
American Journal of Applied Sciences, 2012, 9 (12), 2046-2051

ISSN: 1546-9239

©2012 Science Publication

doi:10.3844/ajassp.2012.2046.2051 Published Online 9 (12) 2012 (http://www.thescipub.com/ajas.toc)

Corresponding Author: Keerthika, P., Department of Computer Science and Engineering, Faculty of Computer Science and Engineering,

Kongu Engineering College, Perundurai-638052, Erode, Tamilnadu, India Tel: +91(0)4294 226560

2046 Science Publications

AJAS

An Efficient Fault Tolerant

Scheduling Approach for Computational Grid

1
P. Keerthika and

2
N. Kasthuri

1Department of Computer Science and Engineering,

Faculty of Computer Science and Engineering,
2Faculty of Electronics and Communication Engineering,

Kongu Engineering College, Perundurai-638052, Erode, Tamilnadu, India

Received 2012-06-26, Revised 2012-09-03; Accepted 2012-09-03

ABSTRACT

Grid computing serves as an important technology to facilitate distributed computation computational grids
solve large scale scientific problems using heterogeneous geographically distributed resources. Problems
like dispatching and scheduling of tasks are considered as major issues in computational grid environment.
The Grid Scheduler must select proper resources for executing the tasks with less response time. There are
various reasons such as network failure, overloaded resource conditions, or non-availability of required
software components for execution failure. Thus, fault-tolerant systems should be able to identify and
handle failures and support reliable execution in the presence of failures. Hence the integration of fault
tolerance measures and communication time with scheduling gains much importance. In this study, a new
fault tolerance based scheduling approach Fault Tolerant Min-Min (FTMM) for scheduling statically
available meta tasks is proposed wherein failure rate and the fitness value are calculated. The performance of
the fault tolerant scheduling policy is compared with min-min scheduling policy using GridSim and the results
shows that the proposed policy performs better with less makespan in the presence of failures. The number of
tasks successfully completed is also more when compared to the non-fault tolerant min-min scheduling policy.
Thus the proposed FTMM algorithm not only achieves better hit rate but also improved makespan.

Keywords: Fault Tolerance, Communication Time, Min-Min, Grid Scheduling, Meta Task

1. INTRODUCTION

 Grid computing is sharing of coordinated resources
in a dynamic environment where multi-institutional
virtual organization involves and open standards
becomes the key underpinning. In grid environments
they does not prefer to rely on centralized control;
instead they provide coordination among the resources.
The use of open standards, protocols and frameworks
provides interoperability facilities. To achieve the full
potential of grid environment we should perform the grid
scheduling in an effective manner.
 Grid scheduling is the process of making scheduling
decisions involving resources over multiple
administrative domains. This process can include
searching multiple administrative domains to use a single

machine or scheduling a single job to use multiple
resources at a single site or multiple sites.
 Job scheduling involves mapping of ‘n’ tasks to ‘m’

processors. It is a NP-complete problem. Scheduling is

done by using a software application called scheduler.

The scheduler software enables an enterprise to schedule

and, in some cases, monitor computer "batch" tasks. It

can initiate and manage jobs automatically by processing

prepared task control language statements or through

equivalent interaction with a human operator.
 When a task is considered, the key parameters
includes deadline, memory space required, waiting time,
process time, turn-around time. Similarly the key
parameters for a resource include speed, failure rate,
maximum load it can handle, queue length. In this study
we try to find out the common parameters that are being

