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Abstract: Problem statement: Now a day’s many researchers try Genetic algorithm based 
optimization to find near optimal solution for flexible job shop. It is a global search. In Our study in 
the GA, some changes are made to search locally and globally by adding jumping genes operation. A 
typical flexible job shop model is considered for this research study. For that layout, five different 
example problems are formulated for purpose of evaluation. The material flow time for different shop 
types, processing times of products, waiting times of products, sequences of products are created and 
given in tabular form. Approach: The one of best evolutionary approach i.e., genetic algorithm with 
jumping genes operation is applied in this study, to optimize AGV flow time and the performance 
measures of Flexible Job shop manufacturing system. The non dominated sorting approach is used. 
Genetic algorithm with jumping genes operator is used to evaluate the method. Results: The AGV 
flow sequence is found out. Using this flow sequence make span, flow time of products with AGV, 
completion of the products is minimized. The position of the shop types are calculated for all products. 
The effectiveness of the proposed method is proved by comparing with Hamed Fazlollahtabar method. 
Conclusion: It is found that jumping genes genetic algorithm delivered good solutions as like as other 
evolutionary algorithms. Jumping genes genetic algorithm may applied to Multi objective optimization 
techniques in future. 
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INTRODUCTION 

 
 In the classical Job-Shop Scheduling Problem 
(JSP), n jobs are processed to completion on m 
unrelated machines. In order to match today’s market 
requirements, manufacturing systems have to become 
more flexible (Saidi-Mehrabad and Fattahi, 2007). In 
the modern manufacturing plant, a machine has the 
capability of processing more than one type of 
operation. This leads to a modified version of JSP 
called the flexible JSP (Chen et al., 2008). 
 Flexible Job-Shop Scheduling Problem (FJSP) is 
an extended traditional job-shop scheduling problem. It 
breaks the restriction of unique resources and allows 
each operation to be processed by several different 

machines, thus making the job-shop scheduling 
problem accord with actual production situation more 
closely. FJSP is more complicated than the Job-Shop 
Scheduling Problem (JSP), since it needs to assign each 
operation to a machine from a set of capable machines 
and then sequence the assigned operations on each 
machine, referring to the study by (Xia and Wu, 2005). 
 Brucker and Schlie (1990) initially proposed the 
problem that one operation could be processed on 
several machines and have studied this problem deeply 
as pioneer. This marks the beginning of the study on 
FJSP. The methods for solving this kind of problem can 
be concluded into hierarchical approaches and 
integrated approaches. Hierarchical approach, which 
was firstly proposed by Brandimarte (1993), considered 
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the assigning sub-problem and the sequencing sub-
problem separately. Its basic idea is decomposing the 
complex problem into some sub-problems in order to 
decrease the complexity.  
 However, the integrated approaches solve the 
assigning sub-problem and the sequencing sub-problem 
simultaneously, such as greedy heuristics (Kannaiah et 
al., 2011), Simulated Annealing (SA) algorithm (Yussof 
et al., 2011) and Tabu Search (TS). 
 Most of the research on FJSP has been 
concentrated on single objective. However, several 
objectives must be considered simultaneously in the 
real-world production situation. 
 Recently, multi-objective FJSP has gained 
attention of some researchers. Kacem et al. (2002a; 
2002b) used an approach by localization and multi-
objective evolutionary optimization and proposed a 
Pareto approach based on the hybridization of Fuzzy 
Logic (FL) and Evolutionary Algorithms (EAs) to solve 
the FJSP. Xia and Wu (2005) proposed a practical 
hierarchical solution approach for solving MOFJSP. 
The proposed approach utilizes Particle Swarm 
Optimization (PSO) to assign operations on machines 
and Simulated Annealing (SA) algorithm to schedule 
operations on each machine. Liu et al. (2006) proposed 
the Variable Neighborhood Particle Swarm 
Optimization (VNPSO) consisting of a combination of 
the Variable Neighborhood Search (VNS) and Particle 
Swarm Optimization (PSO) for solving the multi-
objective flexible job-shop scheduling problems. Ho 
and Tay (2007) presented an efficient approach for 
solving the multi-objective flexible job-shop by 
combining evolutionary algorithm and guided local 
search. They also solved the multi-objective flexible 
job-shop problems by using dispatching rules 
discovered through genetic programming (Tay and Ho, 
2008). Gao et al. (2007) developed a hybrid Genetic 
Algorithm (GA) for the FJSP with three objectives: min 
makespan, min maximal machine workload and min 
total workload. Zhang et al. (2009) combined the PSO 
algorithm and Tabu Search (TS) algorithm for the 
multi-objective flexible job-shop problem. Xing et al. 
(2009) proposed an efficient search method for the 
multi-objective flexible job-shop scheduling problems. 
 Unordered subsequence Exchange crossover is 
tried by Thmilselvan and Balasubramanie (2012) in 
their work. Ripon et al. (2006) describes the jumping 
gene GA evolutionary algorithm that it imitates the 
jumping genes phenomenon discovered by Barbara 
McMlintock in which the induction of transposition of 
genes, within the chromosome itself that it consists or 
others. The concept of jumping genes is to provide local 
search capability to fine tune the scheduling solutions 
during evolution and produce a set of well converged and 
diverged solutions for job shop problem. Mansour (2011) 

developed a mathematical nonlinear integer programming 
model with stochastic controllable processing. 
 Although some improvements regarding optimization 
in FJMS have been achieved, heuristic algorithms to solve 
multi-objective AGV based FJMS. Fazlollahtabar et al. 
(2010) developed a mathematic programming approach to 
optimize material flow in an AGV-based FJMS. In this 
study, jumping genes GA is proposed to optimize material 
flow and makespan in an AGV-based jobshop 
manufacturing system Ripon et al. (2006) solve using 
jumping genes GA for jobshop problem. 
 
Problem descriptions and assumptions: Here, we 
consider a jobshop layout which employs an AGV for 
material handling. The AGV carries raw material, semi 
produced and final products in batch sizes. Because of 
the increase in demands, advance in technology and rise 
in the production capacity, more shops than the existing 
shops are required. The new shops are associated with 
higher-technology machines. Therefore, more than one 
shop with the same performance is evolved. The 
difference among shops with the same performance is 
machines with various specifications that effect the 
production time/cost and productivity. As a result, the 
system could be a flexible jobshop model where 
multishops of the same performance exist and each 
operation is possible to be processed on any type of 
machine. The sequences of jobs are specified and the 
jobs are independent. To evaluate the performance of 
the proposed manufacturing system, we assess the 
material flow between any two shops of different types. 
In the proposed model, the aim is to optimize the 
material flow, i.e., finding a set of shops which 
minimize the material flow throughout the system and 
makespan. Here, flow is considered as the distance 
which the AGV moves to satisfy the production plan 
and demand. The proposed model is presented 
schematically in Fig. 1. 
 

 
 
Fig. 1: Layout of flexible Jopshop 
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 The sequence of the jobs is {1, 3, 2, 4}. After 
processing jobs 1 and 3, the accumulated total 
processing time is 10+15 = 25. Now, it is impossible to 
process the third job (job 2) because it has the 
processing time of 20 min, which would result in an 
accumulated total processing time of 45 min. 
 

