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Abstract: Problem statement: Effective detection and localization of unbalance voltage supply 
affecting an induction motor may be compromised in presence of additionnal noise. Approach: In 
order to overcome the non possibility of the default detection and localization in presence of noise, the 
use of the discrete wavelet transform and especially the MultiResolution Analysis algorithm, to 
remove efficiently the noise associated to the stator currents is proposed. Results: Simulation results 
show that the de-noised stator current is a good estimation of the non disturbed one. They show also 
that the default occurrence instant can be well detected starting from high frequency detail signal. 
Furthermore, the signal details which characterize the default are not smoothed and still characterize 
the default occurrence. Experimental results validate the de-noising approach efficiency and the 
effective unbalance detection considering the MRA technique. Conclusion: In this study, current 
signal denoising problem is studied in order to perform an effective detection of an unbalance voltage 
supply induction machine default. It can be deduced that the wavelet transform and particularly the 
MRA technique is a good and powerful solution for both non linear noise filtering and transient default 
detection. Both simulation and experimental results show clearly that the stator currents MRA allows 
not only to detect when the default appears but also helps to separate the useful signal from noise 
without affecting or suppressing the default transient information. 
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INTRODUCTION 

 
 In industrial, production and manufacturing 
systems, voltage unbalance is one of the most defaults 
that affect electric machines, in particular induction 
machines which are an important component largely 
spread in industries. Many studies and researches were 
and continue to be carried out, since 1936 till now 
(Moussa et al., 2010; Chatchanayuenyong, 2009; Faiz 
et al., 2004), to show causes and effects of high 
unbalance voltage supply level on stator operating 
conditions and motor performances. In fact, unbalance 
level is considered to be a good indicator of the AC 
electric motors health.  
 Thus, voltage unbalance is due to several causes, 
such as (Moussa et al., 2010; Siddique et al., 2004):  

 
• Single phase, two-phase or three-phase under-

voltage unbalance  
• Single phase, two-phase or three-phase over-

voltage unbalance 
• Unequal single phase angle or two phase angles 

displacement 
• One phase load nearby the motor 
• Unbalanced distribution of single-phase loads on 

the power system 
• Single-phase to ground defaults 
 
 These induction motor functioning conditions 
may lead to many damages and performance 
reduction of the motor (Moussa et al., 2010; 
Chatchanayuenyong, 2009; Tallam et al., 2007; 
Siddique et al., 2004) which are: 
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• Motor currents unbalance: in this case the currents 
unbalance level is six to ten times that of voltage 
unbalance Therefore, stator currents are 
characterised by the increasing of the third and the 
fifth harmonics amplitude 

• Increase in iron and copper losses 
• Thermal overloading: in fact, a 3.5% voltage 

unbalance level per phase causes a winding 
temperature increase of 25% in the phase with the 
highest current 

• Damage of bearings, laminations and winding 
insulation due to harmonics  

• Torque ripples which cause motor vibrations and 
then important noise level and motors mechanical 
stresses 

• Full load speed reduction and speed ripples 
• Reactive power consumption increase 
• Shorten life of motors: In fact, severe and repetitive 

over-voltage condition may cause short circuits and 
consequently breakdown of motors 

 
 Thus, to preserve the motor life and a larger margin 
of safety operating, efficient monitoring and early 
detection and localization of voltage supply unbalance 
should be provided in time and should be quite 
sensitive to the motor conditions in general and 
particularly to the stator conditions. 
 Many methods, widely studied in literature, have 
been adopted for the monitoring of electric motors and 
especially induction motors, as well as the diagnosis of 
their defaults such as artificial intelligence based 
methods (Kanthalakshmi and Manikandan, 2011; 
Prasannamoorthy and Devarajan, 2010; Bouzid et al., 
2008; Martins et al., 2007; Tallam et al., 2007), signal 
processing based methods (Prasannamoorthy and 
Devarajan, 2010; Kia et al., 2007; Jung et al., 2006), 
automatic and control based methods (Kanthalakshmi 
and Manikandan, 2011; Angelo et al., 2009) and a 
combination of them (Prasannamoorthy and 
Devarajan, 2010). 
 One of the signal processing monitoring techniques 
which is largely used and promising is the wavelet 
technique and particularly the Multiresolution Analysis 
(MRA) which is a fast algorithm of the discrete wavelet 
decomposition technique. In fact, wavelet technique is a 
very useful, powerful and efficient tool for monitoring 
and diagnosis machines purpose because of its 
capabilities to perform signal content analysis in both 
time and frequency domains (Prasannamoorthy and 
Devarajan, 2010; Cusido et al., 2008; Ukil and 
Zivanovic, 2005; Truchetet and Laligant, 2004; Chow 
and Hai, 2004; Lee et al., 2004). This is of a great 
importance for the detection of changes starting from 
the motor signals and especially abrupt and time 
localised changes caused by defaults occurrence. 

