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Abstract: Problem statement: The studies on Thai expressive speech or emotional speech have been 
conducted for years. Most of them are expected to analysis the characteristics of Thai expressive 
speech. However, the conclusive reviews on these studies have not been conducted for further study on 
the speech technology or application of Thai expressive speech. Approach: The review of research 
on Thai expressive speech in various aspects has been performed. They include an analysis of 
fundamental frequency contours using Fujisaki’s model, an analysis of fundamental frequency 
contours using structural model and speech compression with noisy environments. It has been noted 
that four speaking emotions include enjoyable, sad, angry and reading styles. Results: A comparison 
of two successful F0 models has been reviewed. One approach is based on the Fujisaki’s model which 
has been applied for many tonal and toneless languages. Another one is based on the structural model 
which has been conducted primarily for Mandarin Chinese. Moreover, a study of speech compression 
for noise-corrupted Thai expressive speech by using two coding methods of CS-ACELP and MP-
CELP has been summarized. Conclusion: From the study, it can be seen that two mathematical 
models have been successfully applied to model the fundamental frequency contour of Thai expressive 
speech. As for speech compression, it can be seen that coding methods, types of noise, levels of noise, 
speech gender influence on the coding speech quality.  
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INTRODUCTION  

 
 The expressive speech or emotional speech is the 
current challenge in the modern speech technology. The 
speech communication with implicit emotional 
information is in the frontier line of speech technology 
research. However, in Thai language, the expressive 
speech related research is in the beginning phase. The 
previous study in this issue is reviewed in this study. 
 The fundamental frequency of speech is the most 
important feature among all of the features known to 
carry prosodic information which is an inherently 
supra-segmental feature of human speech. The F0 
contours of an utterance or a sentence convey the stress, 
intonation and rhythmic structures, which indicates the 
naturalness and intelligibility of synthetic speech. 
Therefore, the appropriate modeling of F0 contour plays 
an important role in the speech technology area, e.g., 
speech recognition, speech synthesis, speech analysis 
and speech coding. A number of modeling techniques 
in the previous studies have been conducted in various 
levels of speech units, e.g., utterance level (Saito and 
Sakamoto, 2002; Li et al., 2004; Tao et al., 2006), word 

and syllable levels (Hiroya and Hiroshi, 1971; Tran et 
al., 2006). In Thai, Fujisaki’s model has been 
successfully applied for modeling of utterances, tones 
and words (Hiroya and Sumio, 2002; Seresangtakul and 
Takara, 2002; 2003). In the Thai speech synthesis area, 
the statistical modeling of F0 contour has been achieved 
by Chomphan and Kobayashi (2007; 2008; 2009) and 
Chomphan (2009) in the implementation of speaker-
dependent and speaker-independent systems during 
2007-2009. Recently, the Fujisaki’s model has been 
applied within a speaker-independent system as 
extended modules. Moreover, it has been applied in 
the modeling of Thai expressive speech; i.e., sad, 
happy, angry styles (Chomphan, 2010a; 2010c; 
2010e). Moreover, another study has been conducted 
by using a structural model that is based on the 
assumption that the behavioral characteristics of 
vocal-fold elongation in vibration could be 
approximated by those of a simple forced vibrating 
system (Ni and Hirose, 2006; Chomphan, 2010e; 
2010f). The RMS error calculation has been done for 
evaluation the modeling performance for both 
mentioned speech models and also for all speech 
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styles including angry style, sad style, enjoyable style 
and reading style. This study aims at comparing the 
Fujisaki’s model and the structural model.  
 In the digital speech communication, low bitrate 
speech compression or coding is highly required to 
increase the channel capacity. The flexibility of coding 
rate is also needed to support the variety of the traffic 
occupancies depending on the type and number of 
users. In 1995, CS-ACELP coding was initially 
developed and standardized as ITU G.729 speech 
coding at the constant bitrate of 8 kbps. Few years later, 
MP-CELP coding has been developed to be a scalable 
coder. In the MP-CELP speech coder, it operates at 
various bitrates ranging from 4-12 kbps utilizing the 
flexibility in multi-pulse excitation coding (Chomphan, 
2010b; 2010d; 2011a; 2011b; 2011c). 
 In this study, the review of research on Thai 
expressive speech in various aspects has been done. 
They include an analysis of fundamental frequency 
contours using Fujisaki’s model, an analysis of 
fundamental frequency contours using structural 
model and speech compression with noisy 
environments using CS-ACELP and MP-CELP speech 
codes. Four speaking emotions of enjoy, sadness, anger 
and reading are selected in this study. 
 

