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ABSTRACT 

Modern microeconomics and macroeconomics study dynamic phenomena. Dynamics could predict future 
states of an economy based on its structural characteristics. Dynamic models in discrete time discrete 
state economic systems may take the form of one single linear difference equation or a system of linear 
difference equations. In this study we use Xcas and Mathematica as software tools in order to generate 
results concerning the dynamic properties of the solutions of the difference equation(s) and, determine 
whether an economic equilibrium exists. Our computational approach does not require solving the 
difference equation(s) and makes no assumptions for initial conditions. The results provide quantitative 
information based on the qualitative properties of the mathematical solutions rather than on their 
quantifiable ones. The relevant output of CAS software is created in a way as to be interpreted without 
the knowledge of advanced mathematics. The computer codes are fully presented and can be reproduced 
as they are in computational-based research practice and education.  
 
Keywords: Economic Equilibrium Exists, Computational-Based Research, Mathematical Models, 

Dynamic Economic System, Fundamental Dynamic Equation 
 

1. INTRODUCTION 

 Dynamic economic analysis is to determine whether, 
given sufficient time, economic variables tend to 
converge to certain equilibrium (steady state) values. Time 
is considered as a discrete variable, meaning that any 
variable undergoes a change only once within a period of 
time. Thus, mathematical models used consist of one single 
or a simultaneous set of n-order linear difference equations. 
Linearity is not restrictive in economic applications since it 
may be imposed on a model through means of a first order 
taylor approximation.  
 In discrete time discrete state dynamic economic 
systems, only a subset of elements is given, these are the 
state variables of the economy such as the capital stock 
and asset position. Other variables may be free to take any 
value even in the initial period; these are typically flow 
variables such as consumption and labor.  Classic discrete 
time discrete state economic models are the Cobweb 
model with memory of several periods, Samuelson 

multiplier-acceleration interaction model, inflation-
unemployment model in discrete time, dynamic market 
models, macroeconomic and macroeconometric models.  
 In multi equation models, difference equations are 
often combined into a single fundamental dynamic 
equation. A simple second or third order difference 
equation usually does not suffice to explain cycles and 
other fluctuation phenomena that economic activity 
generates. As models become larger their dynamic 
behavior becomes more difficult and less 
straightforward. Therefore, a proper usage of computer 
software off-loads manual solving procedures that require 
heavy mathematical background. Studies towards this 
direction are made in textbooks as (Amman et al., 1996; 
Huang and Crooke, 1997; Tesfatsion and Judd, 2006; 
Miranda and Fackler, 2004; Varian, 1996) and papers as 
(Kendrick and Amman, 1999; Al-Rawi et al., 2007).   
 The study is organized as follows. Materials and 
Methods section introduces the concepts of stability and 
asymptotic convergence and sets the theoretical 
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framework that ensures stability for a single, linear, constant 
coefficient difference equation. In addition, eigen-
decomposition and asymptotic stability are discussed for 
multivariable economic models expressed in matrix form. 
Results’ section proposes computer codes for stability 
conditions for single difference equations and for systems of 
difference equations in Mathematica and Xcas. Then, 
asymptotic behavior in convergent cases is predicted. Some 
applications are used to perform computations’ potential 
into several selected dynamic economic models. Finally, 
Discussion section concludes the study. 

2. MATERIALS AND METHODS 

 When the solution of a dynamic economic system 
follows a restrictive non-explosive path this is what 
characterizes economic equilibrium. The structure of 
the mathematical model that insures existence of 
equilibrium has been studied among others in (Batra, 
2006; Blanchard and Kahn, 1980; Folsom et al., 1976; 
Gu et al., 2003; Hamza and Khalaf-Allah, 2007; Jury, 
1974). In economic applications stability appears to be 
a property with diachronic interest as shown in studies 
like (Chaumpsaur et al., 1977) up to recent studies of 
(Ratto, 2008; Gomes, 2010).  
 The solution that follows a convergent time path is 
considered stable. Figure 1a-d depict the motion of 

variables during a given period. Specifically, Fig. 1 a, b 
depict unstable solutions that belong to models with 

explosive behaviors. Figure 1c depicts a solution that 
follows a convergent time path with dampened 

oscillations; Fig. 1d depicts solutions with a non-
oscillatory convergent time path.  

