
American Journal of Applied Sciences 9 (6): 832-841, 2012
ISSN 1546-9239
© 2012 Science Publications

Corresponding Author: Sudhakar, P., Department of CSE, Faculty of Information and Communication Engineering,
 Annamalai University, Annalamalai Nagar, India

832

Reengineering Legacy to Modern System with

One Time Checker for Information System Evolution

Sudhakar, P. and P. Sakthivel
Department of ECE, Faculty of Information and Communication Engineering,

Anna University, Chennai, India

Abstract: Problem statement: The prime focus of Information System (IS) evolution process is the
aggrandize productivity and quality of various components of the system. The evolution process is
always challenging as it leads to an increase in overall complexity especially when the system changes
are mostly confined to part of it. Approach: In this respect to improve efficiency and decrease
complexity, we propose a Reengineering model namely Reengineering Legacy to Modern (RL2M)
system. In this proposed work, reengineering technique was implied to demonstrate how modern
system could be obtained by converting a legacy system or application. This approach was developed
to impose the dynamic program slicing as a method, which was basically used for simplifying
programs by focusing on selected aspects of semantics. To avoid the issues of reengineering, we
propose a method named One Time Checker (OTC) for legacy system conversion. Before the
implementation of the migrated system, the converting system enters into OTC which was easily
integrated with any reengineering approach. Results: The intermediate outcome of RL2M was to
compute the dynamic slices for the legacy system. The obtained slices would be converted to a new
system which was further integrated to a Very Large Scale Integrated (VLSI) application. In several
VLSI applications, the integration could be more tedious by mapping the entire system components.
A wrapper was created which acts as a common interface that would be linked with the legacy
system for effective conversion. Conclusion: During reengineering, all the legacy systems are not
compatible with the new system, which leads to inaccuracy. The main advantage of this proposed
work is the OTC can be integrated with any reengineering process and it is virtual to end user with
respect to the application.

Key words: System evolution, legacy system, reengineering, dynamic slicing, wrapper, VLSI

INTRODUCTION

 Legacy systems are old computer systems that are
continuously be used as they still function for the user
requirements. A software program in the legacy system
is expected to perform for many years and also undergo
frequent updates and changes. Constant changes to such
legacy software systems are always expected to face
some quality issues. A way to eradicate those problems
in the legacy system is Reengineering. The
reengineering is a method of analysis and gaining
comprehensive knowledge from the existing system so
as to rebuild the source code according to the new
system requirements. During the new system
development process, programmers have higher level of
abstraction in statement level, usually with the help of
an application development environment. This study
describes an implementation of a wrapper that can be
used to translate/rehost the legacy programs into the
new systems. A good reengineering approach should
hide the complexity of legacy system. It acts as an

interface between the applications. When the system is
reusable, then the system components shared by the
new system and hence the repetition is avoided. If these
components are too complex, then it is difficult to
modify and extract the information to new system. The
cost, platform and time are the main features that decide
that whether the older system is easy to maintain or to
redevelop or redesign the system to modern one.
 Major researchers are still working with systems
that were designed and implemented long ago for
various organizations. Those systems depend upon
some older technologies and their platforms would not
provide easy support to the users. Moreover it is very
difficult to add more functionality in a legacy system
and also too complex to recover from situations like
hardware failure, disaster etc. and Legacy system needs
continuous maintenance which requires significant cost.
The prices of the new system are fallen so much
recently and the things are feasible because of wide
availability of components.

