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Abstract: Problem statement: This study aims to discuss the stability and bifurcation of a system of 
ordinary differential equations expressing a general nonlinear model of HIV/AIDS which has great 
interests from scientists and researchers on mathematics, biology, medicine and education. The 
existance of equilibrium points and their local stability are studied for HIV/AIDS model with two 
forms of the incidence rates. Conclusion/Recommendations: A comparison with recent published 
results is given. Hopf bifurcation of solutions of an epidemic model with a general nonlinear incidence 
rate is established. It is also proved that the system undergoes a series of Bogdanov-Takens 
bifurcation, i.e., saddle-node bifurcation, Hopf bifurcation and homoclinic bifurcation for suitable 
values of the parameters.  
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INTRODUCTION 
 
  There has been considerable interest in disease of 
Human Immunodeficiency Virus (HIV) infection 
pandemic and so it receives (Bachar and Dorfmayr, 
2004; McCluskey, 2003; Elaiw, 2010; Hethcote et al., 
1989; Hsieh and Chen, 2004; LaSalle, 1976; Moghadas 
and Gumel, 2003; Naresh et al., 2011) and references 
therein. There was an important report given by UN 
AIDS conclude that a number of more than 34 million 
population living with HIV by the end of the year 2003 
and alos the AIDS is growing rapidly. The HIV/AIDS 
disease is a danger problem in poor countries. The 
competition between the human immunodeficiency virus 
and the human immune system has widely been studied 
(Mann and Tarantola, 1998). Mathematical and 
Statistical models have been proven valuable in 
understanding the dynamics of HIV/AIDS infection 
amongst a population or between interacting countries  
with treatment and or change of behavior (Mann and 
Tarantola, 1998). Recently, numerous mathematical 
models have been developed to describe different 
phenomena about this disease. The mathematical 
modeling has proven to be effective in improving 
information about the character of HIV/AIDS. Perelson 
and Nelson (1999) proposed an ordinary differential 
equations model of cell-free viral spread of 
immunodeficiency virus HIV in a well-mixed 
compartment such as bloodstream. They divided the 

model into the components: Uninfected healthy CD+ T-
cells, latently infected CD4+T-cells and free virus. 
This model is very important as inspiration for many 
models which obtained results established the 
importance of mathematical techniques in HIV/AIDS 
researches. Hethcote et al. (1992). Discussed time 
delay in the removed class to account the period of 
temporarily immunity. Culshaw and Ruan (2000) 
studied the interaction between infection of a CD4 +T-
cell and the emission of viral particles on a cellular 
level. In order to obtain the effect of the time delay on 
the stability of the endemic steady state. In their very 
recent study, Cai et al. (2009) investigated an 
HIV/AIDS model with treatment. They established 
two infective stages. Using mathematical analysis. 
They discussed the global analysis of the spread of the 
HIV disease computed by the number R0 (basic 
reproduction) by which they could classify stability of 
equilibrium points. In this study we assume that the 
total population is divided into a susceptible class of 
size S(t) and an infectious class before the onset of 
AIDS. Since it is well known (Mann and Tarantola, 
1998) that the infection period is very long (more than 
or equal ten years), it is further divided into several 
cases. In this study, we are going to consider the case 
in which the HIV/AIDS model allows for some 
infected people to go from the symptomatic phase to 
the asymptomatic phase by all sorts of treatment ways. 
It is very important konwing that the infected 
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individuals do not change are treated or not change 
their behavior no matter if they are treated or not. 
 Thus the average value of contact of an person is 
constant for all subset of population. The disease transfer 
from rate is constant from stage I1-I 2 stage. It is also 
supposed that infected individual  in the second stage I2 
can go back by successful treatment to the first stage I1 
with rate γ. Here, we consider the treatment model with 
two infective stages in a general model than given by 
(Culshaw and Ruan, 2000; Perelson and Nelson, 1999). 
We consider the system Eq. 1: 
 