2.1. Stability conditions for Linear Constant 

Coefficient Difference Equations 

 Stability Condition I. The general solution of a n-th 
order linear difference equation a0yt+n-1+a2 yt+n-1+a2yt+n-

2+…anyt = g (t) consists of two parts, the complementary 
solution yc and the particular solution yp, so that yt = yc 
+yp. We are interested in the limiting behavior of the 
complementary function yc. We say that the general 

solution is stable if and only if 
c

t

lim y 0
→∞

= . Hence as t→∞, 

the behavior of the general solution of the difference 
equation is essentially that of the particular function. For 
a n-th order linear difference equation with constant 
coefficients, a necessary and sufficient condition for the 
particular solution to be stable is that Eq. 1: 

 

i
r 1,i 1,...,n< =   (1) 

where, ri  are real or complex roots of the characteristic 
polynomial a0r

n+a1r
n-1+a2r

n-2+…+an = 0. 
 Stability Conditions II. Next we present a 
determinental expression of necessary and sufficient 
stability conditions.  
 Schur Theorem. The real polynomial f (x) = a0 x

n 
+a1x

n-1+ a2x
n-2+…+an = 0 is called Schur stable if its 

roots xi are |xi|<1. The condition |xi|<1 holds if and only 

if the n determinants ∆i (i = 1,…,n) are positive. Given: 
 

0 n n 1 1

1 0 n 2

n 1 n 2 0 n

n

n 0 1 n 1

n 1 n 0 n 2

1 2 n 0

a 0 ... 0 a a ... a

a a ... 0 0 a ... a

... ... ... ... ... ... ... ...

a a ... a 0 0 ... a

a 0 ... 0 a a ... a

a a ... 0 0 a ... a

... ... ... ... ... ... ... ...

a a ... a 0 0 ... a

−

− −

−

− −

∆ =

 

 

 The determinants ∆i are Eq. 2: 
 

0 n n 1

0 n 1 0 n

1 2 n

n 0 n 0 1

n 1 n 0

a 0 a a

a a a a 0 a
, ,...,  

a a a 0 a a

a a 0 a

−

−

∆ = ∆ = ∆  (2) 

 
 For a detailed analysis see (Chiang, 2006; Jury, 
1974; Neumann, 1979). 

2.2. Stability Conditions For Systems Of Linear 

Constant Coefficient Difference Equations 

 Stability Conditions III. Consider a system of linear 
constant coefficient first order difference equation in uk 

Eq. 3: 
 

k 1 k
u Au

+
=   (3) 

 
Where: 
uk = A vector of date k economic variables  
A = Some square matrix 

 

 By extending the vector uk and relabeling some lagged 
variables we can transform a higher order difference 
equation system into a first order difference equation 
(Chiang, 2006). It turns out that the eigenvalues of A help 
determining whether an equilibrium exists. After k steps 
there are k multiplications of the transformation A = PDP-1 
and the solution of (3) is the solution of Eq. 4: 

 
k k 1

k 1 1 1
u A u PD P u

−

+
= =   (4) 
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(a) 

 

 
(b) 

 

 
(c) 

 

 
(d) 

 
Fig. 1. About here (a) Unstable oscillatory behavior (b) Unstable non-oscillatory behavior (c) Stable oscillatory behavior (d) Stable 

non-oscillatory behavior 
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Where: 
P = A matrix with columns the eigenvectors and 

characteristic vectors of the matrix A 

D = The Jordan matrix of A verifying D = P−1AP 
(Strang, 1988) 5G p.264) 