Am. J. Applied Sci., 9 (6): 832-841, 2012

833

Fig. 1: RL2M System Overview

By considering these factors, it is essential to modify or
transform the legacy system to the modern
environment. It is about retaining and extending the
value of the legacy investment through migration to
new platforms.The process of re-organising a system so
that related components are collected together in a
single module. Usually a manual process is carried out
by the system inspection and re-organisation. The
purpose of the IS evolution is to provide change,
propagation and impact analysis.
 The above diagram Fig. 1 gives the simple process
activities i.e., the overview of RL2M. The translation of
the legacy to improved system is called forward
engineering and vice versa. In reengineering, it is
tedious to assure that the changes made in the legacy
system will not introduce any bugs in the migrating
system. The existing system is typically structured into
multiple components, each consisting of hundreds of
Lines of Code (LOC) and components. Before
migrating the source code to target code, we should
have at least a partial understanding of existing
software. The existing systems are often hard to
maintain, improve and expand is the reason behind the
migration. The basic reengineering tasks are
preparation for functional enhancement, improve
maintainability, migration, improve reliability etc., It
makes the software easier to change and improve its
reusability. The ultimate thing of Reengineering is to
keep the older system as it is and add the new things to
it that leads to target system.
 Migrating to a new platform leads to align
applications with current and future needs through the
addition of functionality and through application
restructuring. A process of converting a predetermined
code to another with a same or different code is called
code conversion. The code conversion process consists
of a number of specific steps as follows: Design model
target programming system after analyzing legacy
programming system and its attributes, develop
migration model and associated procedures between
legacy and target systems. Convert the legacy code to
modern language through compiling/simulating the new
test program, refine models to correct anomalies,

address, omissions and include upgrades and repeat
these process until desired level of migration is
achieved. In RL2M, the program slicing is used as the
debugging technique in the system extraction process.
The program slicing is a well established technique for
program understanding and comprehension. In order to
increase the precision of the program slicing, refine the
program slicing with dynamic point of data which is
known as dynamic slicing. For Migration, we use
wrapping which surrounds the existing thing, individual
and application system and acts as an interface with
new operations. Hence, reengineering with wrapping
gives a new and improved look to a legacy system. If
the legacy system is infeasible then the good solution is
to wrap the legacy system. The time needed for
wrapping is minimum comparing to redeveloping or
restructuring which are the phases of reengineering.
 Almost all the reengineering activities perform a
successful transformation. But they failed to produce a
perfect resultant system. Consider a legacy system is
highly constrained then the transformation itself is a
tedious one. After the transformation the resultant
system will not provide user friendly system. More
effort is requires to examine and alter the target system
which is a time consuming process. The transformation
is not possible for a large process and erroneous task
oriented system. Though the transformation is
successful, the updating to that target system in
consideration of latest technologies is a tedious task.
During reengineering, it is tedious to analyze the legacy
system. The major problem faced in the reengineering
activity is that one-part of the reengineering team have
the knowledge on legacy systems and others have only
in the target system. Based on the assumption, the
transformation is made especially in the situations such
as bigger size, time pressures, the exclusive functions of
legacy and target systems etc., as they are incompatible
with each other. In reengineering there are many
possibilities for the incompatibility, inaccuracy
moreover they are very contrast with each other. Our
proposed RL2M also faces all those problems. For this
purpose, we propose a new method named One Time
Checker (OTC) for legacy system conversion. As name
implies OTC checks the target system once again for its
user requirements satisfaction. Our proposed OTC is
not built for RL2M it is only implemented in RL2M.
OTC is easily integrated in any reengineering approach
which enhances the reengineering process.

Related work: In the literature, only few things are
available which address database reengineering and
software quality. Manual translation of legacy to
modern system is the most common approach. In this
approach, two editors are required for legacy and

Am. J. Applied Sci., 9 (6): 832-841, 2012

834

modern system separately. The effectives of the manual
translation process are determined by the degree to
which the legacy code meets the compatibility
considerations. It is impossible for migrating large
programs using manual conversion such as VLSI.
Another approach is an automated translation of legacy
system to modern language. This approach performs
rigorous analysis on a legacy system, providing detailed
output on the changes required to the new system. This
approach allows easy movement between legacy and
modern language. But the effectiveness measured by
means of technique and the effort put on that technique.
Existing research work extracts the legacy system such
as rules. Many approaches to the reuse and integration
of legacy system took place in the previous works. In
legacy system modernization, number of approaches is
available and several techniques were proposed. Some
of the work presents a generalized model of the
software life cycle that recognizes explicitly the
legacy system to the attainment of new system from
reusable components.
 Jain et al. (2011) propose a method to extract a
business rule from a legacy C++ without reengineering.
Zhang et al. (2011) gives some to find the variables
occurrence in the instruction stream. Stilkerich et al.
(2011) discussed about how to combine isolated legacy
components with the mixed mode operation. Singh et
al. (2010) generated a class diagram from events where
the OOA techniques usefulness and interaction is
increased significantly. Bastaki (2012) developed a
based framework using JAVA applets in an interactive
manner by providing the simulation of executable C++
code. Chen et al. (2010) developed a method to class
diagram and sequence diagram from the Java binary
byte code. Costa et al. (2010) developed an open
source java framework to help students in their
approach to the study of graph algorithms. It includes a
library that anyone can easily use to develop custom
algorithms. Mousavi et al. (2010) gave an Ontology
driven PRS like model (O-PRS), which used Ontology
with OWL format to represent Believes, Plans and
Events .It implementing BDI agents which are used in
Mobile Workforce Brokering Systems (MWBS), a
multi-agent system that automated the process of
allocating tasks to Mobile Workforces. Meng et al.
(2011) introduced a method for efficient migrating of
legacy system to web applications. Hwang et al. (2009)
focused on improving reusability and extensibility to
legacy system and proposed an automated approach to
migrating legacy systems. Mustafa et al. (2005)
discussed various demerits and limitations of the
current reengineering techniques. They also identified a

