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ABSTRACT 

Finite field multipliers are widely used in the field of cryptography for the purpose of scalar multiplication. 
The outputs of the finite field multipliers may consist of errors due to certain natural radiations which 
further leads to the failure of the cryptosystems. Here two Concurrent Error Detection (CED) schemes 
namely time redundancy and modular inversion based error detection schemes for finite field multipliers are 
discussed. The CED techniques have been implemented for bit serial, digit serial and bit parallel 
Montgomery multipliers. The Simulation results are obtained using Modelsim10.0b, area and power 
analysis has been performed using Xilinx ISE 9.1i. The proposed modular inversion based CED scheme is 
found to be area and power efficient compared to existing time redundancy based CED scheme.  
 
Keywords: Montgomery Multiplication, Elliptic Curve Cryptography (ECC), Parity Prediction, Modular 

Inversion, Finite Field Multipliers 

1. INTRODUCTION 

The finite field multiplication has received great 
attention in literature (Lee et al., 2006; Ghosh et al., 
2011) among the basic operations. It is mainly because 
the implementation of a multiplier is much more 
complex when compared to adder and by using 
multiplication operation repeatedly one can perform 
difficult field operations such as inversion and 
exponentiation which are widely used in cryptosystems. 
Finite field popularly known as Galois Field (GF) is 
represented as GF (pn), where pn is a prime number over 
‘n’ dimensions. When the prime number is 2, elements of 
GF are expressed as binary numbers. GF (2) when 
extended to GF (2m) is termed as binary extension field. 
Since no carry propagation occurs in GF (2m), the addition 
of two single bits requires only a logical XOR operation. 

Finite fields are used in a variety of applications 
including classical coding theory in linear block codes 
such as Reed Solomon codes and in cryptographic 
algorithms (MacWilliams and Sloane, 1998). 
Cryptography is the practice and study of techniques for 

secured data communication in the presence of third 
parties. ECC (Miller, 1998) is an approach to public key 
cryptography based on algebraic structure of elliptic 
curves over finite field. This cryptographic method has 
been regarded mature to provide robustness for secure 
data transaction. Therefore ECC has become an 
attractive alternative cryptosystem and many designs 
have been proposed in recent years (Sakiyama et al., 
2007; Chumg et al., 2005; Gura et al., 2002; Blake et al., 
2005; Biham and Shamir, 1997; Boneh et al., 1997).The 
Montgomery multiplication algorithm is used to enhance 
the scalar multiplication in ECC (Montgomery, 1985). 

CED is a process used to detect the errors in a 
cryptosystem while the system is performing its data 
transmission operation (Mitra and McCluskey, 2000; 
Reyhani-Masoleh and Hasan, 2006; Hariri and Reyhani-
Masoleh, 2007; Bayat-Sarmadi and Hasan, 2007). Due 
to the fact that fault injection and active attacks are used 
against cryptosystems, it is very important to increase 
the reliability of the elliptic curve-based cryptosystems 
and in particular, its main arithmetic operation, i.e., 
multiplication. The presence of fault in cryptosystems 



Sargunam, B. and R. Dhanasekaran / American Journal of Applied Sciences 11 (1): 137-144, 2014 

 
138 Science Publications

 
AJAS 

can lead to an active attack which results in leakage of 
secret information from the cryptosystems. The simplest 
way to prevent such an attack is to ensure that the 
computational device, the multiplier, verifies the value it 
computes before sending them out. To meet this purpose 
concurrent error detection scheme could be one of the 
options to mitigate logic errors. The design of efficient 
multipliers with CED capability is desirable to have a 
highly reliable and dedicated cryptographic hardware 
(Hariri and Reyhani-Masoleh, 2011). 

Finite field multipliers use Montgomery multiplication 
algorithm to perform bit serial, digit serial and bit parallel 
multiplier operations (Ananyi et al., 2009; Koc and Acar, 
1998; Fan and Dai, 2005; Hariri and Reyhani-Masoleh, 
2008). The finite field elements are represented using three 
basis representations namely polynomial basis, normal basis 
and dual basis. Polynomial basis has found to be suitable for 
the purpose of error detection as conversion from 
polynomial basis to binary is quite simple. The bit parallel 
systolic finite field multiplier over polynomial basis has 
been implemented for irreducible polynomial, all-one 
polynomial and irreducible  trinomial (Sargunam et al., 
2012a). The speed of bit parallel systolic finite field 
multiplier over polynomial basis has been improved using 
an unique technique (Sargunam et al., 2012b). Reyhani-
Masoleh and Hasan (2003) a parity prediction based 
technique has been implemented for a polynomial basis 
multiplier. The major drawback of this technique was that 
the exact error bit position was not specified in the output of 
the multiplier instead only the existence of error was 
detected. In this study two error detection schemes have 
been discussed, the time redundancy and the modular 
inversion based error detection techniques. 