MATERIALS AND METHODS 
 
  The proposed mathematical model of the flexible 
jobshop problem is represented below. The indices, 
parameters and decision variables are as follows: 
Indices: 
 
M = Index for shops, m=1, 2,…, M 
K = Index for shops, k=1, 2,…, K 
N = Index for shop type mth, n=1, 2,…, N 
H = Index for shop type kth, h=1, 2,…, H 
I = Index for products, i=1, 2,…, I 
P = Index for job position, p=1, 2,…, P 
 
Parameters: 
Cipmn = Completion time of product ith in position 

pth in shop mth of type nth 
P.Timn = Processing time of shop mth of type nth for 

product ith 
T.Timnkk = Transferring time from shop mth of type nth 

toshop kth of type hth for product ith 
   VAGV Velocity of AGV 
fimnkk = Flow (distance) for product ith between 

shop mth of type nth and shop kth of type hth 
Wimn = Waiting time for product ith in shop mth of 

type nth 
C.Ti = Cycle time for product ith 
T = Total working time in each day: 
 

0, otherwise
Zipm

1, if shop n th of type m th is chosen i th in position p th


= 


 

 
Decision variable: 
 

0, otherwise
Zipm

1, if shop n th of type m th is chosen i th in position p th


= 


 

 
Objective function: 
 

1

H K N M P I
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n
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 Equation 1 is the objective function of the 
proposed problem which minimizes the material flow. 
The output of the objective function is the types of the 
shops which minimize the total material flow. Equation 
2 indicates the computation of completion time for each 
product. Equation 3 certifies that the differences 
between completion time of product ith in position pth in 
shop mth of type nth is larger than or equal to the 
addition of the processing time and waiting time of 
shop mth of type nth and the transferring time between 
shop mth of type nth and shop kth of type hth. Equation 4 
warranties that if any shop in any position for any 
product is allocated, then the corresponding shop type 
is also chosen.  
 Equation 5 guarantees that if a shop is chosen then 
the corresponding completion time for each product is 
lower than or equal to the cycle time. Equation 6 certifies 
that the completion time for any product in any position 
in any shop is lower than or equal to the total working 
time in each day. Equation 7 indicates the transferring 
time between two shops is related directly to the flow of 
each product. Equation 8 presents the values of the 
decision variables.  
 In order to illustrate the proposed mathematical 
model, we propose a numerical example. In this 
example, we consider three products that should be 
processed in four types of shops each of which is in 
three shops. Five jobs are existing with respect to their 
position in the sequence. The material flows between 
the shops are given in Table 1-5. A large number is 
assigned to impossible flows. The processing times of 
each product in the shops are presented in Table 6. The 
waiting times of each product in the shops are given in 
Table 7. The shop selection considering the sequence 
for each product is shown in Table 8. 
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Table 1: Flows between shops-problem no-1 
f m n k h f m n k h F m n k h 
100,000 1 1 1 1 19 2 2 1 1 13 3 3 1 1 
100,000 1 1 1 2 23 2 2 1 2 17 3 3 1 2 
100,000 1 1 1 3 11 2 2 1 3 5 3 3 1 3 
5 1 1 2 1 100,000 2 2 2 1 13 3 3 2 1 
19 1 1 2 2 100,000 2 2 2 2 5 3 3 2 2 
100,000 1 1 2 3 100,000 2 2 2 3 100,000 3 3 2 3 
10 1 1 3 1 25 2 2 3 1 100,000 3 3 3 1 
29 1 1 3 2 17 2 2 3 2 100,000 3 3 3 2 
19 1 1 3 3 5 2 2 3 3 100,000 3 3 3 3 
17 1 1 4 1 29 2 2 4 1 23 3 3 4 1 
25 1 1 4 2 5 2 2 4 2 11 3 3 4 2 
100,000 1 1 4 3 100,000 2 2 4 3 100,000 3 3 4 3 
100,000 1 2 1 1 100,000 2 3 1 1 17 4 1 1 1 
100,000 1 2 1 2 100,000 2 3 1 2 5 4 1 1 2 
100,000 1 2 1 3 100,000 2 3 1 3 17 4 1 1 3 
17 1 2 2 1 100,000 2 3 2 1 11 4 1 2 1 
23 1 2 2 2 100,000 2 3 2 2 29 4 1 2 2 
100,000 1 2 2 3 100,000 2 3 2 3 100,000 4 1 2 3 
11 1 2 3 1 100,000 2 3 3 1 5 4 1 3 1 
5 1 2 3 2 100,000 2 3 3 2 11 4 1 3 2 
17 1 2 3 3 100,000 2 3 3 3 23 4 1 3 3 
5 1 2 4 1 100,000 2 3 4 1 100,000 4 1 4 1 
32 1 2 4 2 100,000 2 3 4 2 100,000 4 1 4 2 
100,000 1 2 4 3 100,000 2 3 4 3 100,000 4 1 4 3 
100,000 1 3 1 1 11 3 1 1 1 25 4 2 1 1 
100,000 1 3 1 2 11 3 1 1 2 29 4 2 1 2 
100,000 1 3 1 3 11 3 1 1 3 17 4 2 1 3 
22 1 3 2 1 5 3 1 2 1 22 4 2 2 1 
11 1 3 2 2 25 3 1 2 2 5 4 2 2 2 
100,000 1 3 2 3 100,000 3 1 2 3 100,000 4 2 2 3 
13 1 3 3 1 100,000 3 1 3 1 17 4 2 3 1 
5 1 3 3 2 100,000 3 1 3 2 23 4 2 3 2 
5 1 3 3 3 100,000 3 1 3 3 11 4 2 3 3 
17 1 3 4 1 5 3 1 4 1 100,000 4 2 4 1 
17 1 3 4 2 31 3 1 4 2 100,000 4 2 4 2 
100,000 1 3 4 3 100,000 3 1 4 3 100,000 4 2 4 3 
5 2 1 1 1 29 3 2 1 1 100,000 4 3 1 1 
17 2 1 1 2 5 3 2 1 2 100,000 4 3 1 2 
5 2 1 1 3 5 3 2 1 3 100,000 4 3 1 3 
100,000 2 1 2 1 23 3 2 2 1 100,000 4 3 2 1 
100,000 2 1 2 2 17 3 2 2 2 100,000 4 3 2 2 
100,000 2 1 2 3 100,000 3 2 2 3 100,000 4 3 2 3 
5 2 1 3 1 17 3 2 3 1 100,000 4 3 3 1 
23 2 1 3 2 100,000 3 2 3 2 100,000 4 3 3 2 
19 2 1 3 3 100,000 3 2 3 3 100,000 4 3 3 3 
11 2 1 4 1 11 3 2 4 1 100,000 4 3 4 1 
25 2 1 4 2 23 3 2 4 2 100,000 4 3 4 2 
100,000 2 1 4 3 100,000 3 2 4 3 100,000 4 3 4 3 
 