 Since the monitoring and the diagnosis are 
performed from the motor signals measured from 
sensors, in any case, the sensors outputs include 
significant additional noise. The presence of noise 
complicates significantly effective data analysing and 
consequently default detection and localisation. 
 Noise reduction is mostly performed using filters 
such as low-pass filters or band-pass filters. However, 
these filters are useful only for removing noises in 
specific frequency ranges. Moreover, noise and 
especially the white noise contain components in all 
frequency ranges; it cannot be effectively removed by 
linear filtering. Thus, as demonstrated by Donoho 
(1995), Giaouris et al. (2008) and Ali et al. (2010), the 
discrete wavelet transform is used as a demising tool in 
order to overcome this limit and separate the useful 
signal from the noise. The advantage of this tool, such 
as proved in a previous work, is that the filtering will be 
performed without losing the useful information about 
the default occurrence instant.  
 In this study, early robust detection of an unbalance 
voltage affecting an induction motor is studied using 
the discrete wavelet technique. The default detection is 
carried out using stator currents. The accent is put on 
capabilities of the discrete wavelet technique to allow 
performing both the demonising of stator currents 
signals and a robust diagnosis of the default starting 
from the de-noised stator currents. White Gaussian 
noise is added to the simulated stator currents to 
reproduce experimental conditions. The robust 
detection of the default after signal demonising is 
simulated and validated experimentally. 
 This study is organized as follows. First, the 
Multiresolution Analysis Demising technique is 
introduced. Then, the whole procedure of default 
detection respectively from noisy stator currents (before 
denoising) and from de-noised stator currents (after 
denoising) is described and illustrated by simulation 
and experimental results in order to validate the study. 
Finally, these results are discussed to conclude to the 
effective diagnosis of the induction motor voltage 
unbalance and to the prospective of this study. 
 

MATERIALS AND METHODS 
 
 MultiResolution Analysis Demising Technique: 
The MRA demonising procedure is based on the 
Discrete Wavelet Transform (DWT) principle. 
 As demonstrated by Mallat (1989), the 
decomposition of a numerical signal using DWT 
consists in applying a bank of filters to this signal. 
These filters are band-pass and low-pass filters with 
different bandwidths. 
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Fig. 1: Discrete wavelet transforms principle 
 
 Then, by applying the Mallat’s MRA algorithm to a 
discrete-time current signal Is at the scale J, this signal 
is decomposed into approximated signals noted A1, A2, 
..., AJ and into detailed signals noted D1, D2, ..., DJ. The 
approximated signals are the output of the low-pass 
filter bank whereas the detailed signals are the output of 
the high-pass filter bank Fig. 1. 
 The signal Is can then be reconstructed using the 
approximated and the detailed signals according to Eq. 1: 
 

 
J

s J i
i 1

I (n) A (n) D (n)
=

= +∑  (1) 

 
 AJ(n) is the product of the scaling coefficients αJ,p

 

by 
the scaling function φJ,p

 

at level J, defined as follows 
Eq. 2: 
 

J

J J,p J,p
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A (n) (n)
=

= α Φ∑  (2) 

 
 DI(n) is the product of the wavelet coefficients βI,p 

by the mother wavelet function ΨI,p at each level I, 
defined as follows Eq. 3: 
 

I

I I,p I,p
p 1

D (n) (n)
=

= β Ψ∑  (3) 

 
 The maximum level decomposition, noted JMax, 
depends on the samples number N of the signal Is to be 
decomposed, according to the condition Eq. 4: 
 

MaxJ2 N<  (4) 
 
 If the signal Is is contaminated by a noise, then the 
MRA denoising technique, based on the described 
MRA algorithm, consists in the three following steps, 
as established by Donoho (1995). 
 
Step 1: Signal decomposition: This step requires an 

appropriate wavelet type and wavelet 
decomposition level M. The wavelet chosen 

will be applied to the noisy signal, noted Isn, so 
as to determine the noisy wavelet coefficients 
from the first level to the Mth level. 

Step 2 : Thresholding: This step consists first in the 
selection of appropriate threshold limits and 
second in the smoothing of the detailed signals 
by applying the selected thresholds. 