method how to convert the legacy source code to model
driven architecture. Zahi and Sarhan (2009) discussed
about the business process retrieval from the legacy
information system through functional analysis of
stabile components of the legacy system.

MATERIALS AND METHODS

 In this study, we propose a new model called
Reengineering Legacy to Modern system (RL2M) for
abstracting source code from legacy system. This
approach involves the functionalities: (1) Program
analysis (2) Identification of the constructs from the
legacy system (3) Slicing of the code (4) Mapping
source and destination program to create template (5)
Creating a wrapper (6) Execution (7) Integrate to VLSI
application. The RL2M architecture is shown in the Fig.
2. Initially, the source program is analyzed that implies
the inventory of all applications “artifacts”. In this step,
we have to analyze all the components of the legacy
system including tables, views, indexes, data profiling.
In the constructs identification, the legacy program is
taken with various constructs. Then the program with
required constructs is categorized according to control
flow activities. It also enables to check whether the
legacy system follow the syntax and semantic. The
primary requirements for these construct identifications
the input source program should be executable in the
desired environment. These programs are categorized
depending upon the constructs. If all the requirements
are satisfied, then the legacy program is compiled that
yields a batch file for the program slicing.
 For the given input program the slices are
computed for obtaining the program slice of smaller
size or of equal size in the worst case for the particular
extension of the program. Dynamic slicing is one of the
program slicing techniques where the source program
decomposes and produces the slices.

Fig. 2 RL2M Architecture Diagram

Am. J. Applied Sci., 9 (6): 832-841, 2012

835

 The input program contains faults in which
program slicing determine those statements and the
failure has been revealed for a given input. It finds all
the statements in a legacy system that affects the value
of the variable occurrence. It is used for simplifying
programs by focusing on selected aspects of semantics.
It consists of statements that influence the value of the
variable occurrence for a specific program input. It also
distinguishes between multiple occurrences of the same
instruction. Program slicing has the ability to assist in
tedious and error prone tasks. In RL2M, a novel
algorithm is presented below to perform a program
slicing. This algorithm initially gets the input
program and defines the slicing criteria in which the
slicing variable is initialized. The algorithm further
splits a program and checks the program for errors.
This algorithm checks the input program without
tedious computational complexity also with less time
for computation.

Algorithm for program slicing:

1. Get the Input program to be sliced
2. Define the slicing criteria (s , v) where s =

statement number, v = slicing variable
3. Check whether the slicing variable v is present in

statement number s in the Input program
4. If v is available in s, go to step 5, else escape line l

and continue
5. Let k = v; count_line = 0; array found_variables[]

= v
6. For each statement line l in Input program

statements
{ count_line = count_line + 1

 If variable k is present in l then
 {move the statement line k to an array found [] }}
7. line_no = 0
8. Let converted [] to store converted code, st as

statement, cmt as comment and fn as function
9. For each statement line l in array found []

{Let variable k = found [line_no]
 If variable k = st then
 {Convert k and Add to array converted []
 }
 If variable k = fn then
 {Convert k and Add to array converted []
 }
 If variable k = cmt then
 {Add k to array converted [] }
 line_no = line_no + 1}
10. Display array converted []