NSGA II algorithm: The notion of NSGA was first 
suggested by (Goldberg, 1989) and then implemented 
by Srinivas and Deb (1994). The main idea behind the 
non-dominated sorting procedure is that a ranking 
selection method is used to emphasize good points and 
a niching method is used to maintain a stable 
subpopulation of good points. NSGA differs from a 
simple genetic algorithm only in the way to select 
operator works. The crossover and mutation operators 
remain as usual. The efficiency of NSGA lies in the 
way of multiple objectives is reduced to a single fitness 
measure by the creation of number of fronts, sorted 
according to nondomination. Although the NSGA 
approach has been successfully applied on a number of 

multi-objective optimization problems, the main 
criticism of the NSGA approach has been (i) its high 
computational complexity of non-dominated sorting, O 
(MN3) where M is the number of objectives and N is 
the population size, (ii) the lack of elitism and (iii) the 
need for specifying the tunable sharing parameter. 
Recently, Deb et al. (2002) reported an improved 
version of NSGA called NSGA-II to address all of 
these issues. Specifically, NSGA-II alleviates all the 
above difficulties by introducing a fast non-dominated 
sorting procedure with O (MN2) computational 
complexity, an elitist-preserving approach and a 
parameterless niching operator for diversity 
preservation. 
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Table 2: Flows between shops problem no 2 
f m n k h f m n k h f m n k H 
100,000 1 1 1 1 18 2 2 1 1 12 3 3 1 1 
100,000 1 1 1 2 24 2 2 1 2 16 3 3 1 2 
100,000 1 1 1 3 10 2 2 1 3 4 3 3 1 3 
4 1 1 2 1 100,000 2 2 2 1 12 3 3 2 1 
18 1 1 2 2 100,000 2 2 2 2 4 3 3 2 2 
100,000 1 1 2 3 100,000 2 2 2 3 100,000 3 3 2 3 
9 1 1 3 1 24 2 2 3 1 100,000 3 3 3 1 
28 1 1 3 2 16 2 2 3 2 100,000 3 3 3 2 
18 1 1 3 3 54 2 2 3 3 100,000 3 3 3 3 
16 1 1 4 1 28 2 2 4 1 22 3 3 4 1 
24 1 1 4 2 4 2 2 4 2 10 3 3 4 2 
100,000 1 1 4 3 100,000 2 2 4 3 100,000 3 3 4 3 
100,000 1 2 1 1 100,000 2 3 1 1 16 4 1 1 1 
100,000 1 2 1 2 100,000 2 3 1 2 4 4 1 1 2 
100,000 1 2 1 3 100,000 2 3 1 3 16 4 1 1 3 
16 1 2 2 1 100,000 2 3 2 1 10 4 1 2 1 
22 1 2 2 2 100,000 2 3 2 2 28 4 1 2 2 
100,000 1 2 2 3 100,000 2 3 2 3 100,000 4 1 2 3 
10 1 2 3 1 100,000 2 3 3 1 4 4 1 3 1 
4 1 2 3 2 100,000 2 3 3 2 10 4 1 3 2 
16 1 2 3 3 100,000 2 3 3 3 22 4 1 3 3 
4 1 2 4 1 100,000 2 3 4 1 100,000 4 1 4 1 
32 1 2 4 2 100,000 2 3 4 2 100,000 4 1 4 2 
100,000 1 2 4 3 100,000 2 3 4 3 100,000 4 1 4 3 
100,000 1 3 1 1 10 3 1 1 1 24 4 2 1 1 
100,000 1 3 1 2 10 3 1 1 2 28 4 2 1 2 
100,000 1 3 1 3 10 3 1 1 3 16 4 2 1 3 
21 1 3 2 1 4 3 1 2 1 21 4 2 2 1 
10 1 3 2 2 24 3 1 2 2 4 4 2 2 2 
100,000 1 3 2 3 100,000 3 1 2 3 100,000 4 2 2 3 
12 1 3 3 1 100,000 3 1 3 1 16 4 2 3 1 
4 1 3 3 2 100,000 3 1 3 2 22 4 2 3 2 
4 1 3 3 3 100,000 3 1 3 3 10 4 2 3 3 
16 1 3 4 1 4 3 1 4 1 100,000 4 2 4 1 
16 1 3 4 2 30 3 1 4 2 100,000 4 2 4 2 
100,000 1 3 4 3 100,000 3 1 4 3 100,000 4 2 4 3 
4 2 1 1 1 28 3 2 1 1 100,000 4 3 1 1 
16 2 1 1 2 4 3 2 1 2 100,000 4 3 1 2 
4 2 1 1 3 4 3 2 1 3 100,000 4 3 1 3 
100,000 2 1 2 1 22 3 2 2 1 100,000 4 3 2 1 
100,000 2 1 2 2 16 3 2 2 2 100,000 4 3 2 2 
100,000 2 1 2 3 100,000 3 2 2 3 100,000 4 3 2 3 
4 2 1 3 1 16 3 2 3 1 100,000 4 3 3 1 
22 2 1 3 2 100,000 3 2 3 2 100,000 4 3 3 2 
18 2 1 3 3 100,000 3 2 3 3 100,000 4 3 3 3 
10 2 1 4 1 10 3 2 4 1 100,000 4 3 4 1 
24 2 1 4 2 22 3 2 4 2 100,000 4 3 4 2 
100,000 2 1 4 3 100,000 3 2 4 3 100,000 4 3 4 3 
 
Yang and Natarajan (2010) made an attempt to solve 
multi-objective optimization problem in turning by using 
NSGA-II. Cheng et al. (2009) applied NSGA-II to 
minimize the comprehensive cost and the whole 
production load with time-sequence constraints to acquire 
optimal Collaborative Manufacturing Chain (CMC). 
 
Proposed GA using jumping genes for AGV based 
FJMS: In this study, NSGA II has been designed to 
optimize the material flow and makespan in an AGV 
based jobshop manufacturing system. NSGA II is 
illustrated in Fig. 2. Initially, a random parent population 
Pi is created. The population is sorted based on the non-
domination. Each solution is assigned a fitness equal to 
its non-domination level (1 is the best level, 2 is the next-
best level and so on). Thus, minimization of fitness is 
assumed.  

 At first, the usual selection, crossover and mutation 
operators are used to create a child population Qi of size 
N. Since elitism is introduced by comparing current 
population with previously-found best non-dominated 
solutions, a combined population Ri = PiUQi is formed. 
The population Ri will be of size 2N. Then, the 
population Ri is sorted according to non-domination. 
Since all the previous and current population members 
are included in Ri, the elitism is ensured. Now, 
solutions belonging to the best non-dominated set F1 are 
of best solutions in the combined population and must 
be emphasized more than any other solution in the 
combined population. Chromosomes of the front F1 are 
included in the new population Pi+1. The remaining 
chromosomes of the population Pi+1 is chosen from 
subsequent non-dominated fronts in the order of their 
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ranking. Thus, solutions from the front F2 are chosen 
next, followed by solutions from the front F3 and so 
on. This procedure is continued till no more 
chromosomes can be accommodated. To choose 
exactly N population chromosomes, the solutions of 
the last front using the crowded comparison operator 
αn, in the descending order and the best solutions 
needed to fill the population are chosen. The new 
population Pi+1is now used for selection, crossover 
and mutation to create a new population Qi+1 of size 
N. 
 
