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Abstract: Problem statement: The VLSI design cycle was described in terms of successive states and 
substages; it starts with system specification and ends with packaging. At the next descriptive level, 
currently known methodologies (e.g., flowchart based, object-oriented based) lack a global conceptual 
representation suitable for managing the VLSI design process. Technical details were intermixed with 
tool-dependent and implementation issues such as control flow and data structure. It was important to 
fill the gap between these two levels of description because VLSI chip manufacturing was a complex 
management project and providing a conceptual detailed depiction of the design process would assist in 
managing operations on the great number of generated artifacts. Approach: This study introduces a 
conceptual framework representing flows and transformations of various descriptions (e.g., circuits, 
technical sketches) to be used as a tracking apparatus for directing traffic during the VLSI design process. 
The proposed methodology views a description as an integral element of a process, called a flow system, 
constructed from six generic operations and designed to “handle” descriptions. It draws maps of flows of 
representations (called flowthings) that run through the design flow. These flowthings are created, 
transformed (processed), transferred, released and received by various functions along the design flow at 
different levels (a hierarchy). The resultant conceptual framework can be used to support designers with 
computer-aided tools to organize and manage chains of tasks. Results: The proposed model for managing 
the VLSI design process was characterized by being conceptual (no technical or implementation details) and 
can be uniformly applied at different levels of design and to various kinds of artifacts. The methodology is 
applied to describe the VLSI physical design stage that includes partitioning, floorplanning and placement, 
routing, compaction and extraction and verification. Conclusion: The resultant conceptual picture 
demonstrates a viable description method that can be adapted for different stages and used in developing 
systems for managing the VLSI design process. 
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INTRODUCTION 
 
 The Very Large Scale Integration (VLSI) design 
process has been applied to many systems to achieve 
new prospects for high-performance computing, 
telecommunications and electronic equipment intended 
for everyday use (e.g., entertainment). Progress in VLSI 
technology has continually increased the number of 
fabricated devices in a single integrated circuit (Moore’s 
Law). The increase in complexity, which involves 
considerable bookkeeping and management tasks, has 
made it more vital to control the design process to 
maintain quality, reliability and extensibility. This 
control involves “definition, execution and control of 
design methodologies in a flexible and configurable 
way” (Kalavade and Lee, 1994; Kalavade et al., 1995). 
The VLSI design process is typically described as an 

iterative process that refines an idea for a 
manufacturable device through several levels of design 
abstraction (Kishore and Prabhakar, 2009). It involves a 
series of procedures, from specification to fabrication, in 
which the integrated circuit is produced. Starting with 
abstract requirements, the process involves converting 
these requirements into a register transfer description, 
e.g., control flow, registers and arithmetic and logical 
operations, which is simulated and tested. The design 
process then shifts to circuit representation, e.g., gates, 
transistors and interconnections. Simulation is also 
utilized at this level to verify each component. Finally, 
the geometric layout of the chip is produced in the form 
of geometric shapes representing circuit elements and 
their interconnections. The layout blueprint aims at 
achieving area compactness and accuracy in routing and 
timing (Navabi, 1998; Perry, 2002). 
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 Such a process requires different design tools (e.g., 
VLSI CAD) and management apparatus (e.g., database 
systems). “As a design is processed, it must be passed 
from tool to tool. For example, the designer may use a 
schematic capture tool for initial input, then they wish 
for their design to be minimized and finally simulated” 
(Hodges and Rounce, 1991). Comprehensive 
management of the design is very important. According 
to Hodges and Rounce (1991): 
 

It is all too easy to make changes to a design 
without documenting them, or without keeping 
backup versions in case references to these 
changes need to be made at a later date. In a 
similar way, it is equally possible to 
accidentally delete files with no means of 
retrieval… Problems also arise with building 
up a hierarchy of blocks, with each level 
making use of the blocks in the levels 
below…the various tools often do not support 
this system of hierarchy directly... 