MATERIALS AND METHODS 
 
Fujisaki’s model: The F0 contour is treated as a linear 
superposition of a global phrase and local accent 
components on a logarithmic scale, as shown in Fig. 1 
 The phrase command generates a phrase 
component, while the accent command generates the 
accent component of the F0 contour. We use two 
parameters of the Fujisaki’s model as our phrase-
intonation features including the baseline value of F0 
and the magnitude of the phrase command, which 
complementarily reflect the global level of voicing 
frequency. In mathematical formula, the F0 contour of 
an utterance generated from an extension of the 
Fujisaki’s model for tonal languages is represented as 
the following expressions Eq. 1-3 (Chomphan, 2010f): 
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Fig. 1: An extension of Fujisaki’s model for the 

generation of F0 contour 
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Where: 
Gpi(t) = The impulse-response function of the phrase-

control mechanism  
Gt,jk(t) = The step-response function of the tone-

control mechanism 
 
 The symbols in these equations denote that Fb is 
the minimum value in the F0 contour of interest and Api 
and At,jk are the amplitudes of the i-thphrases and of the 
j-tr tone command. Moreover, T0i is the timing of the i-
th phrase command and T1jk and T2jk are the onset and 
offset of the k-tr component of the j-tr tone command. 
While ai and βjk are time constant parameters, 
subsequently I, J, K (j) denote the number of phrases, 
tones and components of the j-tr tone of the utterance. 
 By using this generative model, the parameters are 
extracted from our speech database, utterance by 
utterance. Subsequently, the derived parameters are 
computed are analyzed statistically. 
 From the conventional parameters as described in 
earlier, seven derived parameters which reflect the 
geometrical appearance of the F0 contour of an 
utterance are selected as follows: 
 
• Baseline frequency 
• Numbers of phrase commands 
• Numbers of tone commands 
• Phrase command duration 
• Tone command duration 
• Amplitude of phrase command 
• Amplitude of tone command 
 
 These parameters have been extracted for four 
speech expressions of angry style, sad style, enjoyable 
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style and reading style. Subsequently, the extracted 
parameters are used to resynthesize the F0 contour in 
the evaluation process. 
 
Structural model: The F0 contour is modeled in a 
logarithmic scale, as depicted in Fig. 2. The 
mathematical model has been applied (Ni and Hirose, 
2006; Chomphan, 2010e; 2010f) by using a structural 
control consisting of placing a series of normalized F0 
targets along the time axis, which are also specified by 
transition time and amplitudes. The transitions between 
targets are approximated by connecting truncated 
second-order transition functions. From the background 
knowledge that the physical factors to regulate the 
frequency of vocal-fold vibrations are the length, mass 
and tension of vibrating structures, all of which are 
dynamically controlled primarily by the intrinsic and 
extrinsic muscles of the larynx and secondly by the sub-
glottal pressure (Ni and Hirose, 2006). Fujisaki 
explained that logarithmic fundamental frequency 
varies linearly with vocal-fold elongation × 
(MacNeilage, 1983), which can be formulated in the 
following mathematical term Eq. 4: 
 

0 0

b
ln f x ln( ac )

2
= +  (4) 

 
where, a, b and c0 are constant coefficients.  
 The flow chart in Fig. 3 shows the main process for 
evaluating the structural model. At first the speech 
corpus has been implemented. It consisted of male and 
female speech utterances. Each of them has four speech 
styles including happy, sad, angry and reading styles. 
Each style consists of 5 sentences with 100 samples of 
utterances. Therefore the speech corpus contains 4,000 
utterances. At the beginning, the F0 values of an 
utterance have been calculated and then the pitch 
targets have been allocated by using local 
Minimum/maximum criteria. In between any two 
adjacent pitch targets used as fixed points, an exponential 
function has been approximated to minimize the 
difference between the approximated function and the 
F0 contour. The corresponding parameters from all of 
the functions along the utterance have been used as 
its representatives. Thereafter, the resynthesis of F0 

contour from the parameters has been performed. 
Subsequently, the RMS error between the natural F0 

contour and the resynthesized F0 contour has been 
calculated. Finally, the summarized data from the 
previous stages has been analyzed.  