1 2

1
1 2 1 1 2

2
1 1 2 2

dS
= d a H(I , I )S dS

dt
dI

= a H(I , I )S (d k )I I
dt
dI

= k I (d k )I
dt

α − ρ −

ρ − + + γ

− + + γ

  (1) 

 
where, N = S+ I1+ I2 is the total active population size. 
This is a generalization of the work of Liming (Cai et 
al., 2009). Where they discussed the special case. Here 
S represents the number proportion of susceptible, I1 is 
the number proportion of infective of first stage of 
treatment and I2 is the number proportion of infective of 
the second stage of treatment, b is the birth rate 
constant, d is the natural death rate constant, α is the 
average number of contacts of an individual per unit of 
time, ρ is the probability of disease transmission per 
contact by an infective in I1 and k1and k2 are the 
transfer rate constants I1 →→→→ I2 and I1 → a respectively, 
where A is the number of AIDS cases, α is the transfer 
rate constant I1 →→→→ I2 (successful treatment ) aρH(I1, I2) 
is a nonlinear function on the average number of new 
infections per unite time (nonlinear incidence). This 
study is organized as follows. We start by discussing 
the existence of equilibrium points and their local 
stability using Routh-Hurwitz method. In next section 
we study the bifurcation of solutions of the system (1). 
The study end with a brief discussion. 
 
Stability Properties: The total population size N (t) is 
variable with ( ) ( ) 2 2N' t   d N k  I= α − − . In the absence 

of disease, the population size N approaches carrying 
capacity α the differential equation for N implies that 
solutions of (1) starting in the positive orthant R3

+ 
defined by Eq. 2: 
 

3
1 2 1 2= {(S, I , I ) :S I I }+Γ ∈ + + ≤ αR     (2) 

 

 The following is the linearization due to the 
system (1) Eq. 3 and 4: 

1
' 3

2 1 2 3

3

x

X = MX , where X = x , (x , x , x )

x
+

 
  ∈ 
 
 

R

 

(3) 

 
Where: 
 

1 2

1
1 2

1 2

H H
a H d a S a S

I I

H H
M = a H a S (d k ) a S

I I

0 k (d k )

∂ ∂ ρ − − ρ − ρ ∂ ∂ 
 ∂ ∂ρ ρ − + − ρ + γ ∂ ∂ 
 − + + γ
 
 

      (4) 

 

 It is clear from (1)  that P
−
�  = (α, 0, 0) is a trivial 

equilibrium. The Varational  matrix of (1) at P
−
�  = (α, 0, 

0) is given by Eq. 5:  
 

  
P

1

d 0 0

M = 0 A

0 k B
−

− 
 − γ 
 − �

  (5) 

 
where, A = (d+k1) > 0 and B = (d + k2 + γ). The 
eigenvalues are λ1 = -d < 0 and λ2 and λ3 are given by: 
 

2
2,3 1

1 1
= (A B) (A B) 4(AB k ).

2 2

−λ + ± + − − γ  

 
 Since λ1 = -d <0, A> 0 and B> 0, hence the 

disease-free point P
−
�  = (α, 0, 0) is locally 

asymptotically stable. 
  Now we study the non-zero equilibrium point 
 P* = (S*,I1

*,I2
*) of system (1), where Eq. 6: 

 

1 2
1

1 2 1

1 1
2

2

d a H(I ,I )S
S = ,I =  

a H(I , I ) d d k

k I
I =

d k

α ρ + γ
ρ + +

+ + γ

⊻ ⊻ ⊻

⊻ ⊻

⊻ ⊻

⊻

⊻  
(6) 

 
 The Variational matrix of (1.1) at P* = (S*,I1

*,I2
*) is 

given by Eq. 7: 
 

I I1 2

1P I I1 2

1 2

a H d a H S a H S

M = a H a H S (d k ) a H S

0 k (d k )

