
American Journal of Applied Sciences 9 (2): 213-222, 2012
ISSN 1546-9239
© 2012 Science Publications

Corresponding Author: Sabah Al-Fedaghi, Department of Computer Engineering, Kuwait University, P.O. Box 5969 Safat 13060, Kuwait
213

Framework for Managing the

Very Large Scale Integration Design Process

Sabah Al-Fedaghi and Eman Al-Dwaisan
Department of Computer Engineering,

Kuwait University, P.O. Box 5969, Safat 13060, Kuwait

Abstract: Problem statement: The VLSI design cycle was described in terms of successive states and
substages; it starts with system specification and ends with packaging. At the next descriptive level,
currently known methodologies (e.g., flowchart based, object-oriented based) lack a global conceptual
representation suitable for managing the VLSI design process. Technical details were intermixed with
tool-dependent and implementation issues such as control flow and data structure. It was important to
fill the gap between these two levels of description because VLSI chip manufacturing was a complex
management project and providing a conceptual detailed depiction of the design process would assist in
managing operations on the great number of generated artifacts. Approach: This study introduces a
conceptual framework representing flows and transformations of various descriptions (e.g., circuits,
technical sketches) to be used as a tracking apparatus for directing traffic during the VLSI design process.
The proposed methodology views a description as an integral element of a process, called a flow system,
constructed from six generic operations and designed to “handle” descriptions. It draws maps of flows of
representations (called flowthings) that run through the design flow. These flowthings are created,
transformed (processed), transferred, released and received by various functions along the design flow at
different levels (a hierarchy). The resultant conceptual framework can be used to support designers with
computer-aided tools to organize and manage chains of tasks. Results: The proposed model for managing
the VLSI design process was characterized by being conceptual (no technical or implementation details) and
can be uniformly applied at different levels of design and to various kinds of artifacts. The methodology is
applied to describe the VLSI physical design stage that includes partitioning, floorplanning and placement,
routing, compaction and extraction and verification. Conclusion: The resultant conceptual picture
demonstrates a viable description method that can be adapted for different stages and used in developing
systems for managing the VLSI design process.

Key words: Conceptual model, VLSI design cycle, VLSI design process, design process

management, description methodology

INTRODUCTION

 The Very Large Scale Integration (VLSI) design
process has been applied to many systems to achieve
new prospects for high-performance computing,
telecommunications and electronic equipment intended
for everyday use (e.g., entertainment). Progress in VLSI
technology has continually increased the number of
fabricated devices in a single integrated circuit (Moore’s
Law). The increase in complexity, which involves
considerable bookkeeping and management tasks, has
made it more vital to control the design process to
maintain quality, reliability and extensibility. This
control involves “definition, execution and control of
design methodologies in a flexible and configurable
way” (Kalavade and Lee, 1994; Kalavade et al., 1995).
The VLSI design process is typically described as an

iterative process that refines an idea for a
manufacturable device through several levels of design
abstraction (Kishore and Prabhakar, 2009). It involves a
series of procedures, from specification to fabrication, in
which the integrated circuit is produced. Starting with
abstract requirements, the process involves converting
these requirements into a register transfer description,
e.g., control flow, registers and arithmetic and logical
operations, which is simulated and tested. The design
process then shifts to circuit representation, e.g., gates,
transistors and interconnections. Simulation is also
utilized at this level to verify each component. Finally,
the geometric layout of the chip is produced in the form
of geometric shapes representing circuit elements and
their interconnections. The layout blueprint aims at
achieving area compactness and accuracy in routing and
timing (Navabi, 1998; Perry, 2002).

Am. J. Applied Sci., 9 (2): 213-222, 2012

214

 Such a process requires different design tools (e.g.,
VLSI CAD) and management apparatus (e.g., database
systems). “As a design is processed, it must be passed
from tool to tool. For example, the designer may use a
schematic capture tool for initial input, then they wish
for their design to be minimized and finally simulated”
(Hodges and Rounce, 1991). Comprehensive
management of the design is very important. According
to Hodges and Rounce (1991):

It is all too easy to make changes to a design
without documenting them, or without keeping
backup versions in case references to these
changes need to be made at a later date. In a
similar way, it is equally possible to
accidentally delete files with no means of
retrieval… Problems also arise with building
up a hierarchy of blocks, with each level
making use of the blocks in the levels
below…the various tools often do not support
this system of hierarchy directly...