Input module: The input data required are: 
 
• Number of products 

• Number of shop types 
• Number of shops 
• The material floes between shops 
 
 For the experimental problem considered in this 
study: 
 
• Number of products = 3 
• Number of shop types = 3 
• Number of shops = 4 
• The material flows between shops as given in 

Table 1-5 
• velocity of AGV 4,5,6,7,8,9m/sfor the respective 

problems 
 
Table 3: Flows between shops problem no 3 
f m n k h f m n k h F m n k h 
100,000 1 1 1 1 25 2 2 1 1 14 3 3 1 1 
100,000 1 1 1 2 30 2 2 1 2 20 3 3 1 2 
100,000 1 1 1 3 15 2 2 1 3 8 3 3 1 3 
8 1 1 2 1 100,000 2 2 2 1 18 3 3 2 1 
25 1 1 2 2 100,000 2 2 2 2 8 3 3 2 2 
100,000 1 1 2 3 100,000 2 2 2 3 100,000 3 3 2 3 
11 1 1 3 1 30 2 2 3 1 100,000 3 3 3 1 
31 1 1 3 2 20 2 2 3 2 100,000 3 3 3 2 
25 1 1 3 3 56 2 2 3 3 100,000 3 3 3 3 
20 1 1 4 1 35 2 2 4 1 24 3 3 4 1 
30 1 1 4 2 8 2 2 4 2 15 3 3 4 2 
100,000 1 1 4 3 100,000 2 2 4 3 100,000 3 3 4 3 
100,000 1 2 1 1 100,000 2 3 1 1 20 4 1 1 1 
100,000 1 2 1 2 100,000 2 3 1 2 8 4 1 1 2 
100,000 1 2 1 3 100,000 2 3 1 3 20 4 1 1 3 
20 1 2 2 1 100,000 2 3 2 1 15 4 1 2 1 
24 1 2 2 2 100,000 2 3 2 2 35 4 1 2 2 
100,000 1 2 2 3 100,000 2 3 2 3 100,000 4 1 2 3 
15 1 2 3 1 100,000 2 3 3 1 8 4 1 3 1 
8 1 2 3 2 100,000 2 3 3 2 15 4 1 3 2 
20 1 2 3 3 100,000 2 3 3 3 26 4 1 3 3 
8 1 2 4 1 100,000 2 3 4 1 100,000 4 1 4 1 
34 1 2 4 2 100,000 2 3 4 2 100,000 4 1 4 2 
100,000 1 2 4 3 100,000 2 3 4 3 100,000 4 1 4 3 
100,000 1 3 1 1 15 3 1 1 1 30 4 2 1 1 
100,000 1 3 1 2 15 3 1 1 2 35 4 2 1 2 
100,000 1 3 1 3 15 3 1 1 3 20 4 2 1 3 
27 1 3 2 1 8 3 1 2 1 27 4 2 2 1 
15 1 3 2 2 30 3 1 2 2 8 4 2 2 2 
100,000 1 3 2 3 100,000 3 1 2 3 100,000 4 2 2 3 
18 1 3 3 1 100,000 3 1 3 1 20 4 2 3 1 
8 1 3 3 2 100,000 3 1 3 2 26 4 2 3 2 
8 1 3 3 3 100,000 3 1 3 3 15 4 2 3 3 
20 1 3 4 1 8 3 1 4 1 100,000 4 2 4 1 
20 1 3 4 2 37 3 1 4 2 100,000 4 2 4 2 
100,000 1 3 4 3 100,000 3 1 4 3 100,000 4 2 4 3 
8 2 1 1 1 35 3 2 1 1 100,000 4 3 1 1 
20 2 1 1 2 8 3 2 1 2 100,000 4 3 1 2 
8 2 1 1 3 8 3 2 1 3 100,000 4 3 1 3 
100,000 2 1 2 1 26 3 2 2 1 100,000 4 3 2 1 
100,000 2 1 2 2 20 3 2 2 2 100,000 4 3 2 2 
100,000 2 1 2 3 100,000 3 2 2 3 100,000 4 3 2 3 
8 2 1 3 1 20 3 2 3 1 100,000 4 3 3 1 
26 2 1 3 2 100,000 3 2 3 2 100,000 4 3 3 2 
25 2 1 3 3 100,000 3 2 3 3 100,000 4 3 3 3 
15 2 1 4 1 15 3 2 4 1 100,000 4 3 4 1 
30 2 1 4 2 26 3 2 4 2 100,000 4 3 4 2 
100,000 2 1 4 3 100,000 3 2 4 3 100,000 4 3 4 3
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Table 4: Flows between shops-problem4 
f m n k h f m n k h f m n k h 
100,000 1 1 1 1 20 2 2 1 1 14 3 3 1 1 
100,000 1 1 1 2 24 2 2 1 2 18 3 3 1 2 
100,000 1 1 1 3 12 2 2 1 3 6 3 3 1 3 
6 1 1 2 1 100,000 2 2 2 1 14 3 3 2 1 
20 1 1 2 2 100,000 2 2 2 2 6 3 3 2 2 
100,000 1 1 2 3 100,000 2 2 2 3 100,000 3 3 2 3 
12 1 1 3 1 26 2 2 3 1 100,000 3 3 3 1 
30 1 1 3 2 18 2 2 3 2 100,000 3 3 3 2 
20 1 1 3 3 6 2 2 3 3 100,000 3 3 3 3 
18 1 1 4 1 30 2 2 4 1 24 3 3 4 1 
26 1 1 4 2 6 2 2 4 2 12 3 3 4 2 
100,000 1 1 4 3 100,000 2 2 4 3 100,000 3 3 4 3 
100,000 1 2 1 1 100,000 2 3 1 1 18 4 1 1 1 
100,000 1 2 1 2 100,000 2 3 1 2 6 4 1 1 2 
100,000 1 2 1 3 100,000 2 3 1 3 18 4 1 1 3 
18 1 2 2 1 100,000 2 3 2 1 12 4 1 2 1 
24 1 2 2 2 100,000 2 3 2 2 30 4 1 2 2 
100,000 1 2 2 3 100,000 2 3 2 3 100,000 4 1 2 3 
12 1 2 3 1 100,000 2 3 3 1 6 4 1 3 1 
6 1 2 3 2 100,000 2 3 3 2 12 4 1 3 2 
18 1 2 3 3 100,000 2 3 3 3 24 4 1 3 3 
6 1 2 4 1 100,000 2 3 4 1 100,000 4 1 4 1 
33 1 2 4 2 100,000 2 3 4 2 100,000 4 1 4 2 
100,000 1 2 4 3 100,000 2 3 4 3 100,000 4 1 4 3 
100,000 1 3 1 1 12 3 1 1 1 26 4 2 1 1 
100,000 1 3 1 2 12 3 1 1 2 30 4 2 1 2 
100,000 1 3 1 3 12 3 1 1 3 18 4 2 1 3 
23 1 3 2 1 6 3 1 2 1 23 4 2 2 1 
12 1 3 2 2 26 3 1 2 2 6 4 2 2 2 
100,000 1 3 2 3 100,000 3 1 2 3 100,000 4 2 2 3 
14 1 3 3 1 100,000 3 1 3 1 18 4 2 3 1 
6 1 3 3 2 100,000 3 1 3 2 24 4 2 3 2 
6 1 3 3 3 100,000 3 1 3 3 12 4 2 3 3 
18 1 3 4 1 6 3 1 4 1 100,000 4 2 4 1 
18 1 3 4 2 32 3 1 4 2 100,000 4 2 4 2 
100,000 1 3 4 3 100,000 3 1 4 3 100,000 4 2 4 3 
6 2 1 1 1 30 3 2 1 1 100,000 4 3 1 1 
18 2 1 1 2 6 3 2 1 2 100,000 4 3 1 2 
6 2 1 1 3 6 3 2 1 3 100,000 4 3 1 3 
100,000 2 1 2 1 24 3 2 2 1 100,000 4 3 2 1 
100,000 2 1 2 2 18 3 2 2 2 100,000 4 3 2 2 
100,000 2 1 2 3 100,000 3 2 2 3 100,000 4 3 2 3 
6 2 1 3 1 18 3 2 3 1 100,000 4 3 3 1 
24 2 1 3 2 100,000 3 2 3 2 100,000 4 3 3 2 
20 2 1 3 3 100,000 3 2 3 3 100,000 4 3 3 3 
12 2 1 4 1 12 3 2 4 1 100,000 4 3 4 1 
26 2 1 4 2 24 3 2 4 2 100,000 4 3 4 2 
100,000 2 1 4 3 100,000 3 2 4 3 100,000 4 3 4 3 