 ρ − − ρ − ρ
 
 ρ ρ − + − ρ + γ
 
 − + + γ 

⊻ ⊻ ⊻

⊻ ⊻

⊻ ⊻ ⊻

⊻ ⊻ ⊻

 

(7) 

 
where, 

I I = I I I = I1 1 1 2 2 2I I1 2

H H
H = | , H = |

H H

∂ ∂
∂ ∂⊻ ⊻ ⊻ ⊻

 and 

1 2H H (I , I )=⊻ ⊻ ⊻ . We assume that 
I I1 2

H , H
⊻ ⊻

 and H*are 
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positive. Set l1 = aρH*, 2 I1
l = a H Sρ ⊻

⊻
 and 

3 I2
l = a H Sρ ⊻

⊻

. 

Thus the Jacobian matrix MP* becomes Eq. 8: 
 

1 2 3

1 2 3P

1

l d l l

M = l l A l .

0 k B

− − − 
 − + γ 
 − 

⊻

  (8) 

 
 The characteristic equation of 

oP
M  at P° is Eq. 9 

and 10: 
 

3 2
1 2 3m m m = 0λ + λ + λ +  (9) 

 
Where: 
 

1 1 2

2 1 2 1

2 1 3 1 2

3 1 2 1

3 1 1 2 1 3 1

m = d l A l B,

m = (l d)(l A) B(d l )

(A l )B k (l ) l l ,

m = (l d)(l A)B (l d)

(l )k l l B l l k

− + − +
− − + − +

− − + γ +

− − + −
+ γ + +

  (10) 

 
 It follows from the Routh-Hurwitz criterion (El-
Marouf and Alihaby, 2011; Rao, 1981)  that P* = 
(S*,I1

*,I2
*) is locally asymptotically stable if m1> 0, m3> 

0 and m1m2-m3>0, then we introduce the following 
result. 
 
Theorem 2.1: Assume that the following conditions are 
satisfied: 
 

( )
( )

1 1 2

2 1 2 1 3

1 2 1 3

3 1 3

1 2 1 2 1 1 3

(A )A B d > l l

(A )l 2l B 2k (l ) >

AB(l d) d l B k (l )

(A )(d A B)(x y) dk (l )

> (l l )(x y) B(2l l dA) l k (2l )

+ + +
+ + γ

− + + + γ
+ + − + + γ

+ − + + + + γ

 

  
where, x = 2l 1 l2 + d (A+B)+AB and y = l1 (A+B)+ l2 

(d+B) + k1(l3+γ) Then the equilibrium point P* = (S*  
I*

1,I
*
2) is locally asymptotically stable. 

 Now  we choose γ as the parameter of bifurcation 
for system (1.1). Let γc be the value of γ at which the 
characteristic Eq. 9 has two pure imaginary roots λ1,2. 
From the above discussion we have the following 
theorem. 
 
Theorem 2.2: Assume that the assumption (17) holds, 
thus at γ = γc, there exists one parameter family of 
periodic solutions bifurcating from the equilibrium 
point P* = (S* I*

1,I
*
2) with period T, where T→ T° as γ 

→γc and where 2T = 2 / = 2 / mπ ω π
� �

  and 2m  is 

shown by (10). 

 
Proof: It is clear that Eq. 9 has at least one real root  λ3, 
say, we have the following analysis Eq. 11: 
 

2 2
3 3 1 3 1 3 2( )[ ( m ) ( m m )] = 0λ − λ λ + λ + λ + λ + λ +  (11) 

 

Since, by (9) Eq. 12: 
 

1 2 3 1= mλ + λ + λ −   (12) 

 
also at γ = γc, we obtain Eq. 13:  
 

{ }
23 1 1

2 2
1,2 3 1 3 1 3 1 3 2

= m , = ,

1
= ( m ) ( m ) 4( m m )

2

−
λ − λ λ

λ − λ + ± λ + − λ + λ +
 (13) 

 

 Thus, at γ = γc > 0,  we can rewrite Eq. 10  as Eq. 
14:  
 