 
 Workflow-based methodologies have been used to 
coordinate execution of multiple tasks and activities in 
VLSI design processes (Shepelev and Director, 1996; 
Marinescu, 2002). Database systems have been 
incorporated in many VLSI design systems (Chu et al., 
1983; Hollar et al., 1984; Jullien et al., 1986; Katz, 
1986) to provide an environment for design data 
management or tool integration. 
 In the general area of modeling a design process, 
several basic diagrammatic techniques are available, 
such as using a weighted (completion time) directed 
graph to represent the flow of design, where nodes 
represent tasks and edges depict sequencing of tasks. 
Markov chains (Johnson et al., 1996), signal flow 
graphs (Eppinger et al., 1997) and petri-nets (Magott 
and Skudlarski, 1989) are other examples of graphing 
techniques used to analyze design processes.  
According to Xiu (2008): 
 

System-level design does not involve 
implementation detail. It is the approach of 
viewing the chip in a big-picture perspective. 
It abstracts away the full detail of the design, 
retaining just enough features to validate that 
functions embodied by the design can perform 
the specified design goal and can satisfy the 
performance criteria…  

 
 Preferably, the system-level study and modeling 
should also support the smooth migration to 
downstream implementation. 
 VLSI design is analogous to the design tasks 
involved in building construction Wikibooks, 2011. 

First, we obtain an architectural drawing based on 
requirements and specification. Floor plans and 
constraints are then laid out based on the 
connectivity/accessibility/size of internal spaces. This is 
followed by depicting streams of flow (e.g., electrical, 
water) in the building, including various requirements, 
synchronization and triggering among different flows 
(e.g., supplied power, uniformity of flow). There is also 
the issue of maintaining integrity within spaces by 
specifying partitions and shields. 
 Similarly, VLSI design evolves from an 
architectural blueprint drawn on the basis of 
specifications of the product. Floor plans of the chip are 
based on the connectivity/accessibility/space of 
components with constraints on placement of the 
blocks. Electrical plans are then laid down in a power-
grid topology that includes power requirement supplied 
over the topology for uniform distribution across all 
parts of the chip and standard-cells. There is also the 
phase of synchronization that involves timing analysis 
and regioning to place cells (circuits) that share data 
near each other to minimize timing and reduce wire 
lengths. 
 This study introduces a diagrammatical 
methodology that produces a purely conceptual 
framework that specifies flows of artifacts in the VLSI 
design process. The methodology is a descriptive process 
characterized by being independent of technical notions 
and features uniformity in application (e.g., at different 
levels and of various artifacts). It can provide an 
environment for managing the design process and 
supporting high-level control policies.  
 
VLSI design cycle: The VLSI design cycle (Fig. 1) 
consists of eight interdependent stages: system 
specification, architecture design, functional design, 
logic design, circuit design, physical design, fabrication 
and packaging. The cycle moves from an abstract 
specification to a more detailed design that can be 
assessed, tested and implemented. 
 The first stage is the system specification stage, 
which is a high-level representation of the system. 
During this stage, the design specifications are 
determined and set, taking into consideration certain 
factors such as performance, functionality, physical 
dimension, design technique and fabrication technology. 
Size, speed, functionality and basic architecture 
specifications of the system result from this stage. The 
next stage is architecture design, which describes such 
things as use of Reduced Instruction Set Computer 
(RISC) and determination of cache size to produce 
micro architectural specifications of the system. 
 The third stage is the functional design stage, which 
defines the main functional units and the interconnection 
between         the        units         in          the        system. 



Am. J. Applied Sci., 9 (2): 213-222, 2012 
 

215 

 
 
Fig. 1: VLSI design cycle 
 

 
 
Fig. 2: A sample of the level of description following the 

general depictions of stages and phases of the 
VLSI design life cycle 

 

 
 
Fig. 3: Abstract wire and abstract port 
 
At this stage, the system’s behavior is set in terms of 
system input and output. In addition, the area, timing, 
power and other parameters of each unit are 
calculated. The output at this stage most of the time is 
a diagram showing relationships and timing between the 
system’s units. Next, logic design is the stage that derives 
the logic description of the system, including Boolean 
expressions, data and control paths and register allocation. 
 The outcome of the logic design stage is a Register 
Transfer Level (RTL) description represented by use of 
Hardware Description Language (HDL). The circuit 
design stage deals with logic gates, transistors, 
interconnections and so forth. The physical design stage 
follows the circuit design; it takes the resulting circuit 
sketch and converts it into a geometric description.  This 
stage will be explained in more detail to showcase our 
proposed representation. The design is then sent to the 
fabrication and packaging stages to produce and test the 
chip to ensure that all system requirements and 
specifications are satisfied. 
 