 

Initialization module: The geno style coding is used to 
represent the solutions of the problem as chromosomes. 
Every chromosome consists of three substrings. Each 
substring consists of 8 bits, the genes of the 
chromosomes. Every two bits in a substring represents 
a number between 1-3 (i.e., example 1 is represented as 
01, two is represented as 10 and three is represented as 
11). First substring represents the shop types for the 
given positions for product one. Similarly, second and 
third substring represents the shop types for the given 
positions for product two and three respectively. 
 
Evaluation module: The objective function is to 
minimize the material flow and makespan in the AGV 
based flexible jobshop manufacturing system. The 
material flow is calculated by using Eq. 1 and 
makespan is calculated by using Eq. 2. 

Non-dominated sorting: This module sorts the 
population based on non-domination. To start with, the 
first solution from the population is kept in an empty set 
P’. Thereafter, each solution p (the second solution 
onwards) is compared with all members of the set P’ 
one by one. If solution p is dominated by any member 
of P’, the solution p is ignored. If solution p is not 
dominated by any member of P’, it is entered in P’. This 
is how the set P’ grows with non-dominated solutions. 
When all solutions of the population is checked, the 
remaining members of P’ constitute the non-dominated 
front. This is illustrated in the Fig. 3. 
 
Measurement of crowding distance: To get an 
estimate of the density of solutions surrounding a 
particular solution in the population, the average 
distance of two points on either side of this point along 
each of the objectives is calculated. The crowding point 
computation requires sorting of the population 
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according to each objective function value in its 
ascending order of magnitude. Infinite distance is 
assigned to boundary values for each individual in a 
particular front. All the remaining solutions are 
assigned a distance value equal to the absolute 
difference in the function value of two adjacent 
solutions. This calculation is continued with other 
objective functions. The overall crowding distance 
value is calculated as the sum of individual distance 
values corresponding to each objective. Crowding 
distance is calculated by the following formula: 
 
Here: 
m(j+1) = Objective function value of (j+1)th individual 
m(j-1 = Objective function value of (j−1)th individual 

mmax = Maximum value of objective function in the 
front 

mmin = Minimum value of objective function in the 
front 

 
 The basic idea behind the crowding distance is 
finding the Euclidian distance between each 
individual in a front based on their objectives. The 
individual in the boundary are always selected since 
they have infinite distance assignment. The crowding 
distance of the chromosomes in initial population is 
found. The Fig. 4 shows the sorting process of 
crowding distance. 

 
Table 5: Flows between shops problem 5 
f m n k h f m n k h f M n k h 
100,000 1 1 1 1 20 2 2 1 1 14 3 3 1 1 
100,000 1 1 1 2 24 2 2 1 2 18 3 3 1 2 
100,000 1 1 1 3 12 2 2 1 3 6 3 3 1 3 
6 1 1 2 1 100,000 2 2 2 1 14 3 3 2 1 
20 1 1 2 2 100,000 2 2 2 2 6 3 3 2 2 
100,000 1 1 2 3 100,000 2 2 2 3 100,000 3 3 2 3 
12 1 1 3 1 26 2 2 3 1 100,000 3 3 3 1 
30 1 1 3 2 18 2 2 3 2 100,000 3 3 3 2 
20 1 1 3 3 6 2 2 3 3 100,000 3 3 3 3 
18 1 1 4 1 30 2 2 4 1 24 3 3 4 1 
26 1 1 4 2 6 2 2 4 2 12 3 3 4 2 
100,000 1 1 4 3 100,000 2 2 4 3 100,000 3 3 4 3 
100,000 1 2 1 1 100,000 2 3 1 1 18 4 1 1 1 
100,000 1 2 1 2 100,000 2 3 1 2 6 4 1 1 2 
100,000 1 2 1 3 100,000 2 3 1 3 18 4 1 1 3 
18 1 2 2 1 100,000 2 3 2 1 12 4 1 2 1 
24 1 2 2 2 100,000 2 3 2 2 30 4 1 2 2 
100,000 1 2 2 3 100,000 2 3 2 3 100,000 4 1 2 3 
12 1 2 3 1 100,000 2 3 3 1 6 4 1 3 1 
6 1 2 3 2 100,000 2 3 3 2 12 4 1 3 2 
18 1 2 3 3 100,000 2 3 3 3 24 4 1 3 3 
6 1 2 4 1 100,000 2 3 4 1 100,000 4 1 4 1 
33 1 2 4 2 100,000 2 3 4 2 100,000 4 1 4 2 
100,000 1 2 4 3 100,000 2 3 4 3 100,000 4 1 4 3 
100,000 1 3 1 1 12 3 1 1 1 26 4 2 1 1 
100,000 1 3 1 2 12 3 1 1 2 30 4 2 1 2 
100,000 1 3 1 3 12 3 1 1 3 18 4 2 1 3 
23 1 3 2 1 6 3 1 2 1 23 4 2 2 1 
12 1 3 2 2 26 3 1 2 2 6 4 2 2 2 
100,000 1 3 2 3 100,000 3 1 2 3 100,000 4 2 2 3 
14 1 3 3 1 100,000 3 1 3 1 18 4 2 3 1 
6 1 3 3 2 100,000 3 1 3 2 24 4 2 3 2 
6 1 3 3 3 100,000 3 1 3 3 12 4 2 3 3 
18 1 3 4 1 6 3 1 4 1 100,000 4 2 4 1 
18 1 3 4 2 32 3 1 4 2 100,000 4 2 4 2 
100,000 1 3 4 3 100,000 3 1 4 3 100,000 4 2 4 3 
6 2 1 1 1 30 3 2 1 1 100,000 4 3 1 1 
18 2 1 1 2 6 3 2 1 2 100,000 4 3 1 2 
6 2 1 1 3 6 3 2 1 3 100,000 4 3 1 3 
100,000 2 1 2 1 24 3 2 2 1 100,000 4 3 2 1 
100,000 2 1 2 2 18 3 2 2 2 100,000 4 3 2 2 
100,000 2 1 2 3 100,000 3 2 2 3 100,000 4 3 2 3 
6 2 1 3 1 18 3 2 3 1 100,000 4 3 3 1 
24 2 1 3 2 100,000 3 2 3 2 100,000 4 3 3 2 
20 2 1 3 3 100,000 3 2 3 3 100,000 4 3 3 3 
12 2 1 4 1 12 3 2 4 1 100,000 4 3 4 1 
26 2 1 4 2 24 3 2 4 2 100,000 4 3 4 2 
100,000 2 1 4 3 100,000 3 2 4 3 100,000 4 3 4 3 
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Table 6: Processing times 
Product one     Product two    Product three 
---------------------------------------------------------------- -------------------------------------------- ----------------------------------------------- 
 n   n    n 