 Workflow-based methodologies have been used to
coordinate execution of multiple tasks and activities in
VLSI design processes (Shepelev and Director, 1996;
Marinescu, 2002). Database systems have been
incorporated in many VLSI design systems (Chu et al.,
1983; Hollar et al., 1984; Jullien et al., 1986; Katz,
1986) to provide an environment for design data
management or tool integration.
 In the general area of modeling a design process,
several basic diagrammatic techniques are available,
such as using a weighted (completion time) directed
graph to represent the flow of design, where nodes
represent tasks and edges depict sequencing of tasks.
Markov chains (Johnson et al., 1996), signal flow
graphs (Eppinger et al., 1997) and petri-nets (Magott
and Skudlarski, 1989) are other examples of graphing
techniques used to analyze design processes.
According to Xiu (2008):

System-level design does not involve
implementation detail. It is the approach of
viewing the chip in a big-picture perspective.
It abstracts away the full detail of the design,
retaining just enough features to validate that
functions embodied by the design can perform
the specified design goal and can satisfy the
performance criteria…

 Preferably, the system-level study and modeling
should also support the smooth migration to
downstream implementation.
 VLSI design is analogous to the design tasks
involved in building construction Wikibooks, 2011.

First, we obtain an architectural drawing based on
requirements and specification. Floor plans and
constraints are then laid out based on the
connectivity/accessibility/size of internal spaces. This is
followed by depicting streams of flow (e.g., electrical,
water) in the building, including various requirements,
synchronization and triggering among different flows
(e.g., supplied power, uniformity of flow). There is also
the issue of maintaining integrity within spaces by
specifying partitions and shields.
 Similarly, VLSI design evolves from an
architectural blueprint drawn on the basis of
specifications of the product. Floor plans of the chip are
based on the connectivity/accessibility/space of
components with constraints on placement of the
blocks. Electrical plans are then laid down in a power-
grid topology that includes power requirement supplied
over the topology for uniform distribution across all
parts of the chip and standard-cells. There is also the
phase of synchronization that involves timing analysis
and regioning to place cells (circuits) that share data
near each other to minimize timing and reduce wire
lengths.
 This study introduces a diagrammatical
methodology that produces a purely conceptual
framework that specifies flows of artifacts in the VLSI
design process. The methodology is a descriptive process
characterized by being independent of technical notions
and features uniformity in application (e.g., at different
levels and of various artifacts). It can provide an
environment for managing the design process and
supporting high-level control policies.

VLSI design cycle: The VLSI design cycle (Fig. 1)
consists of eight interdependent stages: system
specification, architecture design, functional design,
logic design, circuit design, physical design, fabrication
and packaging. The cycle moves from an abstract
specification to a more detailed design that can be
assessed, tested and implemented.
 The first stage is the system specification stage,
which is a high-level representation of the system.
During this stage, the design specifications are
determined and set, taking into consideration certain
factors such as performance, functionality, physical
dimension, design technique and fabrication technology.
Size, speed, functionality and basic architecture
specifications of the system result from this stage. The
next stage is architecture design, which describes such
things as use of Reduced Instruction Set Computer
(RISC) and determination of cache size to produce
micro architectural specifications of the system.
 The third stage is the functional design stage, which
defines the main functional units and the interconnection
between the units in the system.

Am. J. Applied Sci., 9 (2): 213-222, 2012

215

Fig. 1: VLSI design cycle

Fig. 2: A sample of the level of description following the

general depictions of stages and phases of the
VLSI design life cycle

Fig. 3: Abstract wire and abstract port

At this stage, the system’s behavior is set in terms of
system input and output. In addition, the area, timing,
power and other parameters of each unit are
calculated. The output at this stage most of the time is
a diagram showing relationships and timing between the
system’s units. Next, logic design is the stage that derives
the logic description of the system, including Boolean
expressions, data and control paths and register allocation.
 The outcome of the logic design stage is a Register
Transfer Level (RTL) description represented by use of
Hardware Description Language (HDL). The circuit
design stage deals with logic gates, transistors,
interconnections and so forth. The physical design stage
follows the circuit design; it takes the resulting circuit
sketch and converts it into a geometric description. This
stage will be explained in more detail to showcase our
proposed representation. The design is then sent to the
fabrication and packaging stages to produce and test the
chip to ensure that all system requirements and
specifications are satisfied.