Problem focus: Current descriptions: According to 
Sherwani (1999): 
 

It is important to note that design of a complex 
VLSI chip is a complex human power 
management project as well. … As a result, 

design is usually partitioned along 
functionality and different units are designed 
by different teams. At any given time, each 
unit may not be at the same level of design. 
While one unit may be in logic design phase, 
another unit may be completing its physical 
design phase. This imposes a serious problem for 
chip level design tools, since these tools must 
work with partial data at the chip level… 
  

 The entire design cycle may be viewed as 
transformations of representations in various steps. In 
each step, a new representation of the system is created 
and analyzed. The representation is iteratively 
improved to meet system specifications. 
 We observe from such a description that a great 
portion of the complexity involved is related to the 
management of transformations of representations. This 
is translated in our conceptualization to control the flow 
of representations (previously called artifacts), 
starting with drawing maps of flows of 
representations (which we later call flowthings) 
running through the design flow. These flowthings 
are created, transformed (processed), transferred, 
released and received by various functions along the 
design flow at different levels (a hierarchy). The 
resulting conceptual framework can be used to 
support designers with computer-aided tools to 
organize and manage the chains of tasks. 
 Such a global conceptual framework for managing 
representations is missing from currently known 
methodologies. After giving such “conceptually 
simple” sketches of stages and phases shown in Fig. 1, 
Sherwani (1999) provides a flowchart-like depiction, 
partially shown in Fig. 2, as an example of a “design 
style” that “shows the physical design cycle with 
emphasis on timing.” Utilizing such a flowchart-like 
methodology to represent a complex process has many 
well-known limitations in the software development 
cycle. Additionally, the description loses the essence of 
the process described by Sherwani (1999) as 
transformations of representations.  
 The object-oriented approach to data management 
has also been proposed in the context of the VLSI design 
process (Heiler et al., 1987; Weiss et a1., 1986). For 
example, Chung and Kim (1990) propose a “design 
pattern”, used repeatedly, modeled as an identifiable object 
called an abstract object and represented “internally” as a 
class, called an abstract class (as in UML). 
 The  abstract  class includes an “entity type” 
with  four  possible  values:  cell (circuit), port, net 
(a  wire  connecting  two ports) and constraint. 
Figure 3 shows a sample of such representation 
(Chung and Kim, 1990).  Clearly,  such a modeling 
is  developed   for   technical   purposes    and    does    
not  help   in  development of  a design  environment. 
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Fig. 4: Sample representation used in selecting a 

fabrication technology (Hekmatpour et al., 
1991) 

 

 
 
Fig. 5: Flowsystem, assuming that no released flowthing 

is returned 
 

 
 (a) (b) 
 
Fig. 6: Two sample descriptions (a): Layout of circuit 

blocks (b): Detailed routing 
 
Another adoption of the object-oriented approach and at 
a level that follows a hierarchical representation of 
design space, is presented by Hekmatpour et al. (1991), 
who developed an application-specific model to 
customize the design environment: 
 

For example, an important task in VLSI design 
is selecting a fabrication technology that best 
matches the constraints of the design space. In 
this selection procedure, engineers evaluate the 
current state of design in conjunction with 
design objectives and constraints… 
[In Fig. 4] The generation of the list of 
objects… is accomplished by creating a 
referenceList object… 

 
 Note that the purpose of this discussion is to show 
the type of representation used, not to present a 
complete description of the discussed examples. 
 These object-oriented–based methods do not 
provide a suitable tool for managing a design 

environment. Technical details are usually intermixed 
with the programming “flow control” and data 
structures, with results no better than the flowchart-
based description.  
 Alternatively, we aim at drawing a conceptual 
framework of “things that flow” (representations) in 
different streams of the design process to be used as a 
tracking mechanism for directing traffic during the 
design process. This is analogous to a real-time system 
in an imaginary city that tracks movements and states 
of different types of vehicles among streets, factories, 
stores and intersections. This includes the introduction 
of new vehicles, their processing (e.g., loading, 
changing color and shapes), their release and transfer 
from one place to another, arrival and acceptance when 
they enter factories, stores and so on. The conceptual 
model forming the backbone of such a scenario, called 
the Flowthing Model (FM), has been introduced in 
many publications and will be reviewed in the next 
section (Al-Fedaghi, 2010; 2011a-c; Al-Fedaghi and 
Al-Saleh, 2011; Al-Fedaghi and Fairouz, 2011). 
 
