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Abstract: Problem statement: Now a day's many researchers try Genetic algoritbased
optimization to find near optimal solution for fiele job shop. It is a global search. In Our stuay
the GA, some changes are made to search locallglabdlly by adding jumping genes operation. A
typical flexible job shop model is considered faistresearch study. For that layout, five different
example problems are formulated for purpose ofuatain. The material flow time for different shop
types, processing times of products, waiting timeproducts, sequences of products are created and
given in tabular formApproach: The one of best evolutionary approach i.e., geragorithm with
jumping genes operation is applied in this studypptimize AGV flow time and the performance
measures of Flexible Job shop manufacturing sysfdm.non dominated sorting approach is used.
Genetic algorithm with jumping genes operator isduto evaluate the methoResults; The AGV
flow sequence is found out. Using this flow seq@entake span, flow time of products with AGV,
completion of the products is minimized. The paesitof the shop types are calculated for all progluct
The effectiveness of the proposed method is prdyedomparing with Hamed Fazlollahtabar method.
Conclusion: It is found that jumping genes genetic algorithetiviered good solutions as like as other
evolutionary algorithms. Jumping genes geneticritym may applied to Multi objective optimization
techniques in future.

Key words. Flexible jobshop manufacturing system, automatédegl vehicle, jumping genes GA

INTRODUCTION machines, thus making the job-shop scheduling
problem accord with actual production situation enor
In the classical Job-Shop Scheduling Problenclosely. FISP is more complicated than the Job-Shop
(JSP), njobs are processed to completion om  Scheduling Problem (JSP), since it needs to agsigh
unrelated machines. In order to match today's markeoperation to a machine from a set of capable mashin
requirements, manufacturing systems have to becon@nd then sequence the assigned operations on each
more flexible (Saidi-Mehrabad and Fattahi, 2007). | machine, referring to the study by (Xia and Wu, 200
the modern manufacturing plant, a machine has the Brucker and Schlie (1990) initially proposed the
capability of processing more than one type ofProblem that one operation could be processed on
operation. This leads to a modified version of JSFseveral machines and have studied this problemlyleep
called the flexible JSP (Chenal., 2008). as pioneer. This marks the beginning of the study o
Flexible Job-Shop Scheduling Problem (FJSP) iF=JSP. The methods for solving this kind of probtean
an extended traditional job-shop scheduling problém be concluded into hierarchical approaches and
breaks the restriction of unique resources andwallo integrated approaches. Hierarchical approach, which
each operation to be processed by several differemas firstly proposed by Brandimarte (1993), consde
Corresponding Author: Paul Pandian, P., Department of Mechanical Engingeethu Institute of Technology Kariapatti-
626 115, India
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the assigning sub-problem and the sequencing sulsleveloped a mathematical nonlinear integer progiagm
problem separately. Its basic idea is decompodieg t model with stochastic controllable processing.
complex problem into some sub-problems in order to  Although some improvements regarding optimization
decrease the complexity. in FIMS have been achieved, heuristic algorithnsohee
However, the integrated approaches solve thenulti-objective AGV based FIMS. Fazlollahtalsral.
assigning sub-problem and the sequencing sub-proble(2010) developed a mathematic programming apprach
simultaneously, such as greedy heuristics (Kannetiah optimize material flow in an AGV-based FIMS. Insthi
al., 2011), Simulated Annealing (SA) algorithm (Yusso study, jumping genes GA is proposed to optimizeerigdt

etal, 2011) and Tabu Search (TS). fow and makespan in an AGV-based jobshop

Most of the research on FJSP has bee'?nanufacturing system Ripod al. (2006) solve using

concentrated on single objective. However, severa . .
objectives must be considered simultaneously in th"’iumplng genes GA for jobshop problem.