Problem focus: Current descriptions: According to
Sherwani (1999):

It is important to note that design of a complex
VLSI chip is a complex human power
management project as well. … As a result,

design is usually partitioned along
functionality and different units are designed
by different teams. At any given time, each
unit may not be at the same level of design.
While one unit may be in logic design phase,
another unit may be completing its physical
design phase. This imposes a serious problem for
chip level design tools, since these tools must
work with partial data at the chip level…

 The entire design cycle may be viewed as
transformations of representations in various steps. In
each step, a new representation of the system is created
and analyzed. The representation is iteratively
improved to meet system specifications.
 We observe from such a description that a great
portion of the complexity involved is related to the
management of transformations of representations. This
is translated in our conceptualization to control the flow
of representations (previously called artifacts),
starting with drawing maps of flows of
representations (which we later call flowthings)
running through the design flow. These flowthings
are created, transformed (processed), transferred,
released and received by various functions along the
design flow at different levels (a hierarchy). The
resulting conceptual framework can be used to
support designers with computer-aided tools to
organize and manage the chains of tasks.
 Such a global conceptual framework for managing
representations is missing from currently known
methodologies. After giving such “conceptually
simple” sketches of stages and phases shown in Fig. 1,
Sherwani (1999) provides a flowchart-like depiction,
partially shown in Fig. 2, as an example of a “design
style” that “shows the physical design cycle with
emphasis on timing.” Utilizing such a flowchart-like
methodology to represent a complex process has many
well-known limitations in the software development
cycle. Additionally, the description loses the essence of
the process described by Sherwani (1999) as
transformations of representations.
 The object-oriented approach to data management
has also been proposed in the context of the VLSI design
process (Heiler et al., 1987; Weiss et a1., 1986). For
example, Chung and Kim (1990) propose a “design
pattern”, used repeatedly, modeled as an identifiable object
called an abstract object and represented “internally” as a
class, called an abstract class (as in UML).
 The abstract class includes an “entity type”
with four possible values: cell (circuit), port, net
(a wire connecting two ports) and constraint.
Figure 3 shows a sample of such representation
(Chung and Kim, 1990). Clearly, such a modeling
is developed for technical purposes and does
not help in development of a design environment.

Am. J. Applied Sci., 9 (2): 213-222, 2012

216

Fig. 4: Sample representation used in selecting a

fabrication technology (Hekmatpour et al.,
1991)

Fig. 5: Flowsystem, assuming that no released flowthing

is returned

 (a) (b)

Fig. 6: Two sample descriptions (a): Layout of circuit

blocks (b): Detailed routing

Another adoption of the object-oriented approach and at
a level that follows a hierarchical representation of
design space, is presented by Hekmatpour et al. (1991),
who developed an application-specific model to
customize the design environment:

For example, an important task in VLSI design
is selecting a fabrication technology that best
matches the constraints of the design space. In
this selection procedure, engineers evaluate the
current state of design in conjunction with
design objectives and constraints…
[In Fig. 4] The generation of the list of
objects… is accomplished by creating a
referenceList object…

 Note that the purpose of this discussion is to show
the type of representation used, not to present a
complete description of the discussed examples.
 These object-oriented–based methods do not
provide a suitable tool for managing a design

environment. Technical details are usually intermixed
with the programming “flow control” and data
structures, with results no better than the flowchart-
based description.
 Alternatively, we aim at drawing a conceptual
framework of “things that flow” (representations) in
different streams of the design process to be used as a
tracking mechanism for directing traffic during the
design process. This is analogous to a real-time system
in an imaginary city that tracks movements and states
of different types of vehicles among streets, factories,
stores and intersections. This includes the introduction
of new vehicles, their processing (e.g., loading,
changing color and shapes), their release and transfer
from one place to another, arrival and acceptance when
they enter factories, stores and so on. The conceptual
model forming the backbone of such a scenario, called
the Flowthing Model (FM), has been introduced in
many publications and will be reviewed in the next
section (Al-Fedaghi, 2010; 2011a-c; Al-Fedaghi and
Al-Saleh, 2011; Al-Fedaghi and Fairouz, 2011).

