints (i.e., given in UCF file),

the quality of transformation controlling factor

(elaborated in section III.C) changed and verified

through simulation.

Naeem Zafar Azeemi / American Journal of Applied Sciences 2014, 11 (12): 1980-1987

DOI: 10.3844/ajassp.2014.1980.1987

1983

Additional benefits are gained by combining
traditional compiler optimization algorithm, such as
constant and variable propagation, dead code
elimination, strength reduction etc.

Transformation Cost Model

Our first goal is to simplify the complexity of the
processor energy model without sacrificing the accuracy of
the results. The second goal is to introduce a methodology
that automatically rebinds the instruction set with respect to
the average functional energy cost, in order to converge to a
highly effective design space.

For a given Mediabench application θ composed of a

finite number of code blocks, transformation space is

defined as:

()(), , mj pk
S w w w wθθ θ θ

We obtain jwθ from processor datasheet (TM1300

Data Book, 1999),
k

wθ is acquired after the pre-compiler

and profiler stage in Figure 3.2. whereas pwθ is an

outcome of the simulation at the target hardware.

For an MPEG-4 example these measured values are

shown in Table 1. The parameter mwθ is processed in a

feedback loop where transformation cost is analyzed

followed by a transformation engine that decides

whether the code should be transformed as proposed.

We assume that the application θ can be broken down

into a set of blocks B e.g., decision blocks, data blocks,

computation blocks. The total application execution time

for the baseline version can be written as:

0 0 0 0 0

1 1

0

0 () (()) ,

m n

ij ij j ij ij

j i

z q B m nτ θ η ρ θ
= =

= + + ∀ ∈∑∑ (1)

Where:

0

i
z = Instruction cycle count,

0

i
q = Number of instructions in block 0

i
B ,

0

i
η and 0

i
ρ = Number of instruction and data cache stall

cycles respectively.

Fig. 3.2. Loop tiling-an ijk loop example; original loop (left), blocking for i loop (right) (Lam et al., 2011)

Table 1. Successive transformations for MPEG-4 example

Parameters Iter-1 (%) Iter-2 (%) Iter-3 (%) Iter-4 (%) Iter-5 (%)

Size of binary 0 11 -2 10 17

Time of execution 33 63 63 72 75

Energy 7 23 15 28 30

Slot utilization 10 12 41 32 53

Scheduling factor 0 0 1 32 95

Highway usage 46 170 179 266 303

Instruction cache miss 1 2 2 3 4

Data cache miss 0 2 2 2 4

Data cache conflict 0 -100 -100 -200 0

Data bank alignment -60 -240 -280 -540 -760

Naeem Zafar Azeemi / American Journal of Applied Sciences 2014, 11 (12): 1980-1987

DOI: 10.3844/ajassp.2014.1980.1987

1984

All of them are an outcome of the static and runtime

execution of application as shown in Table 1.

For any p-th transformation (iteration) with cycle

reduction function ϕp>0, the execution time can be

written as:

0

0() ()p

p pτ θ ϕ τ θ=

And for optimization:

0

0() ()p

pτ θ τ θ<

Similarly the energy dissipation for baseline version

can be written as:

0 / 1
0

1 1

0
()

0 0 0 0 0

()

(()) ,

mp q q

m n

j i

i i j i i

p p p

z q B m n

ε θ

η ρ θ

−

= =

= + +

+ + ∀ ∈

∑

∑ ∑
 (2)

Where

 p0 = Power consumption of the idle target processor.

pmp = Power consumption of the monitor program.

pq/q-1 = Power consumption of instruction q while q-1

has been executed.

For any p-th transformation (iteration) with energy

reduction function Ψp>0, the energy dissipation can be

written as:

0

0() ()p

p pε θ ψ ε θ=

And for optimization:

0

0() ()p

pε θ ε θ<

Convergence Criteria for Optimization

Now given an instance to optimize both execution

time and energy of application software, the

transformation space is very complex.

Finding solution to this is clearly NP-complete; as

parameters defined in space S have a large number of

possibilities to get optimal solution for our goal.

We solve this problem by defining 5-tuple

transformation rule as shown below:

{ }, , , ,r codeSize executionTime Energy cacheMiss slotUsage=

Each individual tuning parameter in r can have a

value from {1,0,-1},

For example in an idct example cycle driven rϕ could

be:

{ }1, 1,0, 1,1− −

It allows successive transformation steps to

increase code size, lower execution time, maintain

same level of energy as obtained in the previous

iteration, decrease cache miss and exploit more

parallelism with higher slot usage.

We shall discuss more formation of the rule tuple in

section III.D. Now we shall formulate steering factors

that control transformations in mwθ .