Problem no1 
m 1 2 3 m 1 2 3 m 1 2 3 
1 6 3 4 1 7 7 4 1 6 8 6 
2 5 8 1,000 2 8 6 1,000 2 5 9 1,000 
3 10 9 6 4 11 13 4 3 8 12 8 
4 12 14 1,000 4 12 7 1,000 4 7 11 1,000 
Problem no2 
m 1 2 3 m 1 2 3 M 1 2 3 
1 1 1 2 1 4 4 2 1 3 3 2 
2 3 4 1,000 2 4 3 1,000 2 4 5 1,000 
3 1 5 5 3 1 3 3 3 3 6 3 
4 2 4 1,000 4 2 4 1,000 4 3 1 1,000 
Problem no3 
 m 1 2 3 m 1 2 3 M 1 2 3 
1 2 3 1 1 2 6 3 1 2 2 4 
2 3 2 1,000 2 1 3 1,000 2 1 1 1,000 
3 2 4 3 3 6 1 2 3 4 4 2 
4 3 2 1,000 4 3 2 1,000 4 2 2 1,000 
Problem no 4 
m 1 2 3 m 1 2 3 M 1 2 3 
1 4 4 3 1 2 2 4 1 2 6 5 
2 5 5 1,000 2 2 4 1,000 2 2 2 1,000 
3 4 3 1 3 3 1 5 3 2 7 7 
4 2 3 1,000 4 1 2 1,000 4 2 3 1,000 
Problem no 5 
m 1 2 3 m 1 2 3 M 1 2 3 
1 7 6 3 1 1 2 4 1 2 3 5 
2 6 4 1,000 2 2 1 1,000 2 3 2 1,000 
3 3 3 1 3 1 1 2 3 3 2 7 
4 2 2 1,000 4 2 3 1,000 4 2 2 1,000 

 

Selection module: This module is constructed on the 
basis of tournament selection mechanism. The size of 
the mating pool N is filled by randomly choosing n 
chromosomes for each individual in the population. One 
chromosome out of n is selected based on the rank and 
crowding distance. That is, the chromosome with least 
rank is selected. In case of more chromosomes having 
same rank, the chromosome having highest crowding 
distance is selected. This selected chromosome is added 
to the mating pool. Thus, tournament selection is done to 
generate the mating pool based on the rank and the 
crowding distance: 
 

max min

m( j 1) m( j 1)
d d(0)

m m

+ − −= +
−

 

 
 In this proposed algorithm n value is taken as 3. 
Therefore, for every chromosome in the new mating 
pool, three chromosomes are randomly chosen from the 

population. Out of three, one chromosome is selected 
based on rank and crowding distance value. 
 
Jumping genes module: Jumping operatiors has 
unique feature depends upon chromosome. In our study 
two genes at different positions are randomly selected. 
The equal number of genes selected from the other 
chromosomes at random position. The two selected 
chromosomes are transferred mutually each other. 
During jumping genes operation each chromosome 
consists transposons. These are having the tendancy to 
jump to other chromosomes. The number of 
transposons canbe more than one in general case but, 
inour case it is two. The locations of transposon are 
randomly chosen. The cut and paste method is used to 
implement the jumping gene operation. The element is 
cut from the original site and pasted into a new location 
in our case two genes are consider as transposons.The 
jumping genes operation is illustrated in Table 9. In this 
example the last position  of  parent one is selected and 
gene is jumped last position of second parent 
chromosome and vice versa. 
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Table 7: Waiting time 

Product one    Product two    Product three 
---------------------------------------------------- ---------------------------------------------- ----------------------------------------------------- 
 n   n    n 

Problem no1 
m 1 2 3 m 1 2 3 m 1 2 3 
1 2 4 5 1 1 3 3 1 2 2 1 
2 4 6 1,000 2 3 2 1,000 2 5 3 1,000 
3 2 8 3 3 4 1 4 3 2 2   
4 1 3 1,000 4 3 1 1,000 4 5 11 1,000 
Problem no2 
  n     n      n 
m 1 2 3 m 1 2 3 m 1 2 3 
1 2 3 2 1 3 8 7 1 3 3 9 
2 8 2 1,000 2 6 8 1,000 2 7 9 1,000 
3 9 6 7 3 4 5 6 3 6 6 4 
4 10 7 1,000 4 2 9 1,000 4 3 5 1,000 
Problem no3 
    n     n     n 
m 1 2 3 m 1 2 3 m 1 2 3 
1 2 3 1 1 2 6 3 1 2 2 4 
2 3 2 1,000 2 1 3 1,000 2 1 1 1,000 
3 2 4 3 3 6 1 2 3 4 4 2 
4 3 2 1,000 4 3 2 1,000 4 2 2 1,000 
Problem no 4 
  n     n     n 
m 1 2 3 m 1 2 3 m 1 2 3 
1 4 4 3 1 2 2 4 1 2 6 5 
2 5 5 1,000 2 2 4 1,000 2 2 2 1,000 
3 4 3 1 3 3 1 5 3 2 7 7 
4 2 3 1,000 4 1 2 1,000 4 2 3 1,000 
Problem no 5 
    n     n     n 
m 1 2 3 m 1 2 3 m 1 2 3 
1 7 6 3 1 1 2 4 1 2 3 5 
2 6 4 1,000 2 2 1 1,000 2 3 2 1,000 
3 3 3 1 3 1 1 2 3 3 2 7 
4 2 2 1,000   4   2 3 1,000 4 2 2 1,000 
 
Crossover module: In the population obtained through 
the selection module, the crossover operation 
combines two good chromosomes to hopefully form 
two better chromosomes. 
 Every crossover may not create better solutions and 
if bad solutions are created they will get eliminated in 
the next selection operation due to lower fitness value. 
Again, in order to preserve some good chromosomes 
selected during the selection operation, not all the 
chromosomes in the population are used in the 
crossover. Hence crossover operation is exercised on 
the chromosomes of the population with a probability, 
known as cross over probability (pc). Crossover module 
consists of the following two steps. 
 
Step 1: Selection of chromosome for crossover. 
 
 Selection of chromosomes for crossover is done 
with a crossover probability pc and to choose an 

appropriate crossover probability a sensitivity analysis 
is conducted. The algorithm is executed with ten 
different initial seeds for different combinations of 
genetic algorithm parameters. After doing the 
sensitivity analysis, it is found that minimum material 
flow and makespan are attainable for a crossover 
probability, pc of 0.6. Therefore, 60% of the 
chromosomes are selected to undergo crossover 
operation. Random number r between zero and one are 
generated for all chromosomes. If the generated random 
number r is less than 0.6 then the corresponding 
chromosome is selected for crossover operation.  
 