Foundation: The flowthing model: According to
Alberts et al. (1989), a design is an abstract entity that
is gradually given a concrete form in the course of the
design process. Especially in the case of VLSI design, it
consists of a set of descriptions only. Since a design is
represented by its description(s), the obvious way to
describe design actions is as transformations between
descriptions.
 We extend this line of thought by viewing a
description as an integral element of a process, called a
flowsystem, constructed from a generic operation to
“handle” descriptions. A description is a thing that
flows (a flowthing) in a flowsystem. Figure 5 shows a
complete flowsystem.
 There is no description that is not created at a
certain point. It can be processed (changed in form, but
without producing a new description). It can be released
and transferred, arrive at another place and be accepted
(or rejected). In what other ways is a description
handled? It can be stored, but storing is not a generic
handling operation because created descriptions can be
stored, processed descriptions can be stored. Similarly,
descriptions can be copied, but copying can be
performed on any one of the six generic types shown in
Fig. 5. Accordingly, a description is a flowthing. A
flowthing is a thing that is handled by these six generic,
mutually exclusive operations. Figure 5 represents the
flow system (denoted as flowsystem) of the flowthing.
The environment of a flowsystem is called its sphere.

Am. J. Applied Sci., 9 (2): 213-222, 2012

217

Fig. 7: FM-based flows of descriptions x and y

Fig. 8: VLSI physical design stage

Example: Suppose we have two descriptions, x and y,
as shown in Fig. 6. Suppose description x is created by
department 1 and sent to department 2, where it is
processed to create description y. Figure 7 shows the
FM-based description of such a process.
 In department 1’s sphere, description x is created
(and a copy is stored), released and transferred to
department 2’s sphere. Note that transfer represents the
interface unit of the sphere with the outside. It is
possible that a description is released but not transferred
(e.g., waiting to fix a broken communication channel).
 At department 2, description x enters, arrives and is
accepted in its flowsystem in the sphere. It is possible
that it is rejected and thus sent back. Assuming that
description x is accepted, it is then processed to trigger
creation of description y. Triggering is represented by a
dashed arrow. Description y is then released and
transferred to somewhere outside department 2.
 Such a process includes two flows, one of
description x and one of description y. The flow of
description x passes through two flowsystems, forming
a flowstream. There are two spheres in Fig. 7: that of
department 1 and that of department 2. It is possible to
have subspheres. For the sake of simplicity, when it is
appropriate, we will sometimes merge arrival and
acceptance as one stage called receive. In general, this
Flowthing Model describes systems of flowthings such

as, for example, information, data, money, signals and
actions, in addition to artifacts such as descriptions (Al-
Fedaghi, 2010; 2011a-c; Al-Fedaghi and Al-Saleh,
2011; Al-Fedaghi and Fairouz, 2011). Flowthings
can exist in only six states: being created, released,
transferred, arrived, accepted, or processed, with
transformations among these states. When a
description, as a flowthing, changes from one state to
another, it has undergone a change of stage.

The physical design stage of the VLSI design cycle:
Without loss of generality, in this section we
describe the FM-based representation of the physical
stage of the VLSI design cycle. This stage is divided
into multiple phases: partitioning, floorplanning and
placement, routing, compaction and extraction and
verification, as shown in Fig. 8.
 The following description of the phases is
summarized from Sherwani (1999). The first phase
entails partitioning a circuit into subcircuits. This is a
necessary step either because of the large number of
logic gates that cannot be placed in a single chip or
because of the limitations of I/O pins. Partitioning is a
process that can be performed hierarchically until the
size of each subcircuit fits in a single chip board. An
important goal of the partitioning process is to
minimize the interconnections (external wires) between
the partitions (chip boards).
 The partitioning process is followed by the
floorplanning and placement phase, where the exact
position of the circuit components in each partition is
determined. In this phase, the components with their
I/O pins and the interconnections between the
components in each partition must be taken into
consideration. The components connected to other
components in other partitions must be placed at the
edges of the partitions. Moreover, the components that
belong to the same partition and are heavily connected
must be placed close to each other to reduce wiring
cost. The objective of the floorplanning and placement
phase is to arrange the components in such a way that
leads to minimization of the area arrangement layout
and the interconnection area without violating any
performance constraints. Determining the minimum
area is done iteratively until minimum area layout is
achieved. The result is then passed to the routing phase,
where the interconnections between the partitions and
their components are completed. The routing phase is
defined as the process that finds the proper routes in the
routing area used to connect the partitions and the
components with minimum wiring space.