1 1 2 3D (m ) = m m mγ −   (14) 

 
 Using m2>0 and m3>0, at γ = γc, we get λ3 = -m1<0. 
At the critical value γ = γc>0, there is soultion of (14) 
which can be given by (11). Hence we obtain the 
equation of γ as follows Eq. 15 and 16:    
  

2
1 2 3c c c = 0− γ − γ +   (15) 

 

Where: 
  

2
1 1 1 2 1

2
2 1 1 2 2

2
1 1 2 1

2
1 2 1 2

2
1 1 2 2

2
1 3 1 2 1 2 1

2
3 1 1 2 2 1

2
2 1 2 1

2

c = (d l d dk l k )

c = (2d l d dk k l )

(d l d dk l k )

(l d )(l d dk ) (d k )

(d l ) (d dk l )(d k )

k l l l ( l d )(l d dk )

c = (2d l d dk k l )[(l d )

( l d dk )(d k )(d l )

(d

− − + + − −

− − + + + −

− + + − −

− − − − − +

− − + − +

− + + − − −

− + + + − −

− − + −

+ 1 2 2 1 3 1 2

2
1 2 1

2 1 3 1 1 3 1

dk l )(d k ) k l l l )]

( l d )(l d dk )

(d k ) (l d )l k l l k )

− + + +

− − − −
+ + − +

  (16) 

 

 Conversely, we assume that m1>0, m3>0 and γ > 0, 
then we can find the solution of Eq. 15 for γc>0. Also we 
know that m2>0,  λ3 = -m1 <0 and λ1,2 are conjugate 
imaginary. Now, we can choose both l1, l2 and l3 to be 
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sufficiently small and d, k1 be sufficiently large.  Then 
we have Eq. 17: 
 

1 1 2 1d(d k 1) > l l k+ + + +   (17)  
 

 But since by (15) and (16) c1> 0 c2> 0 and c3> 0 
Eq. 18:

 
 

 

1 3 1D (m ) = c > 0, lim D (m ) =γ ∞
�

  (18) 

  
 Thus γc is uniquely determined. Now, since by (11) 
λ3 = -m1 <0 and Eq. 19: 
 

1 1 2 3

1 3 1 2 1 1

1 1 3

D (m ) = m m m

= (m )( m )

sgnD (m ) = sgn(m )

γ

γ

−

+ λ λ λ − λ
+ λ

  (19)  

 
 Consequently we have Eq. 20 and 21: 
  

1,2 1 3 c

1
Re = (m ) < 0 for >

2
λ + λ γ γ   (20) 

  
1,2 cRe > 0 for <λ γ γ   (21)  

 

 It follows from the above discussion that, when γ is 
increased though γc,there exists a pair of complex 
conjugate imaginary eigenvalues λ1,2 of the Variational 
matrix MP*. Since at γ = γc, λ3 = -m1, 

1,2 2= i m = iλ ± ± ω
�
 where it is clear that ω°> 0. Now, 

since 21 = ,
−

λ λ for Eq. 22: 
  

22 2 c

1
Re = ( ) = 0 at =

2

−
λ λ + λ γ γ   (22) 

 
and by above discussion we see that Reλ2> 0 for γ < γc 
and Reλ2 < 0 for γ> γc thus Eq. 23: 
   

2 = 1 3 =c c

2 = c

d 1 d
(Re ) | = (m ) |

d 2 d

d
= Re( ) | < 0.

d

γ γ γ γ

γ γ

−λ + λ
γ γ

λ
γ

  (23) 

 
 This completes the proof. 
 