 
 The necessary stability conditions for the system (3) 
are Eq. 5: 
 
n trA n

1 D 1

− < <

− < <

  (5) 

 
Where: 
trA = The trace of the coefficient matrix Α 
n = The number of variables (Strang, 1988) 5J) 

3. RESULTS 

3.1. All Electronic Files are Available on Request 

3.1.1. Computations in Xcas 

 Xcas is a Computer Algebra System available free 
in http://www-fourier.ujf-
grenoble.fr/~parisse/giac.htmlIn Xcas programming 
environment we create schurseries function, with 
arguments the characteristic polynomial (poly) of the 
difference equation and its variable (var). schurseries 
function calculates the determinant series (2). The 
computer codes are: 
 
A11(poly,var):=matrix(degree(poly,var),degree(poly,var)
,(j,k)->if(j<k) 0 ; else coeff(poly,var)[[j-k+1]];)  
 
A12(poly,var):=matrix(degree(poly,var),degree(poly,var)
,(j,k)->if(j>k) 0 ; else 
coeff(poly,var)[[degree(poly,var)+j-k+1]];)  
 
A21(poly,var):=matrix(degree(poly,var),degree(poly,var)
,(j,k)->if(j<k) 0 ; else 
coeff(poly,var)[[degree(poly,var)+k-j+1]];)  
 
A22(poly,var):=matrix(degree(poly,var),degree(poly,var)
,(j,k)->if(j>k) 0 ; else coeff(poly,var)[[k-j+1]];) 
 
schurseries(poly,var):=seq(det(blockmatrix(2,2,[subMat(
A11(poly,var),0,0,k,k),subMat(A12(poly,var),0,0,k,k),su
bMat(A21(poly,var),0,0,k,k),subMat(A22(poly,var),0,0,k
,k)])),k=0..degree(poly,var)-1) 
 
 According to stability conditions II, if all 
determinants have positive signs, the corresponding 

difference equation is stable. For a direct answer to this 
stability test, we define stabilitytest1 function in Xcas, 
with arguments the characteristic polynomial (poly) of 
the difference equation and its variable (var). 
stabilitytest1 function returns «stable» for systems with 
equilibrium state(s) in case where all determinants (2) 
have positive signs and «unstable» for systems that have 
explosive behavior otherwise:  
 
stabilitytest1(poly,var):=if([seq(sign(schurseries(poly,var
)[[k]]),k=1..degree(poly,var))]==makelist(1,1,degree(pol
y,var))) stable; else unstable;   
 
 In Xcas environment, stability conditions (5) are 
examined using stabilitytest2 function taking system’s 
coefficient matrix as argument. stabilitytest 2 function 
returns «stable» for systems with equilibrium state(s) in 
case where conditions (5) are satisfied and «unstable» for 
systems that have explosive behavior otherwise:   
 
stabilitytest2(x):=if (abs(trace(x))<length(x) and 
abs(det(jordan(x)[[2]]))<1) "stable"; else "unstable"; 
 
 In case equilibrium exists, we create steadystate 
function with arguments system’s coefficient matrix (a) and 
the system’s initial state in a column matrix form. 
steadystate function calculates the asymptotic state of the 
system in a column matrix form. Steadystate function uses 
Xcas’ built in function matpow which calculates the 
k=100000 power of a matrix by jordanization, as shown in (4): 
 
steadystate(a,initialstate):=approx(matpow(a,100000))*i
nitialstate 

3.2. Computations in Mathematica 

 In Mathematica environment we can easily create 

the list of the absolute values of the characteristic roots. 

charvalues function takes as arguments the characteristic 

polynomial (poly) of the difference equation and its 

variable (var). charvalues function generates the list of 

the absolute values of the real or complex characteristic 

roots of the difference equation: 
 
charvalues[poly_,var_]:=Table[Abs 
[Root[poly,i]],{i,1,Length[Solve[poly==0,var]],1}] 
 
