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Abstract: Problem statement: A cryptosystem provides two parties; a sender and a receiver to 
communicate interactively via an insecure channel in which, the sender is able to send any confidential 
message, document or data in a disguised form to the intended receiver. Upon receiving the disguised 
message, the receiver converts it to the intelligible message using his secret key. The security of the 
existing cryptosystems was based on a single hard problem such as factorization, discrete logarithm, 
quadratic residue, or elliptic curve discrete logarithm. Although these schemes appear secure, one day 
in a near future they may be broken if one finds a solution of a single hard problem. Approach: To 
overcome the disadvantage of using a single hard problem, we developed a secure hybrid mode-based 
cryptosystem based on the two well-known hard problems; factoring and discrete logarithm. We inject 
the element of the hard problems into our encrypting and decrypting equations respectively in such a 
way that the former equation depends on two public keys whereas the latter depends on two 
corresponding secret keys. Results: The new cryptosystem is shown heuristically secure against 
various algebraic attacks. The efficiency analysis confirms that our scheme only needs 3Texp+Thash time 
complexity for encryption and 2Texp time complexity for decryption and this magnitude of complexity 
is considered minimal for multiple hard problems-like cryptosystems. Conclusion: The newly 
developed hybrid mode based-cryptosystem provides greater security level than that schemes based on 
a single hard problem. The enemy or adversary has to solve the two problems simultaneously which is 
unlikely to happen in order to read any secret message.  
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INTRODUCTION 

 
 The security of a cryptosystem depends heavily on 
a hard mathematical problem used in the system. Some 
novel hard problems that have been used in many 
cryptosystems were discrete logarithms (ElGamal, 
1985), factoring (Rivest et al., 1978), elliptic curve 
discrete logarithm (Koblitz, 1987; Miller, 1986), 
residuosity (Rabin, 1979) and many other problems. 
Although such problems remain hard today, it is 
conjectured that one day in the future those problems 
could be easily solved. As soon as this occurs, 
cryptosystems based on such problems will no longer 
be secure. This scenario has led designers to create 
cryptosystems based on hybrid mode problems (Harn, 
1994; Elkamchouchi et al., 2004; Baocang and Yupu, 
2005; Ismail and Hijazi, 2011). The major advantage of 
doing this is that these types of schemes provide greater 
level of security than that the schemes based on only a 

single hard problem. As a result, an adversary needs a 
longer period of time in order to break the hybrid mode-
based cryptosystems since it is very unlikely for the 
adversary to obtain the solutions of these problems 
simultaneously. Developing of such system is still a 
field in need of cultivation. It is always one aims to 
have system with the following criteria: (1) the system 
uses only one pair of public and private keys; (2) each 
user uses common arithmetic modulus; and (3) the 
system uses the most novel two hard mathematical 
problems for its security base. 
 In this study, we created a new hybrid mode-
based cryptosystem using factoring and discrete 
logarithm problems. With the greater level of security 
confirmed, we showed that the performance of the 
scheme requires acceptable time complexity unit 
operations in both encryption and decryption 
algorithms, which makes the system implementable 
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for real world applications. Next, our new system also 
enjoys the three mentioned criteria. 
 
Some notations and parameters: Throughout the 
study, we use the following notations and parameters 
unless otherwise specified: 
 
• Two large strong random primes p and q which are 

safe primes (Gordon, 1984) and set the system 
modulus as n = pq 

• A phi-Euler function φ(n) = (p-1) (q-1)    
• A primitive element, g in multiplicative group 

Zn
*  = {z|gcd(z,n) = 1} with order n satisfying 

gn−1 = 1 (mod n) where gcd (a,b) denotes the 
greatest common divisor of a and b 

• A cryptographic hash function h(.) (Schneier, 
1996) whose maps an arbitrarily length of string to 
an output of a t-bit length and we assume here that 
t = 128 