Step 3 : Signal reconstruction: This step consists in 
application of the inverse wavelet transform to 
threshold wavelet coefficients, by using a low 
frequency approximation of the Mth level and 
the smoothed details from the first level to the 
M th level, to obtain a de-noised signal, noted Isd. 

 
 Thus, the signal Isd represents an estimation of the 
signal Is. 
 In order to perform robust default detection against 
noise, the MRA demonising technique implementation 
requires choosing carefully the mother wavelet type and 
order, the decomposition level, threshold limits, the 
threshold method and the noise model. Mat lab 
environment has been used to configure the parameters 
set to process the MRA demonising steps as following: 
 
• Mother Wavelet Type and Order: The mother 

wavelet and its order should be carefully selected, 
so as to obtain the better approximation of the 
original signal Isd starting from the noisy signal Isn. 
In fact, the mother wavelet type and order 
determine how well the original signal is estimated 

• Decomposition Level : As the wavelet transform is 
performed, at most, for JMax levels and the noise 
appears with significant amplitude at M detail 
signals, with M≤JMax, so to reduce noise from these 
contaminated M levels, then the noisy signal can be 
decomposed at only M levels 

• Threshold Limits: The choice of the threshold 
limits for each level I depends on the noise type. 
Many methods for setting the threshold limits have 
been proposed. Donoho and Johnston propose the 
following thresholds: 

• Fixed from threshold”: The threshold is usually 
named “universal threshold”. It depends on the 
estimated noise power 

• Rigorous Sure”: The threshold is based on Stein's 
Unbiased Risk Estimate 

• Heuristic Sure”: The threshold is chosen using a 
combination of the previous two methods. As a result, 
if the SNR (Signal to Noise Ratio) is very small, the 
“Fixed form threshold” method is used. In the other 
case, the “Rigorous Sure” threshold is applied 

• Minimax”: The threshold is chosen to yield minima 
performance for the mean square error 
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Fig. 2: Experimental setup 
 
Threshold method: There are two most popular 
threshold methods: 
 
• Hard Thresholding: All wavelet coefficients, 

whose absolute value is less than the specified 
threshold limit, are set to zero. The other wavelet 
coefficients are maintained at their values 

• Soft Thresholding: All wavelet coefficients whose 
absolute value is less than the specified threshold 
limit are set to zero. The other wavelet coefficients 
are attenuated by the threshold value 

 
Noise model: The noise added to the considered signal 
can be modelled as: 
 
• A scaled white noise. 
• An unscaled white noise. 
• A non-white noise. 
 
 The Multiresolution Analysis denoising technique 
has been applied, in a previous work, to the diagnosis of 
an inter-turn short-circuits in an induction motor and 

has given very good and promising results. In this 
study, the same procedure will be applied to the 
detection of an unbalance voltage supply occurrence 
affecting an induction motor. 
 
Experimental setup: A photo and a block diagram of 
the experimental setup are depicted in Fig. 2. The 
characteristics of the squirrel cage induction motor, that 
has been used to carry out experiments, are given as 
following: 
 
• Rated power: 1,5kW 
• Rated voltage supply: 230/400V 
• Rated stator currents: 6.23/3.6A 
• Rated speed: 1400 rpm 
 
 Stator currents acquisition has been realised thanks 
to the acquisition station GRAPHTEC DM3000. 
 The motor operating has been considered with 
4.6% over-voltage level affecting the voltage supply of 
the motor. 
 This unbalance voltage level has been obtained by 
inserting a single-phase resistive load between the 
supply and the induction motor. 
 

RESULTS 
 
Simulation results: Simulations have been carried out 
in order to reproduce respectively 5% under-voltage 
and 5% over-voltage levels affecting the induction 
motor phase a voltage supply, as shown by Fig. 3 and 4. 
This unbalance level should not be reached according to 
the standard NEMA which recommends a maximum of 
1% unbalanced voltage for AC electric motors. 
 To study the noise effect on the default detection 
and localisation efficiency, different simulations have 
been carried out in the following conditions: 
 
• Default detection from stator current Isa without 

added noise 
• Default detection from noisy stator current Isan, 

where 
• Isan= Isa+In and In is the noise which contaminates Is  
• Default detection from de-noised stator current Isad, 

where Isad is the result of the Isan MRA demonising 
 
 In each of these three cases, the stator current 
sequences being studied are: 
 
• The steady state induction motor operation in 

absence of voltage unbalance (before default 
occurrence) 