Methodology Control Variables and Their

Relations

In this section, we describe the cost estimators of

the transformation techniques which determine when

to cease iterations in the transformation engine shown

in Fig. 3.2.

Loop unrolling (k), we propose a simple and novel

unrolling strategy to find the optimal unrolling factor

with a single set of profiling measurements. A

successive loop unrolling factor for the i-th iteration is

shown here:

()

()

.

/ . .

K loopSize VLIWinstSizei

cacheBlockSize associativity noOfSets

=

In our case the instruction cache block size is 64,

associativity 8 and number of sets are 64. While

instruction cache hit ratio is obtained during simulation

as shown in Table 1.

Decision tree is the scheduling equivalent of an

extended basic block. It is a code region that has a single

entry point and zero or more exit edges leading to other

decision trees or function exits.

We compute the grafting depth ς in terms of code

size Ω, probability of execution edges in a tree ϑ and

number of execution counts ν. For a decision tree block

j, grafting depth is formulated as:

j j j jς ν ϑ=Ω

Based on cache size we decide the maximum depth

factor ςmax. ςmax is the largest depth factor not to

increase the code size larger than the instruction cache

size that i.e.,:

max j instructionCacheSize /ς ς=

Thus, the optimal depth factor ςopt is the greatest

divisor of Ω but smaller than ςmax.

Block algorithms use data and computation

diagrams, rectangular parallelepipeds that shows the

iteration space of an algorithm with the operations

inside and the data on the faces.

Naeem Zafar Azeemi / American Journal of Applied Sciences 2014, 11 (12): 1980-1987

DOI: 10.3844/ajassp.2014.1980.1987

1985

A typical threefold nested counting loop (ijk-loop)

is shown in Figure 3.2. The arrows show the order of

operations and accesses to data. In this case a block

algorithm can be obtained by performing two

transformations to the algorithm. First, each of the three

original nested loops is partitioned into two loops, an

internal computation loop and an external control loop.

We use two performance metrics closely related to

each other (Lam et al., 2011). On one side, we use Cycle

Per Instructions (CPI) that is computed from number of

execution cycle and code size both are obtained from

profiler. On the other side data cache misses and data

bank conflicts count. Both of them show directly block

algorithm performance in terms of cache overhead.

Methodology Flow-Case Study

For a typical MPEG-4 example we obtain an initial

measurement after simulating the baseline code once. This

provides code size, execution time, both instruction and

data cache miss rate, data bank conflicts, scheduling factor

and energy. There are many other parameters that are

obtained directly or indirectly from the profiler are not

tabulated for e.g., foreground memory (internal register)

used, number of slot assigned in individual cycle.
We will use them to refine our model to high

granularity in future. In the transformation cost analyzer
block all these measurements are used to compute the
unrolling factor K, grafting depth ς and block
performance metrics. At the transformation engine they
are further used to decide, whether the current code
should go for code conversion or not.

Example

If measured energy is higher, then the energy
constraints are set by the user in user constraint file
then further unrolling, tiling and grafting would be
required. In this case the energy driven transformation
rule for rΨ will be {1,0,-1,0,1}, that can be interpreted
as for next iteration code size shall be increased,
number of execution cycle shall constant, energy
count shall go lower, cache hit shall remain same and
slot usage will be increased further. Each successive
transformation shall bring all cost factors close to the
user constrained region as defined in the user
constrained file.

Experimental Platform

Typically, VLIW core based evaluation boards have

dual supply voltages, one for the core Vdd and other for

peripherals Vcc. Therefore, its power dissipation contains

two components of currents, i.e., Idd and Icc.
The core voltage in our target processor board

based on Star Core SC1100 is Vdd = 2.5V, whereas
Peripheral voltage Vcc is adjustable to 3.3V or 5.0V
(we set it to 3.3V).

Although traditional digital multimeter (e.g., FLUKE
85) can be used to measure processor currents (Idd and
Icc), switching activity between multitudes of states in
VLIW processors cannot be observed by these dual-
slope mode slow sampling measurement devices.

In order to record the impact of non-periodic
behavior of programs, we use HP54720 Hewlett Packard
Programmable digitizing oscilloscope, HP54721A
Hewlett Packard Amplifier plug-in and PNX1302
evaluation board.

Results

In line with the proposed methodology described
above, we measured static and architecture driven
application parameters in different profiling stages
enlisted in Table 1.

There are several cogent observations that can be
made from our study to test applications, e.g.,
transformations are not applied in random order; an
attempt to transformation is only made when
transformation engine decides controlling parameter (K,
ς and block performance metrics) are within limits and
desired performance variables (execution time, energy)
are closely approached.