real-world production situation. Problem descriptions and assumptions: Here, we
Recently, multi-objective FJSP has gainedconsider a jobshop layout which employs an AGV for
attention of some researchers. Kacemal. (2002a; material handling. The AGV carries raw materiainse
2002b) used an approach by localization and multiproduced and final products in batch sizes. Becafise
objective evolutionary optimization and proposed athe increase in demands, advance in technologyisad
Pareto approach based on the hybridization of Fuzzy, the production capacity, more shops than thstiexj
Logic (FL) and Evolutionary Algorithms (EAs) to sel  shops are required. The new shops are associated wi
the FJSP. Xia and Wu (2005) proposed a practicahigher-technology machines. Therefore, more tham on
hierarchical solution approach for solving MOFJSP.ShOp with the same performance is evolved. The
The proposed approach utilizes Particle Swarmyitfarence among shops with the same performance is
Optimization (PSO) to assign operations on machineg,achines with various specifications that effece th
and S|_mulated Anneallng_ (SA)_ algorithm to SChedU|eproduction time/cost and productivity. As a restie
operations on each machine. I6lal. (2006) proposed system could be a flexible jobshop model where
the ~ Variable Neighborhood = Particle — Swarm i iishops of the same performance exist and each
Optimization (VNPSO) consisting of a combination _Ofoperation is possible to be processed on any type o
the Variable Neighborhood Search (VNS) and Partlclq.nachine_ The sequences of jobs are specified and th

SVYar”J Optimizatipn (PSO) for splving the multi- jobs are independent. To evaluate the performafce o
objective flexible job-shop scheduling problems. Hothe proposed manufacturing system, we assess the

and Tay (2007) presented an efficient approach fanateriaI flow between any two shops of differengdy.

solving the multi-objective flexible job-shop by In the proposed model, the aim is to optimize the

combining evolutionary algorithm and guided local material flow. ie. finding a set of shops which

search. They also solved the multi-objective flé&xib .~ .~ . v 9 P
minimize the material flow throughout the systend an

job-shop problems by using dispatching rules . . )
discovered through genetic programming (Tay and Hornakespan. Here, flow is considered as the distance

2008). Gaoet al. (2007) developed a hybrid Genetic Which the AGV moves to satisfy the prO(_tIuction plan
Algorithm (GA) for the FISP with three objectivesin anr(]j de_malr|1d._ I':I'.hel proposed model is presented
makespan, min maximal machine workload and mircchematically in Fig. 1.

total workload. Zhangt al. (2009) combined the PSO T U v

algorithm and Tabu Search (TS) algorithm for the . -
multi-objective flexible job-shop problem. Xing al. a] [=][0 ER IH
A

(2009) proposed an efficient search method for the H I ERE
multi-objective flexible job-shop scheduling protuig. =

Unordered subsequence Exchange crossover is e
tried by Thmilselvan and Balasubramanie (2012) in c

SHOP1-2

their work. Riponet al. (2006) describes the jumping
gene GA evolutionary algorithm that it imitates the
jumping genes phenomenon discovered by Barbara

SHOP 3-2

McMlintock in which the induction of transpositicof
genes, within the chromosome itself that it cossist [1] [e]lc<]
others. The concept of jJumping genes is to proiadal 0] = =

search capability to fine tune the scheduling sohst SHOPZZ  SHOP3Z —SHOPi3 e
during evolution and produce a set of well convérged
diverged solutions for job shop problem. Manso@1()  Fig. 1: Layout of flexible Jopshop
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The sequence of the jobs is {1, 3, 2, 4}. After Ui,p,m,n
processing jobs 1 and 3, the accumulated totak;ym -Cip-1k = P, + W, + T.T.. k (3)

processing time is 10+15 = 25. Now, it is impossitd

process the third job (job 2) because it has th
processing time of 20 min, which would result in an

accumulated total processing time of 45 min.