P. Keerthika and N. Kasthuri / American Journal of Applied Sciences, 9 (12) (2012) 2046-2051

2047 AJAS Science Publications

shared by both task as well as resource like memory
space, speed

to filter out the capable tasks. With the

above assumptions we perform the scheduling through
time to release and failure rate values.
 Fault tolerant mechanisms are needed to hide the
occurrence of faults, or the sudden unavailability of
resources. Although scheduling and fault tolerance
have been traditionally considered independently from
each other, there is a strong correlation between them.
As a matter of fact, each time a fault-tolerance action
must be performed.
 Fault-tolerant schedulers attempt to do so by
integrating scheduling and fault management, in order to
properly schedule both faulty and non-faulty tasks.
 The consideration of makespan value is because of
its improved efficiency over Min-Min algorithm. The
addition of transmission time in scheduling criteria
enables the sight over the transmission cost of data’s or
packets where the actual grid resources being distributed
in nature. When this is being integrated with fault tolerant
measures then the reliability of the algorithm would
increase. In the proposed algorithm the above is achieved
in efficient way with the fitness value which is calculated
and considered while scheduling when the task can hold
with the available specifications of the resource.
 The main objective of this study is to design a new
scheduling algorithm that reduces the makespan which is
the total time taken to complete a set of jobs. Also, the
idle time of the resources should be less which assures
that no resources are kept idle for a long time. It also
ensures that fault tolerant measures are satisfied. The
tasks are scheduled after the fault rate of all the resources
is calculated. The proposed algorithm considers both
system performance and user satisfaction. Hence, most
of the jobs are completed within their expected
completion time with minimum number of failures.

1.1. Related Works

 There are many scheduling algorithms that perform
better and some of the algorithms concentrate on fault
tolerance. Some of those scheduling algorithms are
discussed below. Minimum Time to Release Scheduling
Algorithm has been discussed by Malarvizhi and
Uthariaraj (2009) in which the Time to Release (TTR) is
calculated. Based on the TTR value all the tasks are
arranged in descending order. The tasks are submitted in
that order. This algorithm performs better when
compared to First Come First Serve Scheduling and min-
min algorithms. This brings out a way in solving this
problem through grid scheduling architecture and job
scheduling algorithm. This architecture is scalable and
eliminates control of local site resources. In this
algorithm the grid scheduler which selects the

computational resources based on job requirements, job
characteristics and information given by resources,
performs resource brokering and job scheduling.
 Other related works includes fault tolerant

algorithms discussed by Garg and Singh (2011) surveys

the importance of fault tolerance for achieving reliability

by all possible mechanisms such as Replication, Check

pointing and job migration.It extends the cost-

optimisation algorithm to optimise the time without

incurring additional processing expenses. This is

accomplished by applying the time-optimisation

algorithm to schedule task farming or parameter-sweep

application jobs on distributed resources having the same

processing cost.

 The model proposed by Anne et al. (2005) brings

out modeling execution of jobs on grid compute clusters

with the assistance of PEPA model. It involves

approximation of state space and representing it as a set

of ordinary differential equations. Based on the user’s

quality of services requirements, the resources for t heir

applications are allocated, by regulating the supply and

demand. This is brought through a framework including

economy driven deadline and budget constrained

algorithms for satisfying user’s requirements. Zheng et al.

(2007) addresses fault-tolerant scheduling for

differentiated classes of independent tasks through

various simulation experiments. It proposes two

algorithms such as MRC-ECT and MCT-LRC which

provides optimal backup schedule in terms of replication

cost and minimum completion time respectively.

 A QoS guided task scheduling algorithm is put forth

by He et al. (2003) which is based on general adaptive

scheduling heuristics including QoS guidance. The

results show that general adaptive scheduling heuristics

that includes QoS guidance provides significant

performance gain. A fault tolerance service based on

different types of failures satisfying the QoS requirements is

explained by Lee et al. (2009). It also gives a resource

scheduling service, detection of faults and over usage of

resources and fault management service.

 Suresh and Balasubramanie (2012) proposes a static

heuristic approach for scheduling independent tasks in

grid environment. The requirements of tasks are

necessary to identify resources such as computational

nodes and data resources. The proposed scheduling

algorithm considers both system and application aspects

i.e., the factors to improve the performance and

utilization of the resources and throughput.