Table 1 shows results for successive transformations
applied to the baseline version of a typical MPEG-4
example. Note that the code size is increased in the
beginning due to loop unrolling but it does increase
processor functional unit utilization. Successive application
of transformation based on 5-tuple rules improves
instruction rebinding that increases scheduling factor.

Note that scheduling factor is computed as a relative
measure, which is ration between the mappings at
available functional units (mentioned in VDF file) to the
infinite functional units (and ideal machine). This gives
us better cycle improvement upto 75% (shown as
executionTime) and lower energy consumption to 30%.

An inappropriate 5-tuple rule selection could lead to
underutilization of internal registers and hence adds an
offset to energy consumption in comparison to the
previous iteration; one such observation can be made as
from iter-2 to iter-3. The payoff for both energy and
cycle cost factors (Ψ, ϕ) in this particular case are
depicted in Figure 4.1.

Here, we summarize some interesting conclusions
from Figure 4.1.

First we have found that the most difficult problems
are concerned with transformation ordering and
information gathering.

Second, although a transformation may be applicable, it
may not win an improvement in the program.

Third, the distraction between machine-dependent
and machine-independent portions of our
transformation methodology is more subtle than it
appears. A transformation on a program may be
machine independent, in the usual sense, but the
reason for applying it may well depend on the target
machine architecture.

Naeem Zafar Azeemi / American Journal of Applied Sciences 2014, 11 (12): 1980-1987

DOI: 10.3844/ajassp.2014.1980.1987

1986

Fig. 4.1. Energy-cycle reduction factor versus Transformations (for MPEG-4 example)

Table 2. Energy-cycle cost factor for optimized applications

App/Transf. fir iir Dct idct nlivq m100

Size 1.76 1.38 0.99 1.54 1.03 2.32

Φ 0.90 0.67 0.55 0.98 1.01 0.74

Ψ 0.97 0.93 0.83 0.84 1.10 0.85

Fourth, a number of interesting transformations were

identified. In particular the concept that a variable use

may on occasion be replaced by an expression

representing an assertion about the value of the variable

is quite powerful.
We apply our technique to well know computational

intensive examples from Mediabench fir, iir, dct, idct
and two data intensive applications: Nonlinear vector
quantization (nlivq) for image zooming application and
matrix multiplication (m100).

Results energy/cycle cost factor for optimal
transformation are shown in Table 2.

Conclusion

In this study, we explore the effect of migrating

legacy signal processing software applications

algorithms from large form factor devices to the smaller

one such as handheld mobile devices. We concentrate on

source code volatility, including inherent algorithm

complexity and the developer implementation.

Successive transformations are steered by a set of rules,

generated in each iteration based on loop unrolling

factor, grafting depth and blocking factor.

The proposed methodology facilitates the programmer

to be the strategist. A goal-driven canned set of

transformations may improve the application significantly.

The approach is illustrated using functional unit usage

within a VLIW architecture and identifies a new operation

rebinding technique for low power which improves

energy dissipation for a MPEG-4 example. This

improvement is primarily achieved by improving the

number of CPU cycles (execution time), cache memory

access (both instruction and data cache) and exploiting

architectural usage especially increasing slot utilization.

The approach is general and results are verified with

real power measurements at StarCore Media Processor.

Ethics

This article is original and contains unpublished

material. The corresponding author confirms that all of

the other authors have read and approved the manuscript

and no ethical issues involved.

References

Cathoor, F., S. Wuytack. E. De Greef, F. Balaaa and L.

Nachtergaele et al., 2014. Custom memory

management methodology: Exploration of memory

organisation for embedded multimedia system design.

Chang, N., K.H. Kim and H.G. Lee, 2000. Cycle-

accurate energy consumption measurement and

analysis: Case study of ARM7TDMI. Proceedings

of the International Symposium on Low Power

Electronics and Design, Jul. 25-27, Rapallo, Italy,

pp: 185-190. DOI: 10.1145/344166.344576
Chen, R.Y., M.J. Irwin and R.S. Bajwa, 2012. An

architectural level power estimator. Proceedings of
the Power-Driven Microarchitecture Workshop.