 
 
Fig. 2: F0 contour with a trend line in a logarithmic scale 
 

 
 
Fig. 3: Workflow for the experimental process 
 
CS-ACELP algorithm:  The CS-ACELP coder is 
improved from the conventional Code-Excited Linear 
Predictive (CELP) coding algorithm (Chomphan, 
2011a; 2011c). The encoder extracts the speech 
features from the speech frames of 10 ms 
corresponding to 80 samples at a sampling rate of 
8000 Hz. The extracted parameters of the CELP model 
include the linear-prediction filter coefficients, 
adaptive and fixed-codebook indices and gains. They 
are subsequently encoded and transmitted through the 
channel. When they arrive at the decoder, these 
parameters are used to retrieve the excitation sequence 
and the synthesis filter parameters. The synthesized 
speech is reconstructed by filtering this excitation 
sequence through the short-term synthesis filter based 
on a 10th order linear prediction filter and the long-term 
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synthesis filter using an adaptive codebook. Output 
from the synthesis filter is enhanced by filtering at a 
post processing unit.  
 The block diagram of CS-ACELP encoder is 
shown in Fig. 4. The input signal is high-pass filtered 
and scaled in the pre-processing unit. The Linear 
Prediction (LP) analysis is performed for the speech 
frame of 10-ms length. The obtained LP coefficients are 
subsequently transformed into Line Spectrum Pairs 
(LSP) and then quantized using predictive two-stage 
vector quantization. The excitation is chosen by 
applying an analysis-by-synthesis search procedure in 
which the error minimization between the original 
speech and the reconstructed speech is performed. 
 The block diagram of CS-ACELP decoder is 
shown in Fig. 5. At first, the parameter indices are 
extracted from the received bitstream. Subsequently, 
they are decoded to retrieve the coder parameters for 
every 10 m sec speech frame. The synthesized speech 
is reconstructed by filtering the excitation through 
the LP synthesis filter. The reconstructed speech 
signal is finally filtered at a post-processing unit 
which includes an adaptive post-filter, a high-pass 
filter and a scaling operation.  
 MP-CELP algorithm: The principle concepts for 
the bitrate scalable MP-CELP coder are explained in 2 
parts of a core coder and a bitrate scalable tool 
(Chomphan, 2011a; 2011b; 2011c). The core coder 
obtains the high coding performance by applying a 
multi-pulse vector quantization as depicted in Fig. 6 
(Ozawa et al., 1997; Taumi et al., 1996). The input 
speech of a 10 m sec frame length is analyzed at the 
LPC analysis module. The obtained LP coefficients are 
quantized in the LSP domain. The corresponding pitch 
delay is simultaneously encoded by using an adaptive 
codebook. The residual signal for LP and the pitch 
information is encoded by the multi-pulse excitation 
scheme. The multi-pulse excitation consists of several 
non-zero pulses. Their pulse positions are restricted in 
the algebraic-structure codebook and calculated by an 
analysis-by-synthesis scheme, e.g., (Laflamme et al., 
1991). The pulse positions and signs are then encoded, 
while the gains for pitch predictor and the multi-pulse 
excitation are normalized by the frame energy and also 
encoded. Three stages of the bitrate scalable tools are 
conducted. It is embedded adjacently to the core coder 
as depicted in Fig. 7. A bitrate scalable tool encodes the 
residual signal from the core coder utilizing the multi-
pulse vector quantization. An adaptive pulse position 
control is conducted to change the algebraic-structure 
codebook at each excitation-coding stage depending on 
the encoded multi-pulse excitation at the previous stage. 