 Rodero et al. (2009) gives an evaluation of

coordinated grid scheduling strategy with the FCFS job

scheduling policy and the matchmaking approach for the

P. Keerthika and N. Kasthuri / American Journal of Applied Sciences, 9 (12) (2012) 2046-2051

2048 AJAS Science Publications

resource selection as a reference. In order to allocate grid

tasks in minimum time and to increase toleration of

faults, Modiri et al. (2011) uses DAG mechanism to

enter tasks and thereby brings out an efficient algorithm

namely ant colony optimization algorithm. Garg and

Singh (2011) surveys the importance of fault tolerance for

achieving reliability by all possible mechanisms such as

Replication, Check pointing and job migration.
 Nska et al. (2006) proposes system architecture for
Distributed Networks providing a wide area scheduler
prototype and uses divide and conquer strategy for
overcoming crashes of one or more nodes and
concentrates on minimizing the redundant work.

2. MATERIALS AND METHODS

2.1. Problem Formulation

 The problem of job scheduling with heterogeneous
distributed resources is discussed which follows the grid
scheduling model explained in Fig. 1 below.
 A centralized broker is the single point for the whole
infrastructure and manages directly the resource manager
interfaces that interact directly with the local resource
managers. All the users submit the tasks to the
centralized broker. Each resource differs from other
resources by many ways that includes number of
processing elements, processing speed, internal scheduling
policy and its load factor. Similarly each job differs from
other jobs by execution time, deadline, time zone.
 The static mapping of meta tasks is done in which
each machine executes one task at a time. It is assumed
that the size of the meta tasks, number of resources,
expected execution time of each task in each machine are
known priori. An ETC matrix (Expected Tim e to
Compute) is constructed using the EET which is the
estimated execution time of task i on resource j. The
experimental results are based on Braun et al. (2001)
wherein the scheduling problem is defined by:

• A number of independent tasks to be allocated to the

available grid resources
• Number of resources is available to participate in the

allocation of tasks
• Workload of each task (MI)
• Computing capacity of each resource
• (MIPS)
• RT(Rj) represents the ready time of the resource

after completing the previously assigned jobs

2.2. Proposed FTMM Algorithm

 The brief description of the proposed FTMM

algorithm is presented.

Fig. 1. Basic grid scheduling model

This scheduling algorithm is based on transmission time

and fault rate. System performance is also achieved by

reducing the idle time of the resources and distributing the

unmapped tasks equally among the available resources.

Step 1: Construct ETC(Ti,Rj) matrix of size m × n where

m represents the number of tasks and n

represents the number of resources involved.

Step 2: Construct RT(Rj) matrix of size 1× n.

Step 3: For each task Ti in the queue and

 For each resource Rj where j∈ n

Step 3.1: Construct CT(Ti,Rj) matrix of size m × n

which is the completion time of each task i ∈

m on each resource j∈ n and it is given by:

CT(Ti,Rj) = ETC(Ti,Rj) + RT(Rj)

Step 3.2: Construct CMT(Ti,Rj) matrix of size m × n

which is the communication time of each task i

∈ m on each resource j ∈ n and is given by:

CMT(Ti,Rj) = ipt(Ti,Rj) + opt(Ti,Rj)

where,

ipt(Ti,Rj) = Time taken by Ti for transfer of

 input files to the resource Rj

opt(Ti,Rj) = Time taken by Ti for transfer of

 output files to the user from the

 resource Rj

Step 3.3: Construct TCT(Ti,Rj) matrix of size m × n which

is the Total Completion Time of each task i ∈ m

on each resource j ∈ n and is given by:

P. Keerthika and N. Kasthuri / American Journal of Applied Sciences, 9 (12) (2012) 2046-2051

2049 AJAS Science Publications

TCT(Ti,Rj) = CT(Ti,Rj) + CMT(Ti,Rj)

Step 3.4: Compute Failure rate FR(Rj) =Tf / Tsub for all

j ∈ n where

 Tf is the number of tasks failed to be executed

previously in resource j

 Tsub is the number of tasks submitted to be

executed previously in resource j

Step 3.5: Compute Fitness Value:

FV(Ti,Rj) = FFR + FTCT

where,

FFR is the Failure Rate Fitness function and

 FTCT is the Total Completion Time Fitness function

and they are given by:

FFR = (FR(Rj) - FRmin) / 2

And:

FTCT = (TCT(Ti,Rj) – TCTimin) /2

where, FRmin is the minimum of failure rates

 of all the resources and

 TCTimin is the minimum TCT of task i

 in resource j ∈ n.