MATERIALSAND METHODS

eDl,p,m,n,k,h

N

> zipm, = z,, di,p,m (4)
n=1
zipm,,Cipm, < C.T Hi,p,m,n (5)

The proposed mathematical model of the flexible
jobshop problem is represented below. The indices,

parameters and decision variables are as follows:
Indices:

Index for shops, m=1, 2,..., M
Index for shops, k=1, 2,..., K
Index for shop type thn=1, 2,..., N
Index for shop type'k h=1, 2,..., H
Index for products, i=1, 2,..., |
Index for job position, p=1, 2,..., P

VT~ IzZRZ

Parameters:

Cipm, = Completion time of product"iin position
p" in shop ' of type A"

= Processing time of shop"hof type A" for
product "

T.Timuk« = Transferring time from shop'fof type i’

toshop K of type H' for product {'
Vcv Velocity of AGV

P.Tim,

fimkke = Flow (distance) for product™i between
shop nf'of type " and shop R of type H'
Wim, = Waiting time for product" in shop nf' of
type "
C.T, = Cycle time for product’i
T = Total working time in each day:
Zipm = {0, otherwise
1, if shop n th of type m this chosen i th in posiiip th

Decision variable:

Ziom = 0, otherwise
P 1, if shop n th of type m this chosen i th in posiiip th

Obijective function:

iii i iiZipm.Zi(p—l)kh.TTmK (1)

Cipm” = iii%( Zipmn (P'-Ii—mn +D Wmn »
e )
+Zzzzzzipmn(p_ 1)mn 'T'-l;mn kk

C,. <T (6)
TTm k, =1MKn 5 h,m,m @)
AGV
Zipm D{O,l} (8)
Equation 1 is the objective function of the

proposed problem which minimizes the material flow.
The output of the objective function is the typéshs
shops which minimize the total material flow. Eqaat

2 indicates the computation of completion timedach
product. Equation 3 certifies that the differences
between completion time of produftin position J'in
shop nf' of type i is larger than or equal to the
addition of the processing time and waiting time of
shop nf' of type A" and the transferring time between
shop nf' of type i"and shop Rof type . Equation 4
warranties that if any shop in any position for any
product is allocated, then the corresponding skpp t
is also chosen.

Equation 5 guarantees that if a shop is chosem the
the corresponding completion time for each prodsict
lower than or equal to the cycle time. Equatioreifies
that the completion time for any product in anyipos
in any shop is lower than or equal to the total kivay
time in each day. Equation 7 indicates the trarigfgr
time between two shops is related directly to the fof
each product. Equation 8 presents the values of the
decision variables.

In order to illustrate the proposed mathematical
model, we propose a numerical example. In this
example, we consider three products that should be
processed in four types of shops each of whichlis i
three shops. Five jobs are existing with respedhédr
position in the sequence. The material flows betwee
the shops are given in Table 1-5. A large number is
assigned to impossible flows. The processing tiofes
each product in the shops are presented in Talllae.
waiting times of each product in the shops arergive
Table 7. The shop selection considering the seguenc
for each product is shown in Table 8.
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Table 1: Flows between shops-problem no-1