 The application of this algorithm are architecture
reconstruction, identify reusable functions, program
comprehension, debugging and maintenance. Hence the
flaws are relieved from legacy systems. If all the
requirements are satisfied for the computed slices, then
the RL2M system will create a corresponding file that
contains the main function of a target system as a
template. A template method defines the program
skeleton of an algorithm. The mapping is a collection of
objects that specifies the transformations that are
required to migrate a part of the legacy system. The
dynamically sliced construct of the source program and
the obtained slice are mapped to the destination
program. It is sophisticated to the user while the proper
name given for the template because the destination
target system attain the output position. This is
necessary that the sliced output is again converted to
the source code rather than contain the instructions
number alone and avoid overlapping or collisions
between the legacy systems.
 Wrapper is a popular software component that
converts a system from one version to another. Legacy
systems can be used on various models ranging from
standard file structures to relational and data models.
To deal with this heterogeneity, a wrapper must hide
the model that a legacy system implements by
providing a more and common model e.g. a canonical
model that is highly generic and more flexible than the
legacy systems. Wrapping surrounds the existing data,
individual program, application system and interfaces
with new operations. Hence wrapping gives a new and
improved look which allows reusing legacy
components. This component helps in complex
problems which unlocks the value of the legacy input
and open a new solution to rebuild the legacy system.
In RL2M it actually includes a new source to a legacy
system by act as an interface between them. When the
legacy system are kept unchanged, while the new
component is designed and developed by the modern
practices. Wrappers are used to extract, update and
control the implicit constructs of the legacy system by
the preceding steps. Wrappers provide robustness and
also deliver a target system in an effective manner to
the user. It is typically encompasses a combination of
other process such as reverse engineering, restructuring
and forward engineering.
 Execution is the process by which a computer or
a virtual machine carries out the instructions of
a computer program of new application. The
instructions in the program trigger sequences of simple
actions on the executing machine. Those actions
produce effects according to the semantics of the
instructions in the program. The migrated code will be
used in a VLSI application where Integrated Circuit
(IC) contains millions of transistors, each a few mm in

Am. J. Applied Sci., 9 (6): 832-841, 2012

836

size for a specific function. Because of wide ranging of
application, the destination program is applied in VLSI
application. It is laborious since it has characteristics
such as process variation, stricter design rules; first-pass
success etc., Integration of VLSI sometimes leads to
serious effects which are avoided by OTC. To convert a
legacy system to modern system, the RL2M first
preprocess the input legacy system for their functions
and then convert the functions to the modern system.
 Each of the above mentioned process in the RL2M
has got their own importance. The assumptions made
are that during the slicing of the required constructs it is
necessary in getting back the input program and should
ensure efficiency and accuracy of target system. Hence,
each process is in turn dependent on each other. The
entire RL2M is going to be sequential. No process can
be give priority. The RL2M has to be carried out
sequentially not simultaneously. The main challenge in
any reengineering approach is to take legacy system
and deliver a good translation methods and attributes,
which leads to a new target system that keeps the older
functionality while applying translation method without
any serious defects. For this purpose, OTC is a
sophisticated and valuable methodology for the
reengineering. It applies a gradual process in a
reengineering approach and produces a target system
which satisfies the target system compatibility and
requirements. As name implies OTC checks the target
system once again for its user requirements satisfaction.
It is based on Meta programming concept. It is applied
as pattern based generation and it is an automated task.
OTC mainly used in situations like where hard to derive
the target system complicated transformations, VLSI
integration, time consuming process etc.
 Each system has its own peculiar and exclusive
function. All systems follow some unique patterns. Our
aim is to define and identify that pattern before the
implementation of the converted target system. This
approach is automated wherein the manual conversion
is also available as optional at the stage of execution of
target system. Our approach is suggested for many
business organizations as it captures the legacy system
and represents them accurately. To overcome all the
above mentioned drawbacks on every approach, we
introduce a new method where the bug detection and
rectification is done on target system. The basic
requirements expected for OTC is a legacy system and
the method for reengineering. The compiled legacy
systems that were obtained by debugging techniques
such as program slicing, breakpoints etc., undergoes a
reengineering transformation process and produce a
target system. Our method is to check and ensure that
target system for their peculiarities and exclusive
function. This proposed new method is named as One
Time Checker (OTC) which takes place before the
compilation and execution of target system after the
reengineering process.