Foundation: The flowthing model: According to 
Alberts et al. (1989), a design is an abstract entity that 
is gradually given a concrete form in the course of the 
design process. Especially in the case of VLSI design, it 
consists of a set of descriptions only. Since a design is 
represented by its description(s), the obvious way to 
describe design actions is as transformations between 
descriptions. 
 We extend this line of thought by viewing a 
description as an integral element of a process, called a 
flowsystem, constructed from a generic operation to 
“handle” descriptions. A description is a thing that 
flows (a flowthing) in a flowsystem. Figure 5 shows a 
complete flowsystem. 
 There is no description that is not created at a 
certain point. It can be processed (changed in form, but 
without producing a new description). It can be released 
and transferred, arrive at another place and be accepted 
(or rejected). In what other ways is a description 
handled? It can be stored, but storing is not a generic 
handling operation because created descriptions can be 
stored, processed descriptions can be stored. Similarly, 
descriptions can be copied, but copying can be 
performed on any one of the six generic types shown in 
Fig. 5. Accordingly, a description is a flowthing. A 
flowthing is a thing that is handled by these six generic, 
mutually exclusive operations. Figure 5 represents the 
flow system (denoted as flowsystem) of the flowthing. 
The environment of a flowsystem is called its sphere.  
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Fig. 7: FM-based flows of descriptions x and y 
 

 
 
Fig. 8: VLSI physical design stage 
 
Example: Suppose we have two descriptions, x and y, 
as shown in Fig. 6. Suppose description x is created by 
department 1 and sent to department 2, where it is 
processed to create description y. Figure 7 shows the 
FM-based description of such a process. 
 In department 1’s sphere, description x is created 
(and a copy is stored), released and transferred to 
department 2’s sphere. Note that transfer represents the 
interface unit of the sphere with the outside. It is 
possible that a description is released but not transferred 
(e.g., waiting to fix a broken communication channel).  
 At department 2, description x enters, arrives and is 
accepted in its flowsystem in the sphere. It is possible 
that it is rejected and thus sent back. Assuming that 
description x is accepted, it is then processed to trigger 
creation of description y. Triggering is represented by a 
dashed arrow. Description y is then released and 
transferred to somewhere outside department 2. 
 Such a process includes two flows, one of 
description x and one of description y. The flow of 
description x passes through two flowsystems, forming 
a flowstream. There are two spheres in Fig. 7: that of 
department 1 and that of department 2. It is possible to 
have subspheres. For the sake of simplicity, when it is 
appropriate, we will sometimes merge arrival and 
acceptance as one stage called receive. In general, this 
Flowthing Model describes systems of flowthings such 

as, for example, information, data, money, signals and 
actions, in addition to artifacts such as descriptions (Al-
Fedaghi, 2010; 2011a-c; Al-Fedaghi and Al-Saleh, 
2011; Al-Fedaghi and Fairouz, 2011). Flowthings 
can exist in only six states: being created, released, 
transferred, arrived, accepted, or processed, with 
transformations among these states. When a 
description, as a flowthing, changes from one state to 
another, it has undergone a change of stage. 
  
The physical design stage of the VLSI design cycle: 
Without loss of generality, in this section we 
describe the FM-based representation of the physical 
stage of the VLSI design cycle. This stage is divided 
into multiple phases: partitioning, floorplanning and 
placement, routing, compaction and extraction and 
verification, as shown in Fig. 8.  
 The following description of the phases is 
summarized from Sherwani (1999). The first phase 
entails partitioning a circuit into subcircuits. This is a 
necessary step either because of the large number of 
logic gates that cannot be placed in a single chip or 
because of the limitations of I/O pins.  Partitioning is a 
process that can be performed hierarchically until the 
size of each subcircuit fits in a single chip board. An 
important goal of the partitioning process is to 
minimize the interconnections (external wires) between 
the partitions (chip boards). 
 The partitioning process is followed by the 
floorplanning and placement phase, where the exact 
position of the circuit components in each partition is 
determined. In this phase, the components with their 
I/O pins and the interconnections between the 
components in each partition must be taken into 
consideration. The components connected to other 
components in other partitions must be placed at the 
edges of the partitions. Moreover, the components that 
belong to the same partition and are heavily connected 
must be placed close to each other to reduce wiring 
cost. The objective of the floorplanning and placement 
phase is to arrange the components in such a way that 
leads to minimization of the area arrangement layout 
and the interconnection area without violating any 
performance constraints. Determining the minimum 
area is done iteratively until minimum area layout is 
achieved. The result is then passed to the routing phase, 
where the interconnections between the partitions and 
their components are completed. The routing phase is 
defined as the process that finds the proper routes in the 
routing area used to connect the partitions and the 
components with minimum wiring space.  
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Fig. 9: FM-Based  physical VLSI design stage 
  