Bogdanov-Takens Bifurcations: Now we onsider the 
system Eq. 24: 
 

1

1
1 1 1 2

dS
= d a H(S,I )S dS,

dt
dI

= a H(S,I )S (d k )I I ,
dt

α − ρ −

ρ − + + γ
  (24) 

 With the nonlinear incidence rate of the form 
aρH(S, I1). In order to translate the interior equilibria 
point P2 = (S*, I*1) to the origin, we set X = S-S*  and Y 
= I1- I

*
1, then the system (24) becomes Eq. 25: 

 

11 12 1

21 22 2

dX
= a X a Y f (X,Y),

dt
dY

= a X a Y f (X,Y),
dt

+ +

+ +
  (25)

 
 

 
where, a11 = -aρH*-aρS*HS*-d, 12 I1

a = a S H ,∗− ρ
⊻

 a21 = 

aρH*+aρS*HS*, 22 1I1
a = a S H (d k ),∗ρ − +

⊻
and f1(X, Y) and 

f2 (X, Y) are smooth functions in (X, Y) of order at least 
two. Since we are interested in codimension 2-
bifurcation, we assume that:

   
1 1I1

(A ) 2a S H < (d k )∗ρ +
⊻

 

 
Theorem 3.1: Assume that the assumption (A1) is 
satisfied. Then the equilibria point P2 = (S*, I*1) of (24) 
is a cusp of codimension 2, i.e., it is a Bogdanov-
Takens singularity.  
 
Proof: Using the assumption (A1) the value of the 
determinant of the matrix Eq. 26: 
  

S I1

P =(S ,I )2 1 1S I1

a H a S H a S H
M =

a H a S H a S H (d k )

∗ ∗ ∗
∗

∗ ∗ ∗ ∗
∗

 ρ − ρ − ρ
 
 ρ + ρ ρ − + 
 

⊻

⊻

⊻

  (26) 

 
is zero. Also, by the assumption (A1) the matrix M has 
two zero eigenvalues. By the same transformation, we 
can write system (24) in the form Eq. 27: 
 

I S S S1

2
3

2
4S S S

dX 1
= (a S H )Y a S H a H

dt 2

X f (X,Y),

dY 1
= a S H 2a H X f (X,Y)

dt 2

∗ ∗
∗ ∗ ∗

∗
∗ ∗ ∗

 − ρ − ρ + ρ
 

+

 ρ + ρ +
 

⊻

  (27) 

   

where, 
2

1
2S S

H(S , I )
H =

S

∗

∗ ∗
∂

∂

⊻

, f3(X, Y) and f4(X, Y) are C∝ 

functions at least of third order. After that, we discuss 
the normal form for the system (27) in the two 
dimensional and appling the center manifold theorem. 
Making the following affine transformation: 
 

I1
x = X and y = (a S H )Y∗− ρ

⊻
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system (27) can be written as Eq. 28: 
 

2
5S S S

2
6I S S S1

dx 1
= y a S H 2a H x f (x,y),

dt 2
dy 1

= a S H a S H 2a H x f (x,y)
dt 2

∗
∗ ∗ ∗

∗ ∗
∗ ∗ ∗

 − ρ + ρ +
 

 − ρ ρ + ρ +
 ⊻

 (28) 

 
where, f5(X, Y) and f6(X, Y) are C∝ functions at least of 
order three. In order to find the canonical normal form 
of the cusp, we take: 
 

2
5S S S

1
X = x and Y = y a S H 2a H x f (x, y)

2
∗

∗ ∗ ∗
 − ρ + ρ +
 

 

   
then the system (28) becomes Eq. 29: 
 

2

I S S S1

7S S S

dX
= Y,

dt
dY 1

= a S H a S H 2a H X
dt 2

a S H 2a H XY f (X,Y)

∗ ∗
∗ ∗ ∗

∗
∗ ∗ ∗

 − ρ ρ + ρ
 

 − ρ + ρ +
 

⊻
  (29) 

 
where, f7(X, Y) is C∝ functions at least of order three. 
Now, since (aρS*HS*S* + 2aρHS*) > 0, hence P2 = (S*, 
I*

1) is a cusp of codimension 2. This completes the 
proof. 
 The above result indicates that Eq. 24 can satisfies 
the Bogdanov-Takens bifurcation with a small 
perturbation if the bifurcation parameters are chosen by 
suitable method. For convenience, we denote: 
 