 
 
Fig. 4: Block diagram of CS-ACELP encoder 
 

 
 
Fig. 5: Block diagram of CS-ACELP decoder 
 

 
 
Fig. 6: Block diagram of MP-CELP core coder 
 
The algebraic-structure codebook is adaptively 
controlled to prevent the occurrence of the same pulse 
positions as those of the multi-pulse excitation in the 
core coder or the previous stage. The pulse positions are 
chosen so that the perceptually weighted distortion 
between the residual signal and output signal from the 
scalable tool is minimized. The LP synthesis and 
perceptually weighted filters are the same as that of the 
core coder (Chomphan, 2011a; 2011b; 2011c). 
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Fig. 7: Block diagram of one-stage bitrate scalable MP-CELP coder 
 

RESULTS 
 
 From the comparison of two successful F0 
models; Fujisaki’s model and structural model, the 
applied speech database consists of male and female 
speech and each one contains 4 different speech styles 
including angry style, sad style, enjoyable style and 
reading style. Five sentences are applied for each 
speech style and each sentence includes 100 samples. 
It has been seen from the results that RMS error of 
each speech style is different from the others for both 
models. Moreover, it reveals that the RMS error of the 
Fujisaki’s model is higher than that of the structural 
model for all speech styles. In other words, the 
structural model gives the better fit for modeling of 
the F0 contour of the expressive speech than that of the 
Fujisaki’s model (Chomphan, 2011d). 
 From the study of speech compression for noise-
Corrupted Thai expressive speech by using two coding 
methods of CS-ACELP and MP-CELP, the former 
experimental results show that CS-ACELP gives the 
better speech quality than that of MP-CELP at all 
three bitrates (Chomphan, 2011b). When considering 
the levels of noise, the 20-dB noise gives the best 
speech quality, while 0-dB noise gives the worst 
speech quality. When considering the speech gender, 
female speech gives the better results than that of male 
speech. Finally, when considering the types of noise, 

the air-conditioner noise gives the best speech quality, 
while the train noise gives the worst speech quality 
(Chomphan, 2011b).  
 

DISCUSSION 
 
 From the comparison of two successful F0 
models; Fujisaki’s model and structural model, it has 
been concluded from the previous study that the 
averaged RMS error of the angry speech is the highest 
level; meanwhile the averaged RMS error of the 
reading speech is the lowest level. The averaged RMS 
errors of the happy and sad speech are in the middle 
level. When considering the differences between 
genders, it has been found that the averaged RMS error 
of female speech is above that of male speech. 
Moreover, the RMS error of the Fujisaki’s model is 
mostly higher than that of the structural model for all 
speech styles. In other words, it can be concluded that 
the structural model gives the better fit for modeling of 
the F0 contour of the expressive speech than that of the 
Fujisaki’s model (Chomphan, 2011d). 
 From the study of speech compression for noise-
corrupted Thai expressive speech by using two coding 
methods of CS-ACELP and MP-CELP, it is said that 
CS-ACELP gives the better speech quality than that of 
MP-CELP at all three bitrates of 6000, 8600 and 12600 
bps. When considering the levels of noise, the 20-dB 
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noise gives the best speech quality, while 0-dB noise 
gives the worst speech quality. When considering the 
speech gender, female speech gives the better results 
than that of male speech. Finally, when considering the 
types of noise, the air-conditioner noise gives the best 
speech quality, while the train noise gives the worst 
speech quality (Chomphan, 2011b). 
 

CONCLUSION  
 
 This study reviews the study on Thai expressive 
speech. From the study of F0 modeling; Fujisaki’s 
model and structural model, it can be concluded that 
two mathematical models have been successfully 
applied to model the fundamental frequency contour of 
Thai expressive speech. From the study of speech 
compression for noise-corrupted Thai expressive 
speech by using two coding methods of CS-ACELP 
and MP-CELP, it can be concluded that coding 
methods, types of noise, levels of noise, speech gender 
influence on the coding speech quality. 
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