2. TIME REDUNDANCY TECHNIQUE 

The fault attacks are common against cryptographic 
algorithms. CED is one of the counter measures used to 
protect the crypto-processors in case of such attacks. In 
this section, we discuss CED circuits for bit-serial, digit-
serial and bit-parallel Montgomery multipliers which can 
be used as a counter measure against natural faults and 
fault attacks in cryptography.  

2.1 Time Redundancy Approach 

The architecture using time redundancy can avoid the 
potential security problem caused by side-channel 
attacks. All single cell faults in the multiplier will be 
concurrently detected. Moreover, this multiplier requires 
a little space overhead and takes only few extra clock 
cycles. This technique is applied for bit serial, digit serial 
and bit parallel multipliers. The block diagram for the 

time redundancy approach is shown in the Fig. 1. The 
latches are used to store the data and 2-to-1 Mux is a 2 
by 1 multiplexer to select one of the inputs.  

CED using time redundancy technique is as follows: 

A.xm = mod F(x) | B.xm mod F(x)  
C  = A.B mod F(x) 
C’ = A’.B’ x -mmod F(x) 
C’ = A’.B’ x -m mod F(x) 
 = (A. xm ).(B.xm ) x-m mod F(x) 
 = A.B xm mod F(x) 
 = C xm mod F(x) 

The fundamental operation of the multiplier is 
explained in the following steps. 

The first step is performed by applying inputs A(x) 
and B(x) to the Montgomery Multiplier array and the 
result C(x) is converted by the *xm circuit to C’(x) and 
stored in latches. The dataflow of this first step is shown 
in bold lines in Fig. 2. 
 

 
 
Fig. 1. CED using time redundancy (Chiou et al., 2006) 
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The second step is executed by applying inputs 
A’(x) and B’(x) to the Montgomery Multiplier array. 
The inputs A(x) and B(x) are applied to respective *x m 
circuits to obtain A’(x) and B’(x). The result C’(x) is 
compared to the previously stored result C’(x) in 
latches. 

The function unit *xm realizes the following function 
Q’(x) = Q(x)*xm mod P(x). Where Q(x) and Q’(x) are the 
inputs and output of the *xm circuit respectively. There is 
one to one correspondence between Q(x) and its Q’(x) in 
residue representation. The dataflow of the second step is 
shown in bold lines in Fig. 3. The C’(x) values obtained 
from step 1 and step 2 are compared using equality 
checker and the error signal is produced. The outputs of 
both these steps are equal no error signal is generated and 
if not the error signal is generated to indicate the error.  
 

 
 
Fig. 2. The data flow in the time redundancy technique during 

the 1st Step 

By examining the error signal at the output of equality 
checker the errors are detected. The exact error bit 
position is also detected by this method. 

3. MODULAR INVERSION TECHNIQUE 

It was found that the parity prediction technique failed to 
detect the exact bit positions of the erroneous output of the 
multipliers and this technique was not efficient to detect the 
online errors that occurred in the cryptosystems. In (13) a 
time redundancy scheme was developed for the purpose of 
CED using modular multiplication. There are two important 
performance criteria in VLSI implementation, namely 
power and area. Trade-off may exist between the two 
parameters. Optimization of these two parameters can be 
carried out in finite field multiplier architecture in order to 
consume low power and low area. The time redundancy 
scheme was found to have high power and area utilization. 
In order to attain a power and area efficient CED scheme 
modular inversion algorithm has been used. 
 

 
 
Fig. 3. The data flow in time redundancy technique during the 

2nd step 
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3.1 Modular Inversion 

The multiplication inversion of an element aεF is 
defined as the process to find an element a−1

εF, such that 
a.a−1 = 1 mod P(x). Several algorithms to compute the 
multiplicative inverse in GF (2m) have been proposed in 
literature. The inverse is computed using an improved 
modification of the extended Euclidian algorithm called 
modular inversion algorithm. The modular 
multiplicative inverse a−1 (mod p) of an integer ‘a’ 
exists if and only if ‘a’ and ‘p’ are relatively prime, that 
is gcd (a,p) = 1. In all cases considered, p is prime and 
hence ‘a’ and ‘p’ are always relatively prime. The 
following is the modular inversion algorithm that has 
been incorporated in the CED scheme.  

Algorithm 

 Inputs: Operand a, prime p 
 Output: a−1 mod p 
 Step1: u = a, v = p, x1 = 1, x2 = 0 
 Step2: while u ≠ 1 and v ≠ 1 do 
 Step 2.1: while u even do 
   Step2.1.1: u = u/2 
 Step 2.1.2: if x1 even then x1 = x1/2 
  else x1 = (x1 + p) /2 
 Step 2.2: while v even do 
 Step 2.2.1: v = v/2 
 Step 2.2.2: if x2 even then x2 = x2/2 
  else x2 = (x2 + p) /2 
 Step 2.3: if u≥v then u = u - v, x1 =x1 - x2 

 else v = v - u, x2 = x2 – x1 

Step 3: if u = 1 then return x1(mod p) 
 else return x2 (mod p) 
 

The step 2 of the algorithm runs iteratively and 
proceeds towards the goal. In this step for every iteration 
either ‘u’ or ‘v’ is reduced by at least one bit length. The 
total number of iterations in step 2 is at most 2k, where k 
is the maximum bit length of ‘p’ and ‘a’. 