Step 3.6: Set task Ti , Resource Rj and lowest fitness

value to CANDIDATE(Ti,Rj,FVmin)

Step 3.7: Choose task Tmin with lowest fitness value from
CANDIDATE(Ti,Rj,FVmin)

Step 3.8: Dispatch task Tmin to Resource Rj and remove

Tmin from task list.

Step 3.9: Update RT(Rj) where j is the resource to

which the task Tmin is dispatched.

Step 3.10: Update FR(Rj), if resource Rj fails, where j is

the resource to which the task Tmin is

dispatched.

Step 4: If there are tasks in Task_list, repeat step 3.

 Else Compute

 Makespan = max {RT (Rj)} and

 Hit Rate = Tsucc/Tsub for all j ∈ n

 where

 Tsucc is the number of tasks

successfully completed without any

failure.

Fig. 2. Arrangement of grid resource in GridSim

2.3. Simulation Setup

 The main aim of the proposed scheduling algorithm

is to minimize the makespan and to improve fault

tolerance of the system proactively and that is achieved

by increasing the Hit rate. The simulation is done with

GridSim 5.0 toolkit.

Number of Resources : 16

Number of Tasks : 512

Initial FR of resources : 0 to 1

 The arrangement of grid resources in GridSim 5.0 and

the hierarchy of resources used for evaluating the proposed

scheduling algorithm is given in Fig. 2. Each resource is

characterised by number of machines and each machine is

characterised by number of processing elements.

3. RESULTS

 The proposed FTMM algorithm is simulated with
512 tasks and 16 machines for 5 different inputs using
GridSim5.0 Toolkit with the above mentioned setup and
compared with min-min algorithm (without fault tolerant
measures) based on makespan and hit rate.
 The percentage of improvement of makespan values
of FTMM over min-min is given in Table 3.

4. DISCUSSION

 The results show that the proposed FTMM
algorithm outperforms traditional min-min algorithm
with better makespan and better hit rate. The makespan
and hit count values for 512 tasks in 16 resources is
given in Table 1-4.

P. Keerthika and N. Kasthuri / American Journal of Applied Sciences, 9 (12) (2012) 2046-2051

2050 AJAS Science Publications

Fig. 3. Comparison chart based on Makespan (sec)

Fig. 4. Comparison chart based on Hit count

Table 1. Comparison based on Makespan (sec)

Cases MIN-MIN FTMM

1 3804441 3403760
2 245245 222041
3 1215524 1113854
4 2106230 1860084
5 735913 469402

Table 2. Comparison based on Hit count (No. of tasks)
Cases MIN-MIN FTMM

1 215 258
2 198 231
3 228 253
4 209 246
5 228 286

Table 3. Improvement of FTMM over min-min based on

makespan

Cases Improvement (%)

1 10.530

2 9.469

3 8.360

4 11.680

5 36.210

Table 4. Improvement of FTMM over min-min based on hit

count

Cases Improvement (%)

1 8.40

2 6.45

3 4.88

4 7.23

5 11.33

The graphical representation of both the makespan and

hit rate is given in Fig. 3 and 4. The average percentage

improvement of five different sets of 512 tasks and 16

resources based on makespan is 15.25% and based on hit

count is 7.66%.