 Routing consists of two steps: global routing and 
detailed routing. In global routing, the approximate 
interconnections between the components and partitions 
are determined while ignoring any geometric details. 
The resulting figure produces all possible routes in the 
area through which the wires should go. All this 
information is used in detailed routing to produce the 
geometric layout of the wires connecting the 
components and partitions. The physical design is then 
passed on to the compaction phase, where the entire 
design is compressed to minimize the total area of the 
chip while maintaining all its performance and design 
constraints. The last phase is extraction and 

verification. All the geometric patterns—such as the 
wiring separation rule—are verified using DRC, the 
Design Rule Checking process, to check that they meet 
the design rules set by the fabrication stage and that any 
design rule violations are removed. Many verification 
processes are available, such as Layout Versus 
Schematics (LVS) verificationn and Performance 
Verification and Reliability Verification. In LVS, 
layout (design) functionality is checked using a Circuit 
Extraction process, where a circuit representation is 
generated and extracted from the layout; the accuracy 
of the extracted description is then verified by 
comparing it with the circuit description. The design’s 
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geometric information is extracted and used in 
Performance Verification to determine resistance and 
capacitance to accurately compute the timing of each 
component with the interconnections. Moreover, this 
information is also used in the Reliability Verification 
process to verify the reliability of the layout and ensure 
that electro-migration, self-heat and other effects will 
not lead the layout to fail. The final physical design is 
then carried to the next stage in the VLSI design 
process, the Fabrication stage. 
 
FM-based description: FM can provide a complete 
picture of various artifact flows and their 
transformations in the physical design stage. Figure 9 
shows the resulting FM conceptualization in terms of 
five spheres: partitioning, floorplanning and placement, 
routing, compaction and extraction and verification. 
Here, a sphere denotes a new task corresponding to a 
department, a designer, or a different role in the same 
organizational unit.  
 
Partitioning: The partitioning sphere includes flows of 
circuits, external connections and partitions (sub-
circuits). It consists of three flowsystems: a circuits 
flowsystem, an external connections flowsystem and a 
partitions flowsystem.  
Example: A circuit can be represented by a 
hypergraph, where the vertex set denotes the set of 
partitions and the hyperedge (a subset-called the pins-of 
the set of vertices) denotes the set of nets (external 
connections).  
 In Fig. 9, the circuit flowsystem (circle 1) receives 
the incoming circuit sketch from the previous stage 
(circuit design) and stores a copy for future use. The 
circuit is then processed (partitioned) based on the 
number of circuit components and design constraints. 
The distribution process of the components is 
performed using optimization partitioning algorithms 
(e.g., Kernighan-Lin algorithm) in order to minimize 
the number of interconnections between partitions. This 
process triggers the appearance of new flowsystems 
that have emerged as a result of creating new 
flowthings: an external connections flowsystem (circle 
2) and a partitions flowsystem (circle 3).  
 The created partitions are released and transferred 
to the floorplanning and placement sphere (circle 4). 
The created external connections are also transferred to 
the sphere of the design flow system (circle 5), where 
they wait for the transformed partitions to again form a 
united chip. 
 It is not difficult to see that this description of 
artifacts and their transformation can be used as a base 

for developing a manual or automated system to 
manage the tracking of various items in the system. 
 