 For a direct answer to the stability test (1), we define 

stabilitytest function in Mathematica, with arguments the 

characteristic polynomial (poly) of the difference 

equation and its variable (var). Stabilitytest function 

returns «stable» for systems with equilibrium state(s) in 

case where the maximum element of the list of the 
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absolute values of the characteristic roots is less than 1 

and «unstable» for systems that have explosive behavior 

otherwise: 
 
stabilitytest[poly_,var_]:=If[Max[Table[Abs 
[Root[poly,i]],{i,1,Length[Solve[poly 
==0,var]],1}]]<1,stable,unstable] 
 
 steadystate function in Xcas calculates the asymptotic 
behavior of the system uk+1 = A

ku1 = PD
k P-1u1 after 

k=100000 steps. Let us define now steadystate function in 
Mathematica. Mathematica’s steadystate function provides 
greater calculative precision, since the asymptotic behavior 
of the system is estimated for power k→∞. 
 The first argument of steadytate function in 
Mathematica contains system’s coefficient matrix (a) and 
the second argument system’s initial state (initial) in a 
column matrix form. steadytate function calculates the 
asymptotic behavior of the system in a column matrix form: 
 
steadystate[a_,initial_]:=Simplify[Jordan 
Decomposition[a][[1]].Limit[MatrixPower 

[JordanDecomposition[a][[2]],k],k→∞]. 
Inverse[JordanDecomposition[a][[1]]]]. 
initial//MatrixForm 
 
 Generalizing previous output, we create 
distributionk function, with arguments system’s 
coefficient matrix (a) and system’s initial state (initial). 
Distributionk function calculates the system state in 
step/time k, in a column matrix form. Steadystate and 
distributionk functions in Mathematica are based on the 

equality Ak = PDkP−1 and use Mathematica’s built in 
function JordanDecomposition which calculates a 
similarity matrix and the Jordan canonical form of a 
square matrix: 

 

distributionk[a_,initial_]:=Simplify[Jordan 
Decomposition[a][[1]].MatrixPower[Jordan 
Decomposition[a][[2]],k].Inverse 
[JordanDecomposition[a][[1]]]].initial//MatrixForm 
 
 Let us examine existence of equilibrium in a number 
of economic models. 

3.3. The Cobweb Model 

 The supply function for period t is 
S

t t 1 t
Q F GE (p )

−

= + where S

t
Q is the quantity supplied and 

Et-1 (Pt) is the price that suppliers in period t-1 expected 

to prevail in period t. Assuming that Et-1 (pt) = Pt-1 -r∆Pt-2 

where ∆Pt-2 = Pt-1-pt-1-Pt-2is the price change from period 

t-2 to period t-1 and r is a parameter. If 0≤r≤1, suppliers 
expect the next price change, Et-1 (pt)-pt-1, to be in the 

opposite direction of the previous price change, ∆Pt-2.  If 
-1≤r≤0, suppliers expect the next price change to be in 
the same direction as the previous price change. The 

demand function is given by D

t t
Q A Bp= + . Equilibrium 

occurs if S D

t t
Q Q= . Substitutions lead to the following 

second-order difference equation: 

 

t 2 t 1 t

g(1 r) gr (f a)
p p p

b b b
+ +

− −

− − =  

 

 We will test the stability for several values of g, b, r, 
a, f. The example is taken from (Hoy et al., 2011) p.826. 
 In Mathematica we get a list of the absolute values 
of the characteristic roots by writing: 

 

G = 13;b = -16;r=-3/13;a = 60;f = 2; 
charvalues[x^2-g/b (1-r) x-g/b r,x]//N 

{1.16144, 0.161438} 

 

 Alternatively we decide stability using: 

 

stabilitytest[x^2-g/b (1-r) x-g/b r,x] unstable 

 

 For different values of g,b,r,a,f,  Mathematica’s 
stability test gives:   
 