Am. J. Applied Sci., 9 (2): 213-222, 2012

218

Fig. 9: FM-Based physical VLSI design stage

 Routing consists of two steps: global routing and
detailed routing. In global routing, the approximate
interconnections between the components and partitions
are determined while ignoring any geometric details.
The resulting figure produces all possible routes in the
area through which the wires should go. All this
information is used in detailed routing to produce the
geometric layout of the wires connecting the
components and partitions. The physical design is then
passed on to the compaction phase, where the entire
design is compressed to minimize the total area of the
chip while maintaining all its performance and design
constraints. The last phase is extraction and

verification. All the geometric patterns—such as the
wiring separation rule—are verified using DRC, the
Design Rule Checking process, to check that they meet
the design rules set by the fabrication stage and that any
design rule violations are removed. Many verification
processes are available, such as Layout Versus
Schematics (LVS) verificationn and Performance
Verification and Reliability Verification. In LVS,
layout (design) functionality is checked using a Circuit
Extraction process, where a circuit representation is
generated and extracted from the layout; the accuracy
of the extracted description is then verified by
comparing it with the circuit description. The design’s

Am. J. Applied Sci., 9 (2): 213-222, 2012

219

geometric information is extracted and used in
Performance Verification to determine resistance and
capacitance to accurately compute the timing of each
component with the interconnections. Moreover, this
information is also used in the Reliability Verification
process to verify the reliability of the layout and ensure
that electro-migration, self-heat and other effects will
not lead the layout to fail. The final physical design is
then carried to the next stage in the VLSI design
process, the Fabrication stage.

FM-based description: FM can provide a complete
picture of various artifact flows and their
transformations in the physical design stage. Figure 9
shows the resulting FM conceptualization in terms of
five spheres: partitioning, floorplanning and placement,
routing, compaction and extraction and verification.
Here, a sphere denotes a new task corresponding to a
department, a designer, or a different role in the same
organizational unit.

Partitioning: The partitioning sphere includes flows of
circuits, external connections and partitions (sub-
circuits). It consists of three flowsystems: a circuits
flowsystem, an external connections flowsystem and a
partitions flowsystem.
Example: A circuit can be represented by a
hypergraph, where the vertex set denotes the set of
partitions and the hyperedge (a subset-called the pins-of
the set of vertices) denotes the set of nets (external
connections).
 In Fig. 9, the circuit flowsystem (circle 1) receives
the incoming circuit sketch from the previous stage
(circuit design) and stores a copy for future use. The
circuit is then processed (partitioned) based on the
number of circuit components and design constraints.
The distribution process of the components is
performed using optimization partitioning algorithms
(e.g., Kernighan-Lin algorithm) in order to minimize
the number of interconnections between partitions. This
process triggers the appearance of new flowsystems
that have emerged as a result of creating new
flowthings: an external connections flowsystem (circle
2) and a partitions flowsystem (circle 3).
 The created partitions are released and transferred
to the floorplanning and placement sphere (circle 4).
The created external connections are also transferred to
the sphere of the design flow system (circle 5), where
they wait for the transformed partitions to again form a
united chip.
 It is not difficult to see that this description of
artifacts and their transformation can be used as a base

for developing a manual or automated system to
manage the tracking of various items in the system.