 
MATERIALS AND METHODS 

 
 We present a new cryptosystem based on hybrid-
mode problems; factoring and discrete logarithms. The 
scheme is made up of three phases namely 
Initialization, Encryption and Decryption. In 
Initialization phase, the two pairs of public and private 
keys of users are calculated using the user’s parameters 
n, φ(n) and g. The generated public keys will be then 
published in an accessible public key directory while 
the private keys are kept secret to the owners. In 
Encryption phase, an encrypted message is developed 
using the receiver’s public key and sender’s 
commitment of secret number. This is done by first get 
the message hashed using the appropriate cryptographic 
hash function h(.). This function determines a fixed 
length of output by hashing any arbitrarily length of 
input. The encrypted message is then sent to the legal 
receiver. In Decryption phase, upon obtaining the 
encrypted message, the receiver recovers the original 
message by using his own private keys and without 
these keys no one can learn the original message.  
 
Initialization phase: The user or receiver derives his 
public and private keys as follows: 
 
• Select at random two integers 3 ≤ e, x < n from Zn

*  
• Calculate d = e−1 mod φ(n) 
• Compute y = gx mod n 
 
 The public keys are formed by (e, y) and can be 
accessed in the public directory and the private keys are 
given by (d, x) and are kept secret by the receiver.  

Encryption: The sender encrypts his original 
message, m as follows: 
 
• Pick at random an integer c < n from Zn

*  
• Hash the original message to obtain h(m) 
• Computes c1 = h(m)e + yc (mod n)  
• Calculate c2 = gc (mod n) 
 
 Send the encrypted message (c1,c2) to the receiver. 
 We compute the first component of encrypted 
message, c1 with two public keys e and y as if we 
disguise the original message ‘twice’ and this is one of 
the techniques to realize the hybrid mode-based 
cryptosystem. 
 
Decryption: The receiver decrypts the obtained 
encrypted message (c1,c2) as below. Compute the 
following: 
 
• (c1 - c2

x)d = h(m) mod n. 
 

RESULTS 
 
 We discuss our results according to the following 
criteria:  
 
• Validation of the new cryptosystem 
• Security analysis 
• Efficiency performance 
 
 To validate the newly developed cryptosystem, we 
prove that the decrypting equation is always true for 
any corrected encrypted message (c1, c2).  
 For security consideration, we use a technique 
from heuristic security to show that the scheme is 
secure. We do this by delivering the scheme to the 
literature for attacks. We consider common possible 
attacks for cryptosystem by which an adversary (Adv) 
may try to take down the new scheme. In particular, we 
define each attack and give the corresponding analysis 
of why this attack would fail. 
 For efficiency performance, we evaluate the time 
complexity for both phases; encryption and decryption in 
terms of various operation units. Finally we compute the 
communication cost of overall performance of the scheme. 
 
Validation: We validate our new scheme by proving 
the following theorem. 
 
Theorem: If the algorithms of Initialization and 
Encryption run smoothly, then the decryption process 
of the encrypted message in decryption is correct. 
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Proof: The decrypting equation is true for all encrypted 
message (c1, c2) since 
 
(c1 - c2

x)d = (h(m)e + yc - gcx)d = (h(m)e + gxc - gcx)d 
= h(m)ed = h(m) mod n. 
 
Security attack: We show that our scheme is 
heuristically secure by considering the following 
common algebraic attacks. 
 
Attack 1: Adv tries to obtain the private keys from the 
corresponding public keys in the system. In this case, 
Adv needs to solve ed = 1 mod φ(n) and y = gx mod n 
for d and x respectively. This is impossible due to the 
hardness of solving factoring and discrete logarithms. 
The best way to factorize the modulus n = pq, is by 
using the number field sieve method (Lenstra et al., 
1990). However, this method is just dependent on the 
size of modulus n and it is computationally infeasible to 
factor an integer of size 1024-bit and above. Next, to 
increase the security of our scheme, we must select 
strong primes (Diaz and Masque, 2005) to avoid attacks 
using special-purpose factorization algorithms. We also 
can achieve and maintain the same security level for 
discrete logarithm problem by selecting the modulus n 
= pq where (p-1)/2 and (q-1)/2 respectively are product 
of two 512-bit strong primes.  
 