3.2 Error Detection Method 

In order to obtain an efficient CED scheme for the 
purpose of detecting errors in the output of the finite 
field multipliers the modular inversion algorithm has 
been incorporated into the error detecting scheme. This 
technique has been proved to have better power and area 
efficiency when compared to the time redundancy 
scheme. The block diagram for modular inversion 
technique is shown in Fig. 4. The modular inversion 
technique also performed in two steps.  

 
 
Fig. 4. Modular inversion based error detection scheme 
 

The multiplication array block performs bit serial, 
digit serial or bit parallel multiplication in finite field. 
The 2-to-1 Mux block selects one of the inputs for 
multiplication based on the select signal ‘S’. The error 
detection process is performed using the block diagram 
by multiplying two inputs A(x) and B(x). Instead of 
modular multiplication in time redundancy technique 
here modular inversion is used to detect the errors. In 
this technique also exact error bit position can be 
detected and it can detect multiple errors. 

The data flow for the CED scheme using modular 
inversion in the block diagram is explained in two 
steps as follows: 

During the first step the two inputs (A(x), B(x)) are 
multiplied using the Montgomery multiplication 
algorithms (Bit serial, Digit serial or Bit Parallel). The 
output of the Montgomery multiplication array (C(x)) is 
further taken as input into the modular inversion block 
where the inversion algorithm is performed and the 
output C’(x) is generated. The blocks which are used and 
the data flow during this first step is shown in Fig. 5. 
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Fig. 5. The data flow in the modular inversion technique 

during the 1st Step 
 

 
 
Fig. 6. The data flow in modular inversion technique during the 

2nd step 

 
 
Fig. 7. Comparison of the outputs from step 1 and step 2 using 

equality checker 

 
During the second step the two inputs A(x) and B(x) 

are individually inverted using the modular inversion 
algorithm to form A’(x) and B’(x). The inverted outputs 
are taken into the Montgomery multiplication array and 
multiplied using the Montgomery multiplication 
algorithms (Bit serial, Digit serial or Bit Parallel). The 
output from the Montgomery multiplication array is 
generated as C’(x). The blocks which are used for this step 
and the data flow are shown in the Fig. 6. 

The outputs of step 1 and 2 (C’(x)) are compared 
in the equality checker. If the outputs of the two steps 
are different the error signal is generated as shown in 
Fig. 7. The existence of error and the error bit 
positions can be identified by examining the output of 
the equality checker. 

4. IMPLEMENTATION RESULTS 

The algorithms for the time redundancy and the 
modular inversion error detection technique have been 
coded using VHDL and simulated using Mentor 
Graphics front end (Modelsim 10.0b). The 
implementation is done using Xilinx ISE 9.1i and area 
and power reports are obtained. The bit serial, digit 
serial and bit parallel Montgomery multipliers are 
coded and the time redundancy and modular inversion 
techniques are applied for all the multiplier types. 



Sargunam, B. and R. Dhanasekaran / American Journal of Applied Sciences 11 (1): 137-144, 2014 

 
142 Science Publications

 
AJAS 

 
 
Fig. 8. Comparison of time redundancy technique and modular 

inversion technique in terms of gate count 

 

 
 
Fig. 9. Comparison of time redundancy technique and the 

modular inversion technique in terms of power 
consumption in Mw 

 
Figure 8 and 9 show the graphical comparison of 

the area and power consumption of the time 
redundancy technique and the modular inversion 
based error detection technique for all the three 
multiplier types. Figure 10 shows the simulation 
result for the error detection in bit serial multiplier 
using time redundancy technique. 

Figure 11 shows the simulation result for the error 
detection in bit serial multiplier using the modular 
inversion based error detection scheme.  

 

 
Fig. 10. Simulation result for the error detection in bit serial 

multiplier using time redundancy technique  

 

 

 
Fig. 11. Simulation result for the error detection in bit serial 

multiplier using the modular inversion scheme 
 

5. CONCLUSION 

The CED scheme is used to detect online errors in 
applications like cryptography. The time redundancy 
and modular inversion based CED schemes are 
performed for the three types (Bit-serial, Digit-serial 
and Bit-parallel) of finite field multipliers using 
Montgomery multiplication algorithm. The proposed 
CED using modular inversion technique is found to be 
area and power efficient when compared to the time 
redundancy technique. 
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