Fig. 3: Process Diagram of OTC

 OTC provides very easy and user friendly
conversion system that will support all the platforms. It
also provides the integration among the resource
sharing with the distributed environment along with the
new technologies such as web services and traditional
methods. In addition, our proposed component suit for
different programming languages that would be able to
communicate with the network also. The idea for this
technique is quite simple based on a fact that each
system has its own peculiar and exclusive function. In
this OTC, tokenization will be performed which is a
linear one. The set of delimiters which defaults to
common whitespace characters may be specified at
creation time or on a one token basis.
 In this OTC, we have built-in functions which
comprises of Libraries, Tokenization, Pattern matching
and the special function contains the appropriate errors
and their solutions. After the termination of
reengineering process the resultant system is inserted
into OTC then the target system is obtained. In this
OTC flag is introduced when the flag is true then the
resultant is ready for compilation and it is false then we
ensure that the resultant system contains some serious
errors or exceptions. When it leads to false then the
human interaction may be needed for examination. For
this purpose, we develop a window which contains
error and warnings. It is automated and produces almost
accurate translation and the system is ready for
compilation where the interference and incompatibility
between legacy and target system are avoided. This
OTC is possible to develop for all the systems and it is
very easy to integrate with any reengineering approach.
The manual compilation is minimized because of this
automated error debugging task. The proposed process
diagram is given below Fig. 3.

Am. J. Applied Sci., 9 (6): 832-841, 2012

837

Fig. 4: Module Diagram for OTC

 The OTC provides many modules which happen
sequentially. The modules presented are (i) Tokenize
(ii) Pattern Matching (iii) Debugging. Tokenize
function breaks the code into tokens based on their
creation time. It does not distinguish the legacy and
target code but the libraries take care of that.
Tokenization is a simpler task. Standardized and
updated libraries provide a generic way to access the
exclusively features of target system in pattern
matching. At pattern matching the executed code is
matched and sends for verification. All the system has a
particular structure which is verified for pattern
matching. In this rule based matching is performed. To
successfully store and retrieving the executed program
we provide a Hash table which contains a key which
implement the method. OTC provides program
debugging, testing, parallelization, integration, safety,
understanding, maintenance and metrics and so it acts
as power of reengineering approach. The primary goals
of this OTC are to provide a simple, familiar
architecture that can be portable in any Legacy system
migration and provide high performance to the end user
for checking the migration. The module diagram of
OTC is given below in Fig. 4.
 In debugging module, the most probable errors and
their solutions are stored. This automated debugging
point out the appropriate errors and replaces it with
correct one. In this module we store and retrieve the
possible error. There is no need for special computation
technique for debugging. Hence, the target system
compilation becomes easy. In this OTC there are some
constraints such as it support only one terminal and the
information handled in OTC is text based. It is possible
that more than one user can use this OTC at a time
simultaneously but it is same as that of the
reengineering approach.
 When OTC is integrated in reengineering approach
the main criteria to consider is time. It may take more
than 12 sec and less than 1 min depends upon the task
and the program input. Although it takes more time it
completely reduce the programmer burden at the time
of debugging. The OTC automatically replaces the

abrupt errors also it carries many corrective measures.
By considering these factors the time consumption of
the proposed OTC is negligible also it equalized that
time in compilation and debugging of the particular
target system. The above described OTC and their
time consumption properties are described with
suitable examples.

RESULTS

 We have conducted an experiment by using RL2M
model to evaluate how program slicing works and the
source code converted to modern language. We
considered a partially Object Oriented (OO) language
like C++ as the legacy language. Though it supports
several OO features, it has some limitations such as
security constraint due to usage of pointers. It does not
support the network interface and hence cannot be used
in web based projects. Unlike Java it is also not
platform independent. OO programming has many
positive aspects over the non object oriented. Many
legacy systems were developed before the OO
programming concept. Most reengineering activities
focus on the functionality of the original program and
the OO redesign results entirely new in which only the
designer understand the original program. These are not
sufficient as they not only take more time and also
required more effort for designers besides it is mistake
prone due to the human involvement. Hence conversion
of non object oriented to object oriented language is the
need of the hour. Our experiment dealt with this kind of
conversion to convert the partially OO code to purely
OO code. It is infeasible to convert C++ to Java also it
is too costly and time consuming process while
redeveloping. But in our RL2M the wrapping takes
place for conversion it leaves the code in current
environment and connects to a new environment with a
minimum change to legacy system. RL2M hides the
legacy C++ program and performs the execution of
Java. The process of our proposed RL2M is explained
below with suitable examples.
 RL2M gets the legacy input C++ program first and
then the processor analyzes the statements of the legacy
code. It also identifies all the input statements so as to
replace it by their equivalent Java program. Header
files and access specifiers are inserted in the template.
The branching and looping statements are similar in
both the legacy and new application but for planning
each and every statement into Java file, these simple
constructs are identified and the conversion takes place.
For object identification the character is checked to be
either object or a variable. If it is a variable the data
types, if it is an object they can be created only with
class name which for a user defined data type.