Floorplanning and placement: Partitions are
transferred to this sphere. Note that it is possible that a
partition that is transferred may not arrive (e.g., lost,
destroyed); thus this FM-based model facilities such
events, if required. Upon arrival (say, formal
acknowledgment of receipt by another designer), the
partition may be accepted (circle 6) after verification of
design. Or, if not accepted, a repartition signal (request)
is triggered to again partition the original circuit sketch
(circle 7). Each partition is then stored in the database
of the floorplanning and placement sphere (circle 8) and
processed (e.g., the exact location of each component is
determined). Eventually the redesigned partitions are
transferred to the routing sphere (circle 9).

Routing: The resultant redesigned partitions flow to the
routing sphere to be verified; if not accepted, they
trigger a request for reprocessing in the floorplanning
and placement sphere. The external connections are by
now waiting in their flowsystem in the routing sphere.
If accepted, these two artifacts are viewed as two
portions that trigger the creation of a new circuit
description (circles 10 and 12). That is:

• The partitions flowsystem in the routing sphere

receives all partitions from the floorplanning and
placement sphere

• The external connections flowsystem in the routing
sphere receives external connections from the
partitioning sphere

• Both events in (1) and (2) trigger creation of the
new circuit, which is processed to join its two
portions and perform global and detailed routing
(circle 13). The design is then released and
transferred to the compaction sphere (circle 14)

Compaction and extraction sphere: The next phase is
the compaction phase, where the modified design is
compressed. As shown in Fig. 9, if the design is
rejected, a rerouting signal is sent to the previous phase
(circle 15). The compaction sphere contains two
different processes. In the first type of process (circle
16), the design is compressed and in the second process
(circle 17), the constraints are checked. In case of any
problem, the second process triggers a signal to the
database to indicate that a violation has appeared (circle
18).

Extraction and Verification sphere: This is the final
phase, where the accurate functionality of the design

Am. J. Applied Sci., 9 (2): 213-222, 2012

220

layout is verified in the acceptance process (circle
19). When the verification process is completed, the
final version of the physical design is transferred to
the fabrication stage (circle 20).

CONCLUSION

 This study proposes a high-level detailed view that
assists in the management of the VLSI design process. The
resulting conceptual framework represents flows and
transformations of various descriptions (e.g., circuits,
technical sketches) and is used as a tracking apparatus for
directing traffic during the VLSI design process. It is
applied in describing the physical design stage that
includes partitioning, floorplanning and placement,
routing, compaction and extraction and vertification.
 The flow-based description demonstrates the
viability of a methodology that can be adopted for all
stages and substages of the VLSI design process. The
conceptual description can act as a foundation as well
as provide a simpler or more detailed specification of
the system. Many diagram-based conceptual
descriptions become cumbersome because there is no
restriction on the basic conceptual apparatus. Consider
a logical operator such as AND, OR and other flow-
control mechanisms such as synchronization that can be
erected when flows join together and when timing
needs coordination. In the flowthing model, such
notions apply, if needed, in the second level of
specification. These tools are “unnatural” controls from
the flow point of view. Imagine a civil engineer who
draws a map of a territory that includes a river system.
First, the engineer draws a topographic model,
including streams, directions, joins (without, for
example, worrying about the type of joining, e.g.,
relative speed of currents) and branches (e.g., relative
division of water; one branch may have a dead end).
The engineer then inspects the model and decides about
damming, channelization, diversion, bridge
construction and sand or gravel mining (Al-Fedaghi and
Al-Saleh, 2011). For example, a simpler diagram of
Fig. 9 is shown in Fig. 10 that can be used for
nontechnical presentation. It is based on the same FM
concepts, but the focus is on streams of flows.
 Future work involves building conceptual
descriptions of other stages. Such a venture would
produce a blueprint or conceptual map similar to
blueprints of construction projects. Additional study
can pursue application of the FM-based methodology to
technical issues in VLSI design (Teymourzadeh et al.,
2010), other engineering descriptions (Azadeh and
Ghaderi, 2006; Verma et al., 2009; Haddad, 2009) and
management (Papadamou and Stephanides, 2004;
Ismail et al., 2010).

Fig. 10: FM-based description of a system serves as a

foundation for brief and more detailed
specification

REFERENCES

Alberts, L.K., C. Huijs, N.J.I. Mars and L.