Esakkimuthu, G., N. Vijaykriehnan, M. Kandemir and

M. Irwin, 2000. Memory system energy: Influence

of hardware-software optimizations. Proceedings of

the International Symposium on Low Power

Electronics and Design, Jul. 25-27, Rapallo, Italy,

pp: 244-246. DOI: 10.1145/344166.344612

Gebotys, C. and R. Gebotys, 2011. Statistically based

prediction of power dissipation for complex embedded

DSP processors. Microproc. Microsyst. J., 23: 135-

144. DOI: 10.1016/S0141-9331(99)00030-7

Naeem Zafar Azeemi / American Journal of Applied Sciences 2014, 11 (12): 1980-1987

DOI: 10.3844/ajassp.2014.1980.1987

1987

Gebotys, C., R. Gebotys and S. Wiratunga, 2000. Power

minimization derived from architectural-usage of

VLIW processors. Proceedings of the Annual ACM

IEEE Design Automation Conference, Jun. 05-09,

Los Angeles, CA, USA, pp: 308-311.

 DOI: 10.1145/337292.337426

Gebotys, C.H. and R.J. Gebotys, 1998. An empirical

comparison of algorithmic, instruction and

architectural power prediction models for high

performance embedded DSP processors. Proceedings

of the International Symposium on Low Power

Electronics and Design, Aug. 10-12, Monterey, CA,

USA, pp: 121-123. DOI: 10.1145/280756.280824

Klass, B., D.E. Thomas, H. Schmit and D.F. Nagle,

2010. Modeling inter-instruction energy effects in a

digital signal processor. Proceedings of the Power-

Driven Microarchitecture Workshop.

Lam, M.S., E.E. Rothbcrg and M.E. Wolf, 2011. The

cache performance and optimizations of blocked

algorithms. Proceedings of the 4th International

Conference on Architectural Support for

Programming Languages and Operating Systems,

Apr. 08-11, Santa Clara, CA, USA, pp: 63-74.

 DOI: 10.1145/106972.106981

Lee, M., V. Tiwari, S. Malik and M. Fujita, 2011. Analysis

and minimization techniques for embedded DSP

software. IEEE Trans VLSI Design.

Li, Y. and J. Henkel, 1997. A framework for

estimating and minimizing energy dissipation of

embedded HW/SW systems. Proceedings of the

35th annual Design Automation Conference, Jun.

15-19, San Francisco, CA, USA, pp: 188-193.

 DOI: 10.1145/277044.277097

Loveman, D.B., 1976. Program improvement by source

to source transformation. Proceedings of the 3rd

ACM SIGACT-SIGPLAN Symposium on

Principles on Programming Languages, (PPL’ 11),

ACM New York, NY, USA, pp: 140-152.

 DOI: 10.1145/800168.811548

Mehta, H., R. Owens, M. Trwin, R. Chen and D. Ghosh,
1987. Techniques for low energy software.
Proceedings of the International Symposium on
Low Power Electronics and Design, Aug. 18-20,
IEEE Xplore Press, Monterey, CA, USA, pp: 72-75.
DOI: 10.1145/263272.263286

Mehta, H., R.M. Owens and M.J. Irwin, 1996.
Instruction level power profiling. Proceedings of
the International Conference on Acoustics,
Speech and Signal Processing, May 7-10, IEEE
Xplore Press, Atlanta, GA, pp: 3326-3329.

 DOI: 10.1109/ICASSP.1996.550589
Russell, J.T. and M.F. Jacome, 1998. Software power

estimation and optimization for high performance,
32-bit embedded processors. Proceedings of the
International Conference on Computer Design:
VLSI in Computers and Processors, Oct. 5-7, IEEE
Xplore Press, Austin, TX, pp: 328-333.

 DOI: 10.1109/ICCD.1998.727070
Sami, M., D. Sciuto, C. Silvano and V. Zaccaria, 2000.

Instruction-level power estimation for embedded
VLIW cores. Proceedings of the 8th International
Workshop on Hardware/Software Codesign, May
03-05, San Diego, CA, USA, pp: 34-38.

 DOI: 10.1145/334012.334019
Su, C.L., C.Y. Tsui and A.M. Despain, 2013. Saving

power in the control path of embedded processors.
IEEE Design Test Compute., 11: 24-31.

 DOI: 10.1109/54.329448
Tiwari, V., S. Malik and A. Wolfe, 2007. Compilation

techniques for low energy.
Tiwari, V., S. Malik and A. Wolfe, 2012. Power analysis

of embedded software: A First step towards
software power minimization. IEEE Trans. VLSI
Syst., 2: 437-445. DOI: 10.1109/92.335012

TM1300 Data Book, 1999. Philips Electronic, North
America Corporation.

Ye, W., N. Vijaykrishnan, M. Kandemir and M.J. Irwin,
2000. The design and use of SimplePower: A cycle-
accurate energy estimation tool. Proceedings of the
Annual ACM IEEE Design Automation Conference,
Jun. 5-9, IEEE Xplore Press, pp: 340-345.
DOI: 10.1109/DAC.2000.855333