Am. J. Applied Sci., 9 (6): 832-841, 2012

838

Fig. 5: Retrieving a C++ Program as Input

Fig. 6: A Successful Conversion of C++ Program

Hence the object identified and replaced with new
operator in the Java statements. Hence the objects are
identified to the class objects and not variables and
replacing the operator with thus performing they
require operation. The operators +, - and * are
converted in RL2M as operatorMinus, operatorPlus,
operatorMul respectively. Any other normal arithmetic
operations are to be left as such without converting in
this approach.
 The above Fig. 5 shows a step of retrieving a C++
program which would be converted to Java. The C++
program is collected from the computer system by
entering the path it has been stored in the system. After
the input is given to RL2M, we have to run the RL2M
model so as to convert the input C++ to output Java.
For this retrieving step we must have a collection of
C++ programs with various constructs. These programs
are categorized depending upon the constructs. The
C++ program may or may not contain the classes by
default. This process analyzes the program for the
construct type that undergoes the slicing algorithm to
identify the flaws in the taken C++ program.
 The above Fig. 6 gives successful conversion of
C++ to Java.

Fig. 7: Percentage Efficiency in code conversion for

control structures

The converted program which will be stored in the
directory where the input C++ program is stored
already. The output Java is viewed on Java editor and
can be compiled in that same editor. After compilation,
a Java class is created for the C++ input and the class
content corresponding to the functions and statements,
which are to be mapped later. The main program
contains the structure of main with the main method in
which the functions from class program can be called at
runtime while mapping with file contents C++ into Java
as output. The output of the slice is mapped to Java for
creating a Java program to obtain the Java template of
classes and main function. The experiments were
conducted for more than 50 programs and the results
are discussed below.
 The graph in Fig. 7 shows the efficiency of the
RL2M experiment that was conducted for various
control structures and the performance of RL2M which
yields significant performance in code migration. The
various constructs in C++ is successfully converted to
Java and as it yields a good efficiency. Our proposed
method is evaluated based on the cost of execution and
how they get to the desired accuracy. All of our results
were generated from independent experiments and the
results are averaged for further work. A static cause
which allows errors to occur when the internal state of a
program is invalid or a legacy program is invalid. If it is
a case examine an input program to see what is
supposed to do and what is not supposed to do. This
type of inconvenience is reduced by means of OTC
which is discussed later.
 The above graph in Fig. 8 contains the main results
of the experiment conducted and compares the
performance of various OO concepts which undergoes
RL2M technique. It yields a good result for
constructors, inheritance, function overloading.

Am. J. Applied Sci., 9 (6): 832-841, 2012

839

Fig. 8: Percentage efficiency in code conversion for

various programs

But the migrating Java not merely supported the
concepts like inline functions. If we compile the legacy
system as like inline functions or graphics it is tedious
to programmer to compilation and execution and the
human involvement is necessary. To eliminate these
bugs it is necessary to check the target system before
going to execution. This complexity is very common in
all reengineering approaches. Apart from these the
transformation is successfully done for constructs like
overloading, conditional branching, iteration
statements, arrays and compound statements. The
number of incorrectly converted programs is sampled
and sends for experiment after integrating OTC. There
are numerous rules defined for these conversion and
they were discussed below.
 The major reasons for reengineering fails in the
reengineering process itself because reengineering
method doesn’t avoid the contrast between the legacy
system and target system and the human consideration
is needed. The manual debugging process does not
sophisticate for each and every process and it is
impossible for process like VLSI. Our proposed RL2M
efficiently handles this situation. For our taken
examples it gives good results. Although it gives
successful conversion it fails in input programs like
inline functions, graphics etc. To overcome these
drawbacks and to enhance all reengineering approach,
we propose an automated technique name as OTC. This
OTC helps to removes the bugs in target system
successfully and enhances the approach easily.
 Experiments were conducted for our proposed
system and the results discussed below. In our
experiment in RL2M C++ act as legacy and the
resultant is Java. Legacy source is inserted to the
transformation approach and the OTC integrates with it.