G = 13;b = -16;r = 3/13;a = 60;f = 2; 

charvalues[x^2-g/b (1-r) x-g/b r,x]//N 

{0.433013,0.433013} 

stabilitytest[x^2-g/b (1-r) x-g/b r,x]  

stable 

3.4. The Cobweb Model for 3 Periods 

 The Cobweb model could give a higher order 
difference equation, i.e.: 
 

t 3 t 2 t 1 t
18y 9y 5y 2y 0

+ + +
+ − − =  

 
 We apply Xcas’ programmed function schurseries: 
 
schurseries(18*x^3+9*x^2-5*x-2,x) 
320, 97216, 18439680 
 
Xcas’ stability test gives: 
 
stabilitytest1(18*x^3+9*x^2-5*x-2,x)  
stable 
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3.5. A Macroeconometric Model 

 The following macroeconomic model is a quarterly 
model constructed by Kmenta and Smith. The equations 
were estimated with quarterly data over the period 1954-
1963. The example is taken from (Pindyck and 
Rubinfeld, 1998). 
 

t t t

t 1 t 1

d

t t t 1

d

t 2 t 1

r

t t t 1

C 1.7951 0.1731Y 0.421(L

0.7275L ) 0.7275C

I 2.5624 0.4411r 0.1381(S

S ) 0.0237t 0.8917I

I 3.6083 0.5127r 0.1267(S

∧

− −

∧

−

∧

− −

∧

−

= − + +

− +

= − +

− + +

= − +

 

r

t 2 t 1

i

t t t 1

i

t 2 t 1

t t

t t 1

d r i

t t t t t t

i

t t t

t t t

S ) 0.0218t 0.6483I

I 3.0782 0.8934r 0.3713(S

S ) 0.450t 0.3178I

r 13.8928 0.261Y

0.1501M 0.0588M

Y C I I I G

S Y I

L M TD

∧

− −

∧

−

∧

− −

∧

−

− + +

= − +

− + +

= +

− +

= + + + +

= −

= +

 

 
Where: 
Y = Gross national product 
C = Consumption expenditures 
Id = Producer’s outlays on durable plant and 

equipment 
Ir = Residential construction 
Ii = Increase in inventories 
G = Government purchases of goods and services plus 

net foreign investment 
S = Final sales of goods and services 
T = Time in quarters (first quarter of 1954 = 0) 
R = Yield on all corporate bonds, percent per annum 
M = Money supply, i.e., demand deposits plus 

currency outside banks 
TD = Time deposits in commercial banks 
L = Money supply plus time deposits in commercial 

banks (representing liquid wealth) 
 
 All the variables except for t and r are measured in 
billions of 1958 dollars and the variables G, M, TD and t 
are taken to be exogenous.    
 The original model by substituting Ct-1, St-1, St-2, I

d
t-1, 

Ir
t-1, I

i
t-1, results in the fundamental dynamic equation: 

t t 1 t 2

t 3 t 4 t 5

t t 1

t 2 t 3 t 4

t 5 t

t 1 t 2 t 3

Y 3.0716Y 3.6561Y

2.0850Y 0.5585Y 0.0535Y

1.1427G 2.5300G

1.3779G 0.5853G 0.7463G

0.1784G 0.3168M

0.7499M 0.6253M 0.2000M

− −

− − −

−

− − −

−

− − −

= − +

− +

+ − +

+ −

+ + −

+ −

 

t 4 t 5

t t 1 t 2

t 3 t 4

t 5

0.0082M 0.0046M

0.048L 0.1065L 0.0580L

0.0246L 0.0314L

0.075L 0.1034t 0.2050(t 1)

0.1267(t 2) 0.0192

(t 3) 0.0032(t 4) 0.5113

− −

− −

− −

−

+ +

+ − +

+ −

+ + − −

+ − −

− − − −

 