f m n k h f m n k h F m n k h
100,000 1 1 1 1 19 2 2 1 1 13 3 3 1 1
100,000 1 1 1 2 23 2 2 1 2 17 3 3 1 2
100,000 1 1 1 3 11 2 2 1 3 5 3 3 1 3
5 1 1 2 1 100,000 2 2 2 1 13 3 3 2 1
19 1 1 2 2 100,000 2 2 2 2 5 3 3 2 2
100,000 1 1 2 3 100,000 2 2 2 3 100,000 3 3 2 3
10 1 1 3 1 25 2 2 3 1 100,000 3 3 3 1
29 1 1 3 2 17 2 2 3 2 100,000 3 3 3 2
19 1 1 3 3 5 2 2 3 3 100,000 3 3 3 3
17 1 1 4 1 29 2 2 4 1 23 3 3 4 1
25 1 1 4 2 5 2 2 4 2 11 3 3 4 2
100,000 1 1 4 3 100,000 2 2 4 3 100,000 3 3 4 3
100,000 1 2 1 1 100,000 2 3 1 1 17 4 1 1 1
100,000 1 2 1 2 100,000 2 3 1 2 5 4 1 1 2
100,000 1 2 1 3 100,000 2 3 1 3 17 4 1 1 3
17 1 2 2 1 100,000 2 3 2 1 11 4 1 2 1
23 1 2 2 2 100,000 2 3 2 2 29 4 1 2 2
100,000 1 2 2 3 100,000 2 3 2 3 100,000 4 1 2 3
11 1 2 3 1 100,000 2 3 3 1 5 4 1 3 1
5 1 2 3 2 100,000 2 3 3 2 11 4 1 3 2
17 1 2 3 3 100,000 2 3 3 3 23 4 1 3 3
5 1 2 4 1 100,000 2 3 4 1 100,000 4 1 4 1
32 1 2 4 2 100,000 2 3 4 2 100,000 4 1 4 2
100,000 1 2 4 3 100,000 2 3 4 3 100,000 4 1 4 3
100,000 1 3 1 1 11 3 1 1 1 25 4 2 1 1
100,000 1 3 1 2 11 3 1 1 2 29 4 2 1 2
100,000 1 3 1 3 11 3 1 1 3 17 4 2 1 3
22 1 3 2 1 5 3 1 2 1 22 4 2 2 1
11 1 3 2 2 25 3 1 2 2 5 4 2 2 2
100,000 1 3 2 3 100,000 3 1 2 3 100,000 4 2 2 3
13 1 3 3 1 100,000 3 1 3 1 17 4 2 3 1
5 1 3 3 2 100,000 3 1 3 2 23 4 2 3 2
5 1 3 3 3 100,000 3 1 3 3 11 4 2 3 3
17 1 3 4 1 5 3 1 4 1 100,000 4 2 4 1
17 1 3 4 2 31 3 1 4 2 100,000 4 2 4 2
100,000 1 3 4 3 100,000 3 1 4 3 100,000 4 2 4 3
5 2 1 1 1 29 3 2 1 1 100,000 4 3 1 1
17 2 1 1 2 5 3 2 1 2 100,000 4 3 1 2
5 2 1 1 3 5 3 2 1 3 100,000 4 3 1 3
100,000 2 1 2 1 23 3 2 2 1 100,000 4 3 2 1
100,000 2 1 2 2 17 3 2 2 2 100,000 4 3 2 2
100,000 2 1 2 3 100,000 3 2 2 3 100,000 4 3 2 3
5 2 1 3 1 17 3 2 3 1 100,000 4 3 3 1
23 2 1 3 2 100,000 3 2 3 2 100,000 4 3 3 2
19 2 1 3 3 100,000 3 2 3 3 100,000 4 3 3 3
11 2 1 4 1 11 3 2 4 1 100,000 4 3 4 1
25 2 1 4 2 23 3 2 4 2 100,000 4 3 4 2
100,000 2 1 4 3 100,000 3 2 4 3 100,000 4 3 4 3

NSGA 1l algorithm: The notion of NSGA was first multi-objective optimization problems, the main
suggested by (Goldberg, 1989) and then implementecriticism of the NSGA approach has been (i) itshhig
by Srinivas and Deb (1994). The main idea behimd th computational complexity of non-dominated sortiy,
non-dominated sorting procedure is that a rankingMN® where M is the number of objectives and N is
selection method is used to emphasize good poimits a the population size, (ii) the lack of elitism aritl) ¢he
a niching method is used to maintain a stableneed for specifying the tunable sharing parameter.
subpopulation of good points. NSGA differs from aRecently, Debet al. (2002) reported an improved
simple genetic algorithm only in the way to selectversion of NSGA called NSGA-II to address all of
operator works. The crossover and mutation opesatorthese issues. Specifically, NSGA-II alleviates e
remain as usual. The efficiency of NSGA lies in theabove difficulties by introducing a fast non-domath
way of multiple objectives is reduced to a singleefss ~ sorting procedure with O (M§ computational
measure by the creation of number of fronts, sortedomplexity, an elitist-preserving approach and a
according to nondomination. Although the NSGA parameterless niching operator for diversity
approach has been successfully applied on a nuafber preservation.
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Table 2: Flows between shops problem no 2