Floorplanning and placement: Partitions are 
transferred to this sphere. Note that it is possible that a 
partition that is transferred may not arrive (e.g., lost, 
destroyed); thus this FM-based model facilities such 
events, if required. Upon arrival (say, formal 
acknowledgment of receipt by another designer), the 
partition may be accepted (circle 6) after verification of 
design. Or, if not accepted, a repartition signal (request) 
is triggered to again partition the original circuit sketch 
(circle 7). Each partition is then stored in the database 
of the floorplanning and placement sphere (circle 8) and 
processed (e.g., the exact location of each component is 
determined). Eventually the redesigned partitions are 
transferred to the routing sphere (circle 9). 
 
Routing: The resultant redesigned partitions flow to the 
routing sphere to be verified; if not accepted, they 
trigger a request for reprocessing in the  floorplanning 
and placement sphere. The external connections are by 
now waiting in their flowsystem in the routing sphere. 
If accepted, these two artifacts are viewed as two 
portions that trigger the creation of a new circuit 
description (circles 10 and 12). That is: 
 
• The partitions flowsystem in the routing sphere 

receives all partitions from the floorplanning and 
placement sphere 

• The external connections flowsystem in the routing 
sphere receives external connections from the 
partitioning sphere 

• Both events in (1) and (2) trigger creation of the 
new circuit, which is processed to join its two 
portions and perform global and detailed routing 
(circle 13). The design is then released and 
transferred to the compaction sphere (circle 14) 

 
Compaction and extraction sphere: The next phase is 
the compaction phase, where the modified design is 
compressed. As shown in Fig. 9, if the design is 
rejected, a rerouting signal is sent to the previous phase 
(circle 15). The compaction sphere contains two 
different processes. In the first type of process (circle 
16), the design is compressed and in the second process 
(circle 17), the constraints are checked. In case of any 
problem, the second process triggers a signal to the 
database to indicate that a violation has appeared (circle 
18).  
 
Extraction and Verification sphere: This is the final 
phase, where the accurate functionality of the design 
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layout is verified in the acceptance process (circle 
19). When the verification process is completed, the 
final version of the physical design is transferred to 
the fabrication stage (circle 20).  

 
CONCLUSION 

 
 This study proposes a high-level detailed view that 
assists in the management of the VLSI design process. The 
resulting conceptual framework represents flows and 
transformations of various descriptions (e.g., circuits, 
technical sketches) and is used as a tracking apparatus for 
directing traffic during the VLSI design process. It is 
applied in describing the physical design stage that 
includes partitioning, floorplanning and placement, 
routing, compaction and extraction and vertification.  
 The flow-based description demonstrates the 
viability of a methodology that can be adopted for all 
stages and substages of the VLSI design process. The 
conceptual description can act as a foundation as well 
as provide a simpler or more detailed specification of 
the system. Many diagram-based conceptual 
descriptions become cumbersome because there is no 
restriction on the basic conceptual apparatus. Consider 
a logical operator such as AND, OR and other flow- 
control mechanisms such as synchronization that can be 
erected when flows join together and when timing 
needs coordination. In the flowthing model, such 
notions apply, if needed, in the second level of 
specification. These tools are “unnatural” controls from 
the flow point of view. Imagine a civil engineer who 
draws a map of a territory that includes a river system. 
First, the engineer draws a topographic model, 
including streams, directions, joins (without, for 
example, worrying about the type of joining, e.g., 
relative speed of currents) and branches (e.g., relative 
division of water; one branch may have a dead end). 
The engineer then inspects the model and decides about 
damming, channelization, diversion, bridge 
construction and sand or gravel mining (Al-Fedaghi and 
Al-Saleh, 2011). For example, a simpler diagram of 
Fig. 9 is shown in Fig. 10 that can be used for 
nontechnical presentation. It is based on the same FM 
concepts, but the focus is on streams of flows. 
 Future work involves building conceptual 
descriptions of other stages. Such a venture would 
produce a blueprint or conceptual map similar to 
blueprints of construction projects. Additional study 
can pursue application of the FM-based methodology to 
technical issues in VLSI design (Teymourzadeh et al., 
2010), other engineering descriptions (Azadeh and 
Ghaderi, 2006; Verma et al., 2009; Haddad, 2009) and 
management (Papadamou and Stephanides, 2004; 
Ismail et al., 2010). 

 
 
Fig. 10: FM-based description of a system serves as a 

foundation for brief and more detailed 
specification 
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