Table 1: Time consumed by various programs for Migration
Attributes OTC Non-OTC
Arithmetic operators 38 sec 52 sec
Realtional operators 40 sec 75 sec
Compound assignments 52 sec 72 sec
Function calls 63 sec 75 sec
Bitwise operators 30 sec 56 sec

After reengineering, tokenization is the simple method
its performance is based on creation time and a per-
token basis. It breaks statements into tokens. A
tokenization maintains a pointer which maintains a
current position past the characters and it advances the
current position. At the next module, the obtained
tokens are matched with predefined inbuilt OTC
libraries. In this, transformed statements scattered
throughout the program for finding the irrelevant
statements when it found irrelevant statements it
takes automated corrective measures. The matching
is made efficient by the use of some data structures
search techniques.
 We conducted the matching by hash table where
searching and matching are sequentially. The OTC
debugging is different from compilation and execution.
This module omits some abrupt errors. In this module
some appropriate errors stored and the corresponding
solutions also given. There is another option where the
ideas inserted as comment lines. Human interaction is
not possible because it works virtually but it is available
at the end of transformation where the flag became
false if it is true it is ready for compilation.
 OTC is the most powerful techniques to transform
existiong syetm to modern system. It provides unique
features like a detailed output on the changes necessary
will make transformation a much more efficcient and
reliable process. It is able to integrate on any
reengineering process and there is no need to free up
memory which is considered to be the significant
benefits of OTC. As the experiment results conducted
on OTC, it gives increased performance and reduced
burden of target system compilation. The future work
may be the extension of the transformation to highly
tedious legacy systems with minimum time
requirements. The process is much more efficient and
gives considereable improvement when the modules
grouped together as a single unit in the target compiler
itself. OTC takes a few times more for execution as it
built in with reengineering approach. The following
time considerations are explained below. The time
consumed for OTC and non OTC process conducted on
various programs are given in Table 1.
 This table concludes that the time needed to
OTC is high than non OTC process but it is
negligible on performance aspect of view because
abrupt target system errors takes more time to
compile also it is very tedious.

Am. J. Applied Sci., 9 (6): 832-841, 2012

840

DISCUSSION

 All input is once again checked in this OTC to
ensure the target system functionalities. In our
experiment the considered graphics functionalities input
system is successfully traced by OTC and it suggested
by the Java functionalities such as AWT components.
Then the user interaction made easier where the
programmer complexity reduced considerably. The
results of this OTC are discussed below with suitable
examples. More than 50 programs were considered and
there is a good improvement with OTC. The proposed
OTC is integrated in any reengineering approach so as
to easily eliminate the target system bugs. The below
Fig. 9 explains the efficiency of systems with OTC and
Non OTC process. In the first phase of OTC Java
undergoes the tokenization after that the tokens patterns
matched with inbuilt functions. After the debugging
phase the equivalent Java code will generate as target
system. In our experiment we provided a conversion of
some main features such as call by reference, call by
value, function overloading, inline functions and
inheritance. It is a powerful rule based matching technique
and the efficiency may be improved by hash table.
 The above graph reveals the effeciency that was
conducted for different programs and it ensures that
OTC gives considerable improvement in the
performance and accuracy during transformation. OTC
provides a detailed output on the changes necessary,
will make transformation a much more efficcient and
reliable process. It is able to integrate on any
reengineering process and there is no need to free up
memory which is the other benefits of OTC. The future
work proposes the extension of the transformation to
highly tedious legacy systems with minimum time
requirements. The process is much more efficient when
the process executed in the target compiler itself.