  1 1 1 1 11 1= ( ,a ,d , ,k ) and = ( ,a,d, ,k ).β α γ β α γ�  

 
 Then the system (2) in a small neighborhood of 
(S*, I*1) can be written as Eq. 30:  
  

1

2

I S S S1

2S S S

dx
= y W (x, y; ),

dt
dy 1

= a S H a S H 2a H x
dt 2

a S H 2a H xy W (x,y; )

∗ ∗
∗ ∗ ∗

∗
∗ ∗ ∗

+ β

 − ρ ρ + ρ
 

 + ρ + ρ + β
 

⊻
 (30) 

 
where, W1 and W2 are C∝ functions, W1 (x, y ;β°) = 0, 
W2(x, y; β) = f7(X,Y), x and y belong to small 
neighborhood of (0,0) and β is a small neighborhood of 
β°. Next we obtain versal unfolding depending on the 
original parameters in Eq. 4. By this method,we will 
compute the approximating bifurcations curves. As the 
bifurcation parameters, we can choose the parameters a, 
d and ρ. Assume that the following assumption holds:  

2 I I1 1
(A ) H = 0

⊻ ⊻
 

 
 Assume that a, d and ρ satisfy (A1) and (A2). Let a 
= a°+µ1 and d=d° +µ2 and ρ = ρ° + µ3. Substituting X = 
S-S* and Y = I- I*1 into (24) and using Taylor 
expansion, we obtain Eq. 31: 
 

2
1 2 3 4 1

2
0 1 2 3 4 2

dx
= a a x a y a x a xy p (x, y),

dt
dy

= b b x b y b x b xy p (x, y)
dt

+ + + + +

+ + + + +

�

  (31)  

 
Where: 
 

1 S

2 3I S S S1

4 0 1 1I S I1 1

1 2 1S I1

3 4S S S S I1

a = d a S H dS , a = (a H 2a S H d)

1
a = a S H a = 2a H a S H

2

a = a H a S H ,b = a S H (d k )I

b = a S H a H ,b = a H (d k ),

1
b = a S H 2a H ,b = a H a S

2

∗ ∗ ∗ ∗ ∗
∗

∗ ∗
∗ ∗ ∗

∗ ∗ ∗
∗

∗ ∗
∗

∗ ∗
∗ ∗ ∗ ∗

α − ρ − − ρ + ρ +

 − ρ − ρ − ρ
 

 − ρ + ρ ρ − + − γ  

ρ + ρ ρ − +

 ρ + ρ ρ + ρ
 

�

⊻

⊻

⊻ ⊻

⊻

⊻ I1
H
⊻

 

 
and p1(x, y) and p2(x, y), are C∝ functions of (x, y) up to 
the third order. Using the change of variables: 
 

2
1 2 3 4 1X = x and Y = a a x a y a x a xy p (x, y)+ + + + +

�
 

   
and rewrite X, Y as x, y respectively, system (31) 
becomes Eq. 32:  
 

2 2
5 6 7 8 9 10 3

dx
= y

dt
dy

= a a x a y a x a y a xy p (x, y, )
dt

+ + + + + + µ

  (32)  

 
Where: 
 

5 1 2 0

2
6 1 2 1 0 3 4 0

7 1 2 2 2 4

8 1 3 2 3 1 3 4 1

9 2 4 10 1 4 2 4 2 3 4 2

a = a a a b ,

a = a a b 2a a a b ,

a = a a a b a a ,

a = a a a b 2a a a b ,

a = a a , a = a a a b 2a a a b

+

+ + +
+ +
+ + +

+ + +

�

�

 

 

and p3 is a continous  function. Let 7

10

a
X = x

a
+  and 

rewriting X as x,we obtain Eq. 33: 
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2 2
5 6 8 9 10 4

dx
= y,

dt
dy

= b b x a x a y a xy p (x,y, )
dt

+ + + + + µ
  (33)  