Spaanenburg, 1989. A knowledge-based approach
to VLSI-Design in an open CAD-environment.
Microprocess. Microprogramm., 27: 77-84. DOI:
10.1016/0165-6074(89)90024-0

Al-Fedaghi, S., 2010. System-based approach to
software vulnerability. Proceedings of the IEEE
2nd International Conference on Social
Computing, Aug. 20-22, IEEE Xplore Press,
Minneapolis, USA., pp: 1072-1079. DOI:
10.1109/SocialCom.2010.159

Al-Fedaghi, S.S., 2011a. Conceptual foundation for
specifying processes. Int. J. Adv. Comput. Tech.,
3: 265-278.

Al-Fedaghi, S., 2011b. Pure conceptualization of
computer programming instructions. Int. J. Adv.
Comput. Technol., 3: 302-313.

Al-Fedaghi, S., 2011c. Developing web applications.
Int. J. Software Eng. Appli., 5: 57-68.

Al-Fedaghi, S. and L. Al-Saleh, 2011. Specifying
processes: Application to electrical power
distribution. J. Comput. Sci., 7: 1729-1740. DOI:
10.3844/jcssp.2011.1729.1740

Al-Fedaghi, S.S. and A. Fairouz, 2011. Alternative flow
diagram for supply chain: Application to risks.
AISS: Adv. Inform. Sci. Service Sci., 3: 111-121.

Am. J. Applied Sci., 9 (2): 213-222, 2012

221

Azadeh, A. and F. Ghaderi, 2006. A framework for
design of intelligent simulation environment. J.
Comput. Sci., 2: 363-369. DOI:
10.3844/jcssp.2006.363.369

Chu, K.C., J.P. Fishburn, P. Honeyman and Y.E. Lien,
1983. Vdd-A VLSI design database system.
Proceedings of the Engineering Design Applications,
(EDA’ 83), KEG, Tsinghua, pp: 25-37.

Chung, M.J. and S. Kim, 1990. An object-oriented
VHDL design environment. Proceedings of the
27th ACM/lEEE Design Automation Conference,
(DAC’ 90), ACM, New York, pp: 431-436. DOI:
10.1145/123186.123328

Eppinger, S.D., M.V. Nukala and D.E. Whitney, 1997.
Generalised models of design interation using
signal flow graphs. Res. Eng. Design, 9: 112-123.
DOI: 10.1007/BF01596486

Haddad, J.S., 2009. Basic theoretical backgrounds of
the engineering design procedure of a drying plant.
Am. J. Eng. Applied Sci., 2: 466-470. DOI:
10.3844/ajeassp.2009.466.470

Heiler, S., U. Dayal, J. Orenstein and S. Radke-Sproull,
1987. An object-oriented approach to data
management: Why design databases need it.
Proceedings of the ACM/IEEE 24th Conference on
Design Automation, June 28-Jul. 1, IEEE Xplore
Press, Miami Beach, Florida, USA., pp: 335-340.
DOI: 10.1145/37888.37939

Hekmatpour, A., A. Orailoglu and P. Chau, 1991.
Hierarchical modeling of the VLSI design process.
IEEE Expert, 6: 56-70. DOI: 10.1109/64.79710

Hodges, S. and P. Rounce, 1991. A VLSI design
management environment. Design Manage.
Environ. CAD, IEE Colloquium.

Hollar, L., B. Nelson, T. Carter and R.A. Lone, 1984.
The structure and operation of a relational database
system in a cell-oriented integrated circuit design
system. Proceedings of the 21st Conference on
Design Automation, Jun. 25-27, IEEE Xplore
Press, pp: 117-125. DOI:
10.1109/DAC.1984.1585784

Ismail, A., R. Aminzadeh, A. Aram and I. Arshad,
2010. Value engineering application in highway
projects. Am. J. Eng. Applied Sci., 3: 699-703.
DOI: 10.3844/ajeassp.2010.699.703

Johnson, E.W., L.A. Castillo and J.B. Brockman, 1996.
Application of a Markov model to the
measurement, simulation and diagnosis of an
iterative design process. Proceedings of the Design
Automation Conference, Jun. 3-7, IEEE Xplore
Press, Las Vegas, NV, USA., pp: 185-188. DOI:
10.1109/DAC.1996.545569