 
 In Mathematica we get a list of the absolute values 
of the characteristic roots by writing: 
 
charvalues[x^5-3.0716*x^4+3.6561*x^3-2. 
085*x^2+0.5585*x-0.0535,x] 
{0.207946, 0.593134, 0.593134,  
0.855162, 0.855162} 
 
 Alternatively we check stability conditions using: 
 
stabilitytest[x^5-3.0716*x^4+3.6561 
*x^3-2.085*x^2+0.5585*x-0.0535,x]stable 
 
 Testing stability in Xcas we get: 
 
schurseries(x^5-3.0716*x^4+3.6561* 
x^3-2.085*x^2+0.5585*x-0.0535,x)  
1, 0.84, 0.24, 0.005, 2e-06  
 
Or: 
 
stabilitytest1(x^5-3.0716*x^4+3.6561*x^ 
3-2.085*x^2+0.5585*x-0.0535,x)  
stable 

3.6. Some Empirical Applications 

Application 1 

 Multinational companies in the U.S., Japan and 
Europe have assets of $4 trillion. At the start, $2 
trillion are in the U.S. and $2 trillion in Europe. Each 
year ½ of the U.S. money stays home, ¼ goes to both 
Japan and Europe. For Japan and Europe ½ stays 
home and ½ is sent to the U.S. Find the limiting 
distribution of the $4 trillion as the world ends. Find 
the distribution at year k. (The application is taken 
from (Strang, 1988) ex. 5.3.11 p. 273). 
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 In Xcas environment we define: 
 

b:=[[1/2,1/2,1/2],[1/4,1/2,0],[1/4,0,1/2]] 
 
stabilitytest2(b)  
“stable” 
 
steadystate(b,[[2],[0],[2]]): 
 

2.0

1.0

1.0

 

 
 In Mathematica environment we define: 
 
b:={{1/2,1/2,1/2},{1/4,1/2,0},{1/4,0,1/2}} 
Steadystate[b,{{2},{0},{2}}]: 

 

2

1

1

 
 
 
 
 

 

 
Distributionk[b,{{2},{0},{2}}]: 
 

1 k 2 k 3 k k 1 k 2 k 3 k

k 1 k 2 k 3 k 4 k

k 1 k 2 k 3 k 4 k 1 k

k k 1 k k 2 k k 3 k 2 k

1 k 2 k k 3 k k 4 k k

k 1 k 2 k 3 k

1
0 0 0 (2 20 40 70 30 )

2

1
(2 20 40 50 50 40 )

2

1
(1 0 0 30 0 40 ) 2

2

( 2 0 2 30 2 0 2 30 ) 2

(0 0 2 0 2 0 2 )

1
(1 0 0 60 40

2

+ + + + + +

+ + + +

+ + + + − −

+ + + −

+ + + +

+ + +

+ + + − − + +

+ + − + + +

− + + + + +

− + + + + + + −

+ + +

− − + +

k 1 k t k 1 k

2 k 1 k 2 k k 3 k 1 k

)

1
(1 0 50 60 2 )

2

2 (0 0 2 0 2 )

+ + −

− − + + + +

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
+ + + + + 

  + + + 

 

 
Application 2: Find the limiting values of yk, zk, K→∞, 
where: 
  

k 1 k k

k 1 k k

y 0.8y 0.3z

z 0.2y 0.7z

+

+

= +

= +

 

 

assuming
0 0

y 0,z 5.= =  

 
 In Xcas environment we define: 
 

a:=[[0.8,0.3],[0.2,0.7]] 

stabilitytest2 (a) 
"stable" 
 
steadystate(a,[[0],[5]]): 
 

3

2.0

 
 
 

 

 
 In Mathematica environment we define: 
 
a:={{0.8,0.3},{0.2,0.7}} 
 
steadystate[a,{{0},{5}}]: 
 

3.

2.