Fig. 9: Efficiency on different programs (OTC Vs

non OTC)

CONCLUSION

 In several applications, the transformation of
legacy system could be more difficult by mapping the
entire source program into the modern one. In this
approach, we created a common interface that can be
linked with the legacy system which is dynamically
sliced and results are obtained. The main advantage of
applying dynamic slicing technique is, the source
program and its components are identified with respect
to a slicing criterion and the same is converted and
verified after the migration. Since program slicing is a
debugging by using the RL2M and OTC techniques, the
migration can be done without any errors even with any
run time inputs. The output of these two tools is
mapped to Java for creating a Java program to obtain
the Java template of classes and main function.
 The Proposed RL2M gives a good conversion
technique when compared to other techniques due to
their semantics checkers and wrapping. As like other
approaches RL2M have to faces some challenges
especially situations like VLSI integration. OTC
recognizes these issues and makes the conversion
accurately for tedious and larger tasks. The future work
proposes the extension of OTC and RL2M where the
exclusive functions in legacy system are to be mapped
and converted to the equivalent target system then to
work as an executable target system itself without bugs.

REFERENCES

Bastaki, Y.A., 2012. A Framework for Teaching

Programming on the Internet: A Web-Based
Simulation Approach. J. Comput. Sci., 8: 410-419.
DOI: 10.3844/jcssp.2012.410.419

Chen, L., J. Wang, M. Xu and Z. Zeng, 2010.
Reengineering of java legacy system based on
aspect-oriented programming. Proceedings of the
2nd International Workshop on Education
Technology and Computer Science, Mar. 6-7,
IEEE Xplore Press, Wuhan, pp: 220-223.
DOI: 10.1109/ETCS.2010.298

Costa, G., C.D. Ambrosi and S. Martello, 2010. A free
educational java framework for graph algorithms.
J. Comput. Sci., 6: 87-91. DOI:
10.3844/jcssp.2010.87.91

Hwang, K.S., J.F. Cui and H.S. Chae, 2009. An
automated approach to componentization of java
source code. Proceedings of the 9th IEEE
International Conference on Computer and
Information Technology, Oct. 11-14, IEEE Xplore
Press, Xiamen, pp: 205-210. DOI:
10.1109/CIT.2009.19

Am. J. Applied Sci., 9 (6): 832-841, 2012

841

Jain, A., S. Soner, A.S. Rathore and A. Tripathi, 2011.
An approach for extracting business rules from
legacy C++ code. Proceedings of the 3rd
International Conference on Electronics Computer
Technology (ICECT), April 8-10, IEEE Xplore
Press, Kanyakumari, pp: 90-93. DOI:
10.1109/ICECTECH.2011.5941963

Meng, X., J. Shi, X. Liu, H. Liu and L. Wang, 2011.
Legacy application migration to cloud. Proceedings
of the IEEE International Conference on Cloud
Computing (CLOUD), Jul. 4-9, IEEE Xplore Press,
Washington, pp: 750-751. DOI:
10.1109/CLOUD.2011.56

Mousavi, A., M.D.J. Nordin and Z.A. Othman, 2010.
An ontology driven, procedural reasoning system-
like agent model, for multi-agent based mobile
workforce brokering systems. J. Comput. Sci., 6:
557-565. DOI: 10.3844/jcssp.2010.557.565

Mustafa, K., K. Gowthaman and R.A. Khan, 2005.
Measuring the function points for migration
project: A case study. Am. J. Applied Sci., 2: 1218-
1221. DOI: 10.3844/ajassp.2005.1218.1221

Singh, S.K., S. Sabharwal and J. P. Gupta, 2010. An
event-based methodology to generate class
diagrams and its empirical evaluation. J. Comput.
Sci., 6: 1301-1325. DOI:
10.3844/jcssp.2010.1301.1325

Stilkerich, M., J. Schedel, P. Ulbrich, W. Soder-
Preikschat and D. Lohmann, 2011. escaping the
bonds of the legacy: Step-wise migration to a type-
safe language in safety-critical embedded systems.
Proceedings of the 14th IEEE International
Symposium on Object/Component/Service-
Oriented Real-Time Distributed Computing
(ISORC), Mar. 28-31, IEEE Xplore Press, Newport
Beach, pp: 163-170.DOI: 10.1109/ISORC.2011.29

Zahi, A. and A. Sarhan, 2009, Formalized model of
stabile reengineering information system functional
elements (business processes). J. Comput. Sci., 5:
915-921. DOI: 10.3844/jcssp.2009.915.921

Zhang, R., Y. Zheng, S. Huang and Z. Qi, 2011.
Structured dynamic program slicing. Proceedings
of the International Conference on Computer and
Management (CAMAN), May 19-21, IEEE Xplore
Press, Wuhan, pp: 1-4. DOI:
10.1109/CAMAN.2011.5778759