Jullien, C., A. Leblond and J. Lecourvoisier, 1986. A
database interface for an integrated CAD system.
Proceedings of the 23rd Design Automation
Conference, June 29-Jul. 2, IEEE Xplore Press, pp:
760-767. DOI: 10.1109/DAC.1986.1586175

Kalavade, A. and E.A. Lee, 1994. Manifestations of
heterogeneity in hardware/software co-design.
Proceedings of the 31st Design Automation
Conference, (DAC’ 94), ACM, New York, pp:
437-438. DOI: 10.1145/196244.196457

Kalavade, A., J.L. Pino and E.A. Lee, 1995. Managing
complexity in heterogeneous system specification,
simulation and synthesis. Proceedings of the
International Conference on Acoustics, Speech and
Signal Processing, May 9-12, IEEE Xplore Press,
Detroit, MI, USA., pp: 2833-2836. DOI:
10.1109/ICASSP.1995.479434

Katz, R.H., 1986. Computer-Aided Design Databases.
In: New Directions for Database Systems, Ariav,
G. and J. Clifford, (Eds.). Intellect Books,
Norwood, N.J., ISBN: 0893913448, pp: 110-123.

Kishore, K.L. and V.S.V. Prabhakar, 2009. VLSI
Design. 1st Edn., I.K. International Pvt Ltd., ISBN:
9380026676, pp: 414.

Magott, J. and K. Skudlarski, 1989. Combining
generalized stochastic petri nets and PERT
networks for the performance evaluation of
concurrent processes. Proceedings of the 3rd
International Workshop on Petri Nets and
Performance Models, Dec. 11-13, IEEE Xplore
Press, Japan, pp: 249-256. DOI:
10.1109/PNPM.1989.68558

Marinescu, D.C., 2002. Internet-Based Workflow
Management: Toward A Semantic Web. 1st Edn.,
Wiley-Interscience, New York, ISBN:
0471439622, pp: 627.

Navabi, Z., 1998. VHDL: Analysis and Modeling of
Digital Systems. 2nd Ed. McGraw Hill, New York,
ISBN: 0070464790, pp: 632.

Papadamou, S. and G. Stephanides, 2004. Improving
fund risk management by using new software tools
technology. Am. J. Applied Sci., 1: 84-89. DOI:
10.3844/ajassp.2004.84.89

Perry, D.L., 2002. VHDL: Programming by Example.
4th Edn., McGraw-Hill, New York, ISBN:
0071400702, pp: 476.

Shepelev, V.A. and S.W. Director, 1996. Automatic
workflow generation. Proceedings of the European
Design Automation Conference, Sep. 16-20, IEEE
Xplore Press, Geneva, Switzerland, pp: 104-109.
DOI: 10.1109/EURDAC.1996.558191

Sherwani, N.A., 1999. Algorithms for VLSI Physical
Design Automation, 3rd Edn., Kluwer Academic
Publishers, Boston, ISBN: 0792383931, pp: 572.

Am. J. Applied Sci., 9 (2): 213-222, 2012

222

Teymourzadeh, R., Y.S. Algnabi, M. Othman, M.S.
Islam and J.M.V. Hong, 2010. VLSI
implementation of novel class of high speed
pipelined digital signal processing filter for
wireless receivers. Am. J. Eng. Applied Sci., 3:
663-669. DOI: 10.3844/ajeassp.2010.663.669

Verma, S., K. Ramineni and I.G. Harris, 2009. A
control-oriented coverage metric and its evaluation
for hardware designs. J. Comput. Sci., 5: 302-310.
DOI: 10.3844/jcssp.2009.302.310

Weiss, S., K. Rotzell, T. Rhyne and A. Goldfein, 1986.
DOSS: A storage system for design data.
Proceedings of the 23rd ACM/IEEE Design
Automation Conference (DAC’ 86), IEEE Press
Piscataway, NJ, USA., pp: 41-47.

Xiu, L., 2008. VLSI Circuit Design Methodology
Demystified: A Conceptual Taxonomy. 1st Edn.,
John Wiley and Sons, New Jersey. ISBN:
0470127422, pp: 202.