Attack 2: Say, the Adv collects t encrypted messages 
(c1i, c2i) where i=1,2,…,t. Adv then has the following 
system of equations (c1i - c2i

x) = h(mi)
e mod n. 

 Note that, the above system contains t equations 
with t+1 variables; x and h(mi) and solving this gives us 
infinitely many solutions which is hardly to detect the 
true one. 
 
Attack 3: Assume that the Adv successfully solves the 
factoring problem so that he knows the secret d. With 
this, he learns that (c1 - c2

x) = h(m)e mod n. 
 From the above equation, to recover the original 
message h(m), one has to compute (c1-c2

x)d and this 
obviously can be done if one knows the secret number 
x. Since at this stage the discrete logarithm problem 
remains hard to solve then the Adv would fail.  
 
Attack 4: Assume otherwise that the Adv is able to 
solve the discrete logarithm problem and hence obtain 
the secret integer x. He then recovers h(m)e via the 
relation (c1 - c2

x) = h(m)e mod n. 
 It is clear that, Adv is only able to read the original 
message if he has the secret d. 

Table 1: The performance of our new public key encryption scheme 
Our new public key encryption scheme 
The number of keys SK 2 
 PK 2 
Computational complexity Encryption 3Texp + Thash  
 Decryption 2Texp 
Communication cost Encryption 2n 
 Decryption n 

 
Efficiency performance: We now describe and 
determine the performance of our scheme in terms of 
number of keys used, computational complexity 
overhead and the communication costs. The 
measurement is determined using numbers or units. The 
following notations are used to analyse the performance 
of the developed scheme. 
 
• SK and PK denote the number of private and 

public keys respectively 
• Texp is the time complexity taken for a modular 

exponentiation 
• Tmul is the time complexity taken for a modular 

multiplication 
• Thash is the time complexity taken for performing a 

hash function and |x| denotes the bit length of x 
 
 We neglect the time complexity for modular 
addition or subtraction and we assume that the 
probability of the bit being selected as 0 or 1 is 0.5. The 
efficiency of the new cryptosystem is summarized in 
Table 1.  
 From Table 1, the sender performs 720Tmul + Thash 
time complexity for encryption and the receiver 
performs 480Tmul time complexity for decryption using 
the conversion Texp = 240Tmul (Koblitz et al., 2000). 
Finally the communication costs or size of parameters 
of the scheme is only 3|n|. 
 

DISCUSSION 
 
 The security of most of the designated 
cryptosystems was based on a single hard problem like 
factoring, discrete logarithm and elliptic curve discrete 
logarithm problems. These schemes are no longer 
secure if one day an enemy successfully finds a 
polynomial algorithm to solve the underlying problem. 
To prevent this, developing a scheme based on two hard 
problems is a good strategy. The enemy only can break 
this scheme if he can solve the two problems 
simultaneously and this is very unlikely to happen. If he 
manages to find a solution to one of the underlying hard 
problem, the scheme remains secure as the other 
problem remains hard to solve for at least another 
period of time. Our newly developed scheme is 
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protected against the most common considering 
algebraic attacks. The performance analysis of the 
developed scheme requires only minimal and 
acceptable number of operations units in Encryption 
and Decryption phases and thus makes it very efficient. 
 

CONCLUSION 
 
 We presented a secure hybrid mode-based 
cryptosystem using on factoring and discrete logarithms 
problems. The proposed scheme only requires 720Tmul 

+ Thash and 480Tmul respectively for encryption and 
decryption. Some possible algebraic attacks have also 
been considered and we showed that the scheme is 
heuristically secure from those attacks.  
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