Step 2: Crossover operation 
 
 The chromosomes selected for crossover are mated 
pair wise and undergo two point crossover operation. The 
crossover-site genes are chosen by creating two random 
numbers between 1 and 50. An illustrative example of 
crossover operation between two chromosomes is 
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exhibited in Table 10. In this example the 7th and 12th 
genesare randomly selected as the crossover site. The 
genes within the crossover site of the parent chromosomes 
are crossed to produce the two offsprings. 

 
Mutation module: The mutation operator alters genes 
of a chromosome locally to hopefully create a better 
chromosome. It is expected that if bad chromosomes 
are created they will be eliminated by the selection 

operation in subsequent generations and if good solutions 
are created, they will be emphasized. The need for 
mutation is to create a point in the neighbourhood of the 
current point, thereby achieving a local search around the 
current solution. The mutation is also used to maintain 
the diversity in the population. The mutation operator has 
a constructive as well as destructive effect. As it can 
create a better solution by perturbing a solution, it can 
also destroy a good solution. 

 
Table 8: Sequences 
Product 1     Product 2    Product 3 
-------------------------------------------------------------- ------------------------------------------- -------------------------------------------------- 
 n    n     n 
Problem no 1 
M 1 2 3 4 m 1 2 3 4 m 1 2 3 4 
1 1 0 0 0 1 0 1 0 0 1 1 0 0 0 
2 0 1 0 0 2 1 0 0 0 2 0 1 0 0 
3 0 0 1 0 3 0 0 1 0 3 0 0 0 1 
4 0 0 0 1 4 0 0 0 1 4 0 0 1 0 
Problem no 2 
M 1 2 3 4 m 1 2 3 4 m 1 2 3 4 
1 0 0 0 1 1 0 1 0 0 1 1 0 0 0 
2 0 1 0 0 2 0 0 0 1 2 0 0 1 0 
3 0 0 1 0 3 0 0 1 0 3 0 1 0 0 
4 1 0 0 0 4 1 0 0 0 4 0 0 0 1 
Problem no 3 
M 1 2 3 4 m 1 2 3 4 m 1 2 3 4 
1 0 0 0 1 1 0 0 1 0 1 1 0 0 0 
2 0 1 0 0 2 0 0 0 1 2 0 1 0 0 
3 1 0 0 0 3 0 1 0 0 3 0 0 1 0 
4 0 0 1 0 4 1 0 0 0 4 0 0 0 1 
M 1 2 3 4 m 1 2 3 4 m 1 2 3 4 
1 1 0 0 0 1 0 0 1 0 1 0 1 0 0 
2 0 1 0 0 2 0 1 0 0 2 1 0 0 0 
3 0 0 0 1 3 1 0 0 0 3 0 0 1 0 
4 0 0 1 0 4 0 0 0 1 4 0 0 0 1 
Problem no 5 
M 1 2 3 4 m 1 2 3 4 m 1 2 3 4 
1 0 1 0 0 1 0 0 1 0 1 1 0 0 0 
2 0 0 0 1 2 0 1 0 0 2 0 0 1 0 
3 0 0 1 0 3 1 0 0 0 3 0 0 0 1 
4 1 0 0 0 4 0 0 0 1 4 0 1 0 0 

 

 
 

Fig. 2: A sketch of NSGA-II 
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Fig. 3: Flowchart for non-dominated sorting 
 

 
 
Fig. 4: Crowding distance calculation between pareto 

solutions in a solution space 
 
 As it is preferred in accepting the constructive 
effect and since it is computationally expensive to 
check the worth of every possible mutation for its 
outcome, the mutation is generally used with a small 
probability (pm). It is found that the minimum material 
flow and makespan are attainable for a mutation 
probability pm of 0.05. Hence, pm is taken as 0.05. In 
this problem, the mutation is carried out for all genes. A 
random number is generated corresponding to all genes 
in the population. If the random number r is less than 
0.05, then that corresponding gene is mutated. In 
mutation, the gene value 0 is converted into 1 and 1 is 
converted into 0. The mutation operation is illustrated 
in Table 11. 
 
Generation of intermediate population: In NSGA-II, an 
intermediate population is formed which is the combined 
population of parents and offsprings of the current 
generation. Naturally, the resultant population size is 
greater than the original population size.  

Table 9: Chromosomes before and after jumping operation 
  Chromosome with three substring 
Operation    (gene position) 
Before jumping Parent I 11101110 1101110 10010010 
Operation parent II  111011 10101111 11011001 
After jumping Parent I 11101100  1111110  1010010 
Operation Parent II 10111011 10101101 11011010 

 
Table 10: Chromosomes before and after crossover 
  Chromosome with three substring 
Operation   (gene position) 
Before Parent I 11101110 01101110 10010010 
Cross over parent II 00111011 10101111 11011001 
After Parent I 11101111 10101110 10010010 
Cross over Parent II 00111010 01101111 11011001 

 
Table 11: Chromosomes before and after mutation 
  Chromosomes with three 
Operation  substrings each (Gene Positions)1 
Before mutation Original chromosome 11011001 01100111 10010001 
After mutation Mutated chromosome 11010001 01100011 10110001 

 
Non-dominated sorting is performed again on the 
intermediate population since potential chromosomes may 
be present both in the parent and the offspring populations. 
New population is formed by replacing chromosomes in 
the original population. The chromosomes with higher 
ranks are selected and added to the population until the 
population size is reached. The last front is included in the 
population based on the crowding distance. 
 
Termination criterion: The NSGA-II is terminated 
when the iteration number reaches its maximum value. 
In this algorithm, 500 is taken as the maximum number 
of iteration.  
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RESULTS  
 
 The proposed jumping genes GA algorithm 
designed for the AGV based flexible jobshop 
manufacturing system, is coded in MATLAB and the 
experiments were conducted on an Intel Core2 Duo 
Processor computer.  
 The proposed algorithm is tested on five example 
problems. The proposed algorithm try to minimizes both 
the material flow time and makespan. 
 
Table 12: Makespan and flow time of respective AGV sequences 
 AGV  Flow Product 
Problem sequence Makespan time completion time 

1   57 85.6 142.6 
 2-1;1-1;2-1;1-2;2-1;1-3;2-2;1-1;3-3; 
2 2-1;3-3;2-2;3-1;1-1;3-1;4-1;3-3;4-2;3- 32 110 142 
 3;4-11-2;3-1;2-2;4-1;3-1;4-1;2-2;3-1;2-1; 
3 1-3;2-2;3-1;4-1;3-1;2-1;4-1;3-1;1-2; 53 41.2 94.2 
 3-1;1-1 3-3;4-2;4-1;2-1;4-2;2-2;1-3;2-1;2- 
4 1;3-1;2-2;1-1;2-1;1-3;1-3;3-3;3-1;4-1 51 59.8 110.8 
 2-1;1-3;2-1;1-3;3-2;1-2;2-1;3-3;2-1;3-2; 
5 4-2;2-1;1-2;2-1;4-1;1-2;4-1;3-3;1-2;4-1. 41 63.42 104.42 
 3-2;2-1;1-1;3-3;2-2;4-1;3-3;4-1;3-1; 
 4-1;3-3;4-1;2-2;1-3;4-1;3-3;1-3 