• The voltage unbalance transient occurrence 
• The steady state induction motor operation in 

presence of voltage unbalance (after default 
occurrence) 
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Fig. 3: 5% under-voltage affecting the motor phase “a” 

voltage supply 
 

 
 
Fig. 4: 5% over-voltage affecting the motor phase “a” 

voltage supply 
 
Table 1: Frequency bands obtained for 6 levels wavelet decomposition 
Signal Related frequency band 
A6 0-78.125 HZ 
D6 78.125-156.25 HZ 
D5 156.25-312.5 HZ 
D4 312.5-625 HZ 
D3 625-1250 HZ 
D2 1.25-2.5 kHZ 
D1 2.5-5 kHZ 
 

 It will be considered that the induction motor stator 
currents are affected with white Gaussian noise, where 
the SNR was fixed with regard to the experimental 
conditions. To perform default detection, the stator 
currents are sampled at 10 kHz-rate and then 
decomposed at 6 levels, which is sufficient to highlight 
the default occurrence.  

 
 
Fig. 5: MRA of Isa using DB4, J = 6. Case of 5% under-

voltage affecting the motor phase “a” voltage 
supply 

 

 
 
Fig. 6: MRA of Isa using DB4, J = 6. Case of 5% 

over-voltage affecting the motor phase “a” 
voltage supply 

 
 Daubechies is used as a mother wavelet because this 
wavelet family gives very satisfactory results for detecting 
transient phenomena, as demonstrated in previous works. 
To select the optimal mother wavelet order, several trials 
have been carried out. The Daubechies order 4-mother 
wavelet, noted DB4, has been retained for performing the 
signal multiresolution analysis. 
 The frequency bands related to the 6-levels wavelet 
decomposition are displayed in the Table 1. 
 
Default detection from non noisy stator currents: The 
results related to the stator current signal Isa 
decomposition in case of 5% under-voltage and 5% over-
voltage are shown respectively in Fig. 5 and 6.  
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Fig. 7: MRA of Isan using DB4, J = 6. Case of 5% under-

voltage affecting the motor phase “a” voltage supply 
 

 
 
Fig. 8: MRA of Isan using DB4, J = 6. Case of 5% over-

voltage affecting the motor phase “a” voltage supply 
 
 This decomposition, so realized, allows the 
monitoring of the default frequency components 150Hz 
and 250Hz (for a 50Hz supplied motor), which 
characterize the unbalance voltage default, in a separate 
frequency areas. 
 In fact, the frequency component 150Hz belongs to 
the sub-band [78,125Hz-156,25Hz] related to D6 and 
250Hz belongs to the sub-band [156,25Hz-312,5Hz] 
related to D5. 
 
Default detection from noisy stator currents: The 
noisy signal Isan and its MRA decomposition are 
represented in Fig. 7 and 8 respectively for the case of 
5% under-voltage and 5% over-voltage. The six levels 
detailed signals are denoted respectively D6, ..., D1. 
 Furthermore, Fig. 9 gives the MRA decomposition 
of only the white Gaussian noise In. 

 
 
Fig. 9: MRA of the white Gaussian noise using DB4, J = 6 
 
Default detection from de-noised stator currents: In 
order to de-noise the stator current signal Isan which 
contains the default transient, the following parameters 
have been considered: 
 
• Number of decomposition level: 4-level wavelet used 

for the signal demonising is sufficient because only 
detail signals D1, D2, D3 and D4 need to be filtered. 

• Noise Model: The unsealed white noise 
corresponds to the noise type initially added to Isa 

• Threshold method: The soft thresholding provides 
smoother results than the hard thresholding 
technique and has been retained for the stator 
current wavelet demonising 

• Mother wavelet: When too high order mother 
wavelet is chosen, the signal obtained after 
demonising becomes smoother and transient cannot 
be detected. For this reason and after several trials, 
the DB3 mother wavelet has been considered to 
decompose the noisy signal 

• Threshold limits: all the methods allow removing 
the noise efficiently. Only the «Rigorous Sure» had 
permitted to recover correctly the transient 

• According to the Donoho-Johnstone approach, the 
following steps have been applied to the signal Isan 
in order to obtain the filtered signal Isad 

• Decomposing the signal Isan into approximation A4 
and detail sub-bands D1, D2, D3 and D4 

• Thresholding detail coefficients of the obtained 
signals D1, D2, D3 and D4 from the previous 
decomposition in order to obtain the filtered detail 
signals 