 
 
 

 

 
distributionk[a,{{0},{5}}]: 
 

k k

k k

5( 0.60.5 0.61. )

5(0.60.5 0.41. )

 − +
  + 

 

 
Application 3: Consider two economies: 
 

1t 1,t 1 2t 2,t 1

1t 1,t 1 2t 2,t 1

1t 1,t 1 2t 2,t 1

1t 2t

C 0.6Y                               C 0.8Y        

 I 5 0.2Y                         I 10 0.25Y

M 10 0.1Y                      M 5 0.3Y

X M                      

− −

− −

− −

= =

= + = +

= + = +

=
2t 1t

1t 1t 1t 1t 1t 2t 2t 2t 2t 2t

             X M

Y C I X M          Y C I X M

=

= + + − = + + −

 

 
 In the present model exports of one economy are 
imports of the other. Given that Y10 = Y20 = 100, find the 
asymptotic behavior of Y1,t, Y2,t, which results after 
increasing the autonomous part of investment of the two 

economies by ∆I1=10 and ∆I2=20  respectively. 
 The two macroeconomic models result in the system 
of difference equations: 
 

1,t 1 1t 2t

2,t 1 1t 2t

Y 0.7Y 0.3Y 10

Y 0.1Y 0.75Y 15

+

+

− − =

− − =

 

 
 An initial solution of the system is the solution of 
the homogeneous system: 
 

1,t 1 1t 2t

2,t 1 1t 2t

Y 0.7Y 0.3Y

Y 0.1Y 0.75Y

+

+

= +

= +

 

 
 Which gives the complementary solution yc, part of 
the total solution yt = yc+yp of the nonhomogeneous 
system. 
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 Testing the stability of the complementary solution 
in Xcas: 
 
stabilitytest2([[0.7,0.3],[0.1,0.75]]) 
“stable” 
 
 We conclude that income vector Yt for both 

economies reaches a steady state as t→∞.  

4. DISCUSSION 

 Computer packages provide solutions of the 
characteristic equations, letting the user compute their 
magnitude which yields to stability conclusions for 
difference equations. In our study, computer codes that 
test necessary and sufficient stability conditions in a 
black box function are proposed. We created stabilitytest 
and stabilitytest1, stabilitytest2 functions in Mathematica 
and Xcas correspondingly, to define whether the process 
of economic adjustment leads to equilibrium. When 
equilibrium can be accomplished as time passes, the 
output of our functions is «stable» and otherwise, when 
the model follows a divergent time path, the output of 
our functions is «unstable».  
 By stabilitytest function the stability result comes 
from checking the magnitude of the characteristic roots 
of a difference equation. In stabilitytest1 function, 
stability test is based on Schur’s Theorem and the result 
appears without solving the characteristic equation. 
stabilitytest2 function was programmed using theory of 
n-dimensional linear algebra to generate stability 
conclusions for simultaneous difference equations in 
matrix form. Programmed functions in Mathematica are 
aimed at the wide community of Mathematica users. For 
readers with no access to Mathematica or other 
commercial software of the kind, computer algebra 
system Xcas is free to single users and institutions.  
 The reader can reproduce the results avoiding the 
serious theoretical and computational difficulty 
underlying in stability analysis. In addition, the computer 
codes presented can make an open source material to 
enrich stability analysis with results like the list of the 
real or complex characteristic roots in absolute value 
(charvalues function), the determinants of Schur theorem 
(schurseries function) and future state of economic 
systems (steadystate and distributionk functions in case 
of homogeneous systems).   

5. CONCLUSION 

 This study aims at prediction of dynamic behavior of 
a class of discrete time discrete stage economic systems. 

Specifically, it examines whether they follow a convergent 
time path or not. In case convergence is assured, the 
asymptotic state of the system is given, taking into 
account its initial value. Stability results come from 
conditions depending on characteristic roots and/or 
determinental expressions of coefficient matrices of 
difference equations and not by the initial values of some 
elements. Steady state predictions apply Jordan 
Decomposition method. All results are generated by 
computer codes in both free computer algebra system Xcas 
and commercial mathematical package Mathematica.  
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