 

where 
2

6 7 8 7 7 8
5 5 6 62

10 10 10

a a a a 2a a
b = a , b = a

a a a

   
− + −   

   
 and 

p4(x, y, µ) is a continous function in the variables x, y 
and the parameter µ. Now, introduce the new time τ by 
dt = (1-a1x) dτ and rewrite τ as t, we have Eq. 34: 
 

1

2 2
1 5 6 8 9 10 4

dx
= (1 a x)y,

dt
dy

= (1 a x)(b b x a x a y a xy p (x, y, )),
dt

−

− + + + + + µ

 (34) 

 
 Set X = x and Y = (1-a1x) y and rename X, Y as x, 
y respectively, we obtain Eq. 35: 
 

2
5 1 2 10 5

dx
= y,

dt
dy

= b C x C x a xy p (x,y, ),
dt

+ + + + µ
  (35)  

 
where, C1 = b6-2a9b5, C2 = a8-2a9b6 and p5(x, y, µ) is a 
smooth function of in xy-plane and µ at least of third 
order. Setting the change of variables 

2 3
10 10 2

2
2 2 10

a a C
X = x, Y = y, = t

C C a
τ . Also, we denote them 

again by x, y and t, respectively, we get Eq. 36:  
 

2
1 2 6

dx
= y,

dt
dy

= x x xy p (x, y, ),
dt

ξ + ξ + + + µ
  (36)  

 

where 
4 2

5 10 10 1
1 23 2

2 2

b a a C
= , =

C C
ξ ξ  and p6(x, y, µ) is a 

continous function in the variables x, y and the 
parameter µ. As in (Bogdanov, 1981a; 1981b), we will 
get the following bifurcation curves.  
 
Theorem 3.2: Suppose (A1) and (A2) hold. Then 
system (24) satisfies the following bifurcation curves: 
 
• The saddle-node bifurcation curve 

2
1 2 1 2

1
SN = {( , ) : = }

4
ξ ξ ξ ξ   

• The Hopf bifurcation curve H = {(ξ1, ξ2): ξ1 = 0, ξ2 
< 0}  

• The homoclinic bifurcation curve 

2 2
1 2 1 2

6
HL = ( , ) : = 0( )

25

− ξ ξ ξ ξ + ξ 
 

� �  

 
CONCLUSION 

 
 In this study, we considered a general HIV/AIDS 
system with treatment model. The incidence rates ρH 
(I1, I2) and ρH(S, I1) are of nonlinear form. The local 
asymptotic stability of the disease-free equilibrium 

points P = ( ,0,0)
−

α� and P* = (S*, I*1, I
*
2) for systems (1) 

and (2), respectively are established. The obtained 
results in here are consistent with those obtained by 
(Perelson and Nelson, 1999). We proved that The 

disease-free solution P
−
�  = (a, 0, 0) is locally 

asymptotically stable in the interior of the feasible 
region and the disease always dies out. Also we showed 
that the non-trivial equilibrium point P* = (S*, I*1, I

*
2)  

exists and is locally asymptotically stable in the 
considered region. In Theorem 3.1 we proved that if the 
two conditions (A1) and (A2) hold, then the equilibrium 
point P2 = (S*, I*1) of system (24) is a cusp of 
codimension 2, i,e., it is a Boggdanov-Takens 
singularity. Also we have proved that if the additional 
condition (A2) holds, then the system (24) exhibits 
Boggdanov-Takens bifurcation, that is, there are three 
types of bifurcations, saddle-node bifurcation, Hopf 
bifurcation and homoclinic bifurcation. Our results that 
obtained througout this study are considered as 
improvement and partial generalization for those 
obtained by (Anderson, 1988; Busenberg and 
Driessche, 1990; Pedro and Tchuenche, 2010; Wang 
and Li, 2006; Xu, 2011; Yang and Xia, 2010).   
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