• Applying the inverse wavelet transform to 
reconstruct a better estimation of the original signal 
from approximation signal A4 and filtered detail 
signals D1, D2, D3 and D4 
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Fig. 10: MRA of de-noised signals Isad. Case of 5% 

under-voltage affecting the motor phase “a” 
voltage supply 

 

 
 
Fig. 11: MRA of de-noised signals Isad. Case of 5% 

over-voltage affecting the motor phase “a” 
voltage supply 

 
 Hence, only D1, D2, D3 and D4 signal details are 
threshold, because the frequency band of the noise 
elimination extends from 312,5Hz-5kH. As A4 = 
A6+D5+D6, then the sub-bands related to level 5 and 6 
detailed signals, which contain frequencies related to 
the default, are included in the approximation signal A4 
and are not smoothed. Therefore, the reconstructed 
signal after thresholding details preserve the main 
information about the default. 
 In order to detect the default occurrence instant, the 
demonising signal Isad is decomposed again in 6 levels.  

 
 
Fig. 12: Stator current of phase “a” before and after 

applying a 4.6% over-voltage unbalanced supply 
 

 
 
Fig. 13: Stator current of phase “a” and its MRA 

decomposition before denoising 
 
The wavelet mother is still DB4. The decomposition 
results are shown in Fig. 10 and 11.  
 
Experimental results: The induction motor stator 
currents demonising and the unbalance voltage occurrence 
detection after demonising have been performed 
considering the approach protocol described in this study. 
 Figure 12 presents the induction motor stator 
current after applying arbitrarily a 4.6% over-voltage 
unbalance on the motor supply.  
 Figures 13 and 14 show respectively the 
decomposition of the experimental stator current 
before and after denoising it, according to the same 
steps considered for the simulation results and 
described above. 
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Fig. 14: Stator current of phase “a” and its MRA 

decomposition after demising 
 

DISCUSSION 
 
 As shown by Fig. 5 and 6, which correspond to 
simulation results related to the non noisy stator current 
signal Isa decomposition and considering the detail 
signals D1, D2, D3 and D4, high frequency transient 
signals are highlighted and then transient instant can be 
well determined. This instant corresponds to the 
appearance instant of the unbalance supply in the motor. 
 However, as shown by Fig. 7 and 8, which 
correspond to simulation results related to the noisy 
stator current signal Isan decomposition, the fault 
transient is blurred by the noise and cannot be detected 
anymore. In addition, the noise amplitude is more 
significant in sub-bands D1, D2, D3 and D4 than in sub-
bands D5 and D6. Then, only signal details D1, D2, D3 
and D4 are de-noised to improve transient detection. 
 Furthermore, the Gaussian noise decomposition, 
given by Fig. 9, shows that the noise does not present 
the same behaviour in each sub-band detail. In fact, the 
noise power is divided by a factor of two in each 
frequency band. 
 Finally, the de-noised stator currents 
decompositions, given by Fig. 10 and 11, show that the 
default transient detection become possible after the 
non linear denoising procedure: 
 In summary, by comparing Fig. 5 and 10 (case of 
5% under-voltage) and Fig. 6 and 11 (case of 5% over-
voltage), it can be well noted that: 
 
• The de-noised signal is a good estimation of the 

non disturbed signal 
• The default occurrence instant can be well detected 

starting from detail signal D1 
• The signal details at level 5 and 6, which 

characterize the default, are not smoothed and still 
characterize the default occurrence 

 Finally, the decompositions obtained from the 
experimental stator currents confirm the simulation 
results.  
In fact, as it can be well noted from Fig. 13, the 
presence of noise does not allow detecting any change 
in the stator current and blurs completely the default 
occurrence. 
 However, Fig. 14 shows clearly that the stator 
current denoising helps to remove efficiently noise 
from the processed signal and then to obtain effectively 
an estimation of the original signal without affecting the 
default transient information. 
 Then, experimental results confirm the efficiency of 
the demonising technique and validate the monitoring and 
the diagnosis approach presented in this study. 
 

CONCLUSION 
 
 In this study, current signal demonising problem is 
studied in order to perform an effective detection of an 
unbalance voltage supply induction machine default. It 
can be deduced that the wavelet transform and 
particularly the MRA technique is a good and powerful 
solution for both noise filtering and transient default 
detection. Both simulation and experimental results 
show clearly that the stator current MRA allows not 
only to detect when the default appears but also helps to 
separate the useful signal from noise without affecting 
or suppressing the transient default information. 
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