 
Table 13: Comarision 
   Completion time 
   ---------------------------------------------------------------------------- 
 Flow time  Product 1  Product 2  Product 3 
   ------------------------ ------------------------ ----------------------- 
 Hamed  Hamed  Hamed  Hamed 
 Fazlollah Jumping Fazlollah Jumping Fazlollah Jumping Fazlollah Jumping 
Problem tabaret al genes tabaret al genes tabaret al genes tabaret al genes 

1 88.6 85.6 61 57 31 31 47 43 
2 110 110 38 32 31 28 32 32 
3 87 87 46 32 48 48 53 53 
4 60.66 59.8 42 42 55 51 34 34 
5 63.42 63.66 38 38 44 41 34 34 

 
Table 14: Makespan calculation for simultaneous processing of products 
Time Product one (m-n) Product two (m-n) Product three (m-n) 
0 1-2 2-1 1-3 
7 -- 1-1 -- 
8 2-1 -- -- 
9 -- -- 2-2 
15 -- 3-3 -- 
21 -- -- 3-1 
23 -- 4-2 -- 
31 --  4-1 
35 3-3  -- 
44 4-1 -- -- 
47   -- 
57 -- -- -- 

 
Table15: Shop types in different positions for three products 

minimizing both material flow time and makespan 
Problem 1 
------------------------------------------------------------------------------------ 
   Completion   Completion 
Completion time m n time m n time m n 
8 1 2 7 2 1 9 1 3 
35 2 1 15 1 1 21 2 2 
44 3 3 23 3 3 31 3 1 
57 4 1 31 4 2 43 4 1 

Then for every problem, an experiment is conducted to 
obtain shop types for products which is used to optimize 
the material flow time seperately. The obtained result is 
given in Table 12. For example for illustrating the 
problem one, to complete this process, the AGV has to 
follow the sequence 2-1;1-1;2-1;1-2;2-1;1-3;2-2;1-1;3-
3;2-1;3-3;2-2;3-1;1-1;3-1;4-1;3-3;4-2;3-3;4-1. The flow 
time is 85.6 m. Total makespan is 57+85.6 = 142.6 m. 
  This experiment is repeated again to obtain shop 
types which minimize the makespan alone. In order to 
utilize the machine shops effectively, a simultaneous 
processing of products and the completion time of 
products are also considered to minimize the total 
makespan. These results are shown in Table 14-23. 
 In order to find the efficiency of the jumping genes 
GA algorithm, the five example problems are 
experimented using Hamed fazlollahtabar mathematical 
method and the results are shown in Table 13. 
 
Table 16: Makespan calculation for simultaneous processing of 

products 
Time Product one (m-n) Product two (m-n) Product three (m-n) 
0 4-1 2-2 1-2 
6 -- -- 3-1 
12 2-2 4-1 -- 
15 -- -- 2-1 
16  3-1-- -- 
18 3-1  -- 
21  1-1 -- 
26   4-1 
28 1-2   
32 --   -- 

 
Table 17: Shop types in different positions for three products 

minimizing both material flow time and makespan 
Problem 2 
------------------------------------------------------------------------------------ 
Completion   Completion   Completion 
time m n time m n time m n 
12 4 1 12 2 2 6 1 2 
18 2 2 16 4 1 15 3 1 
28 3 1 21 3 1 26 2 1 
32 1 2 28 1 1 32 4 1 

 
Table 18:  Makespan calculation for simultaneous processing of 

products 

Time Product Product Product  
 one (m-n) two (m-n)  three (m-n) 
0 4-1 3-3 1-3 
5 -- 4-2 -- 
15 2-1 -- -- 
19 1-3   
20  2-2 2-1 
24 3-3 --  
27  -- 3-1 
29 -- 1-1 -- 
32    
40  -- -- 
48 -- -- 4-1 
53 -- --   
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Table 19:  Shop types in different positions for three products 
minimizing both material flow time and makespan 

Problem 3 
------------------------------------------------------------------------------------------------ 
Completion   Completion   Completion 
time m n time m n time m n 

15 4 1 5 3 3 20 1 3 
19 2 1 20 4 2 27 2 1 
24 1 3 29 2 2 48 3 1 
32 3 3 48 1 1 53 4 1 

 
Table 20: Makespan calculation for simultaneous processing of products 

 Product Product Product  
Time one (m-n) two (m-n) three (m-n) 

0 1-2 3-3 2-1 
4 -- -- 1-3 
12 -- -- 3-2 
16 2-1 -- -- 
26 --  4-2 
27 4-1 2-1  
33 3-3  -- 
34  1-2 -- 
48  4-1  
51 --   -- 

 
Table 21: Shop types in different positions for three products 

minimizing both material flow time and makespan 
Problem 4 
------------------------------------------------------------------------------------ 
Completion   Completion   Completion 
time m n time m n time m n 

16 1 2 27 3 3 4 2 1 
27 2 1 34 2 1 12 1 3 
33 4 1 48 1 2 26 3 2 
42 3 3 51 4 1 34 4 2 

 
Table 22: Makespan calculation for simultaneous processing of products 

 Product Product Product  
Time one (m-n) two (m-n) three (m-n) 

0 2-2 3-2 1-1 
8 -- 2-1 3-3 
9 4-1 -- -- 
11 -- 1-3 -- 
15 -- -- 4-1 
19 --  -- 
23 3-3 --  
27 -- 4-1 2-2 
29 1-3 -- -- 
38  -- -- 

 
Table 23: Shop types in different positions for three products 

minimizing both material flow time and makespan 
Problem 5 
------------------------------------------------------------------------------------ 
Completion   Completion   Completion 
time m n time m n time m n 
9 2 2 8 3 2 8 1 1 
23 4 1 11 2 1 15 3 3 
29 3 3 27 1 3 27 4 1 
38 1 3 41 4 1 34 2 2 

DISCUSSION 
 
 The completion time of the product two is minimum 
for the problem number 2, problem number 4 and 
problem5 thant problem number 1 and 3.For the product 
three, the completion time is comparably minimum for 
the problem number one only.  
 Almost flowtime and completion time of each 
product is comparably minimum than Hamed 
fazlollahtabar method. The completion time of product 
one is minimum for problem number 1-3 except problem 
number 4 and 5. 
 

CONCLUSION 
 
 In this study, an attempt is made to address the 
issues related to an AGV based flexible jobshop 
manufacturing system with the objectives of 
minimizing the material flow and makespan as a whole. 
Since it is a nonlinear programming problem, jumping 
genes GA algorithm is developed to solve this problem. 
 The proposed algorithm is tested with an AGV 
based flexible manufacturing system. It is found that 
the proposed algorithm is able to produce quality 
solutions yielding minimum material flow time 
(minutes) and makespan (minutes). The jumping genes 
GA algorithm results are compared with Hamed 
fazlollahtabar method. 
 In order to maximize the machine utilization, a 
simultaneous processing of products is considered. Here, 
all the three products are processed simultaneously. The 
result shows that, the makespan to complete all the 
products minimized. This algorithm may applied for 
more number of AGV s. for future study. 
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