5. CONCLUSION

5.1. Conclusion and Future Work

 The problem of grid scheduling is addressed in this

study with a solution of providing fault tolerance along

with scheduling. The simulation results shows that the

proposed FTMM scheduling algorithm with fault

tolerance shows high hit rate and minimized makespan.

This approach is successful for static scheduling and it can

be extended for dynamic scheduling. The proposed

technique is a proactive fault tolerance technique and it

can also be merged with passive techniques through which

fault tolerance can be achieved to a greater extent and

other criterias like user deadline can also be included.

6. REFERENCES

Anne, B., C. Murray, G. Stephen and H. Jane, 2005.

Enhancing the effective utilisation of grid clusters

by exploiting on-line performability analysis.

Proceedings of the IEEE International Symposium

on Cluster Computing and the Grid, May 9-12,

ACM Press, USA., pp: 317-324. DOI:

10.1109/CCGRID.2005.1558571

Braun, T.D., H.J. Siegel, N. Beck, L.L. Boloni and M.

Maheswaran et al., 2001. A comparison of eleven

static heuristics for mapping a class of independent

tasks onto heterogeneous distributed computing

systems. J. Parallel Distrib. Comput., 61: 810-837.

DOI: 10.1006/jpdc.2000.1714

Garg, R. and A.K. Singh, 2011. Fault Tolerance in grid

computing: State of the art and open issues. Int. J.

Comput. Sci. Eng. Survey, 2: 88-97. DOI:

10.5121/ijcses.2011.2107

P. Keerthika and N. Kasthuri / American Journal of Applied Sciences, 9 (12) (2012) 2046-2051

2051 AJAS Science Publications

He, X., X. Sun and G.V. Laszewski, 2003. Qos guided

min-min heuristic for grid task scheduling. J.

Comput. Sci. Technol., 18: 442-451. DOI:

10.1007/BF02948918

Lee, H., D. Park, M. Hong, S.S. Yeo, S.K. Kim and S.H.

Kim, 2009. A resource management system for fault

tolerance in grid computing. Proceedings of the

IEEE International Conference on Computational

Science and Engineering, Aug. 29-31, IEEE Xplore

Press, pp: 609-614. DOI: 10.1109/CSE.2009.257

Malarvizhi, N. and V.R. Uthariaraj, 2009. A minimum

time to release job scheduling algorithm in

computational grid environment. Proceedings of the

IEEE 5th International Joint Conference on INC,

IMS, IDC, Aug. 25-27, IEEE Xplore Press, Seoul,

pp: 13-18. DOI: 10.1109/NCM.2009.373

Modiri, V., M. Analoui and S. Jabbehdari, 2011. Fault

tolerance in grid using ant colony optimization and

directed acyclic graph. Int. J. Grid Comput. Appli.,

2: 14-26. DOI: 10.5121/ijgca.2011.2102

Nska, G.W., R.V. Van Nieuwpoort, J. Maassen, T.

Kielmann and H.E. Bal, 2006. Fault-tolerant

scheduling of fine-grained tasks in grid

environments. Int. J. High Perform. Comput. Appli.,

20: 103-114. DOI: 10.1177/1094342006062528

Rodero, I., F. Guim and J. Corbalan, 2009. Evaluation of

coordinated grid scheduling strategies. Proceedings

of the 11th IEEE International Conference on High

Performance Computing and Communications, Jun.

25-27, IEEE Xplore Press, Seoul, pp: 1-10. DOI:

10.1109/HPCC.2009.28

Suresh, P. and P. Balasubramanie, 2012. User demand

aware scheduling algorithm for data intensive tasks

in grid environment. Eur. J. Sci. Res., 74: 609-616.

Zheng, Q., B. Veeravalli and C. Tham, 2007. Fault-

tolerant scheduling for differentiated classes of tasks

with low replication cost in computational grids.

Proceedings of the 16th International Symposium on

High Performance Distributed Computing, Jun. 25-

29, ACM Press, USA., pp: 239-240. DOI:

10.1145/1272366.1272409