f m n k h f m n k h f m n k H
100,000 1 1 1 1 18 2 2 1 1 12 3 3 1 1
100,000 1 1 1 2 24 2 2 1 2 16 3 3 1 2
100,000 1 1 1 3 10 2 2 1 3 4 3 3 1 3
4 1 1 2 1 100,000 2 2 2 1 12 3 3 2 1
18 1 1 2 2 100,000 2 2 2 2 4 3 3 2 2
100,000 1 1 2 3 100,000 2 2 2 3 100,000 3 3 2 3
9 1 1 3 1 24 2 2 3 1 100,000 3 3 3 1
28 1 1 3 2 16 2 2 3 2 100,000 3 3 3 2
18 1 1 3 3 54 2 2 3 3 100,000 3 3 3 3
16 1 1 4 1 28 2 2 4 1 22 3 3 4 1
24 1 1 4 2 4 2 2 4 2 10 3 3 4 2
100,000 1 1 4 3 100,000 2 2 4 3 100,000 3 3 4 3
100,000 1 2 1 1 100,000 2 3 1 1 16 4 1 1 1
100,000 1 2 1 2 100,000 2 3 1 2 4 4 1 1 2
100,000 1 2 1 3 100,000 2 3 1 3 16 4 1 1 3
16 1 2 2 1 100,000 2 3 2 1 10 4 1 2 1
22 1 2 2 2 100,000 2 3 2 2 28 4 1 2 2
100,000 1 2 2 3 100,000 2 3 2 3 100,000 4 1 2 3
10 1 2 3 1 100,000 2 3 3 1 4 4 1 3 1
4 1 2 3 2 100,000 2 3 3 2 10 4 1 3 2
16 1 2 3 3 100,000 2 3 3 3 22 4 1 3 3
4 1 2 4 1 100,000 2 3 4 1 100,000 4 1 4 1
32 1 2 4 2 100,000 2 3 4 2 100,000 4 1 4 2
100,000 1 2 4 3 100,000 2 3 4 3 100,000 4 1 4 3
100,000 1 3 1 1 10 3 1 1 1 24 4 2 1 1
100,000 1 3 1 2 10 3 1 1 2 28 4 2 1 2
100,000 1 3 1 3 10 3 1 1 3 16 4 2 1 3
21 1 3 2 1 4 3 1 2 1 21 4 2 2 1
10 1 3 2 2 24 3 1 2 2 4 4 2 2 2
100,000 1 3 2 3 100,000 3 1 2 3 100,000 4 2 2 3
12 1 3 3 1 100,000 3 1 3 1 16 4 2 3 1
4 1 3 3 2 100,000 3 1 3 2 22 4 2 3 2
4 1 3 3 3 100,000 3 1 3 3 10 4 2 3 3
16 1 3 4 1 4 3 1 4 1 100,000 4 2 4 1
16 1 3 4 2 30 3 1 4 2 100,000 4 2 4 2
100,000 1 3 4 3 100,000 3 1 4 3 100,000 4 2 4 3
4 2 1 1 1 28 3 2 1 1 100,000 4 3 1 1
16 2 1 1 2 4 3 2 1 2 100,000 4 3 1 2
4 2 1 1 3 4 3 2 1 3 100,000 4 3 1 3
100,000 2 1 2 1 22 3 2 2 1 100,000 4 3 2 1
100,000 2 1 2 2 16 3 2 2 2 100,000 4 3 2 2
100,000 2 1 2 3 100,000 3 2 2 3 100,000 4 3 2 3
4 2 1 3 1 16 3 2 3 1 100,000 4 3 3 1
22 2 1 3 2 100,000 3 2 3 2 100,000 4 3 3 2
18 2 1 3 3 100,000 3 2 3 3 100,000 4 3 3 3
10 2 1 4 1 10 3 2 4 1 100,000 4 3 4 1
24 2 1 4 2 22 3 2 4 2 100,000 4 3 4 2
100,000 2 1 4 3 100,000 3 2 4 3 100,000 4 3 4 3

Yang and Natarajan (2010) made an attempt to solve At first, the usual selection, crossover and nioitat
multi-objective optimization problem in turning lmsing  operators are used to create a child populatiaf §ze
NSGA-ll. Cheng et al. (2009) applied NSGA-Il to N. Since elitism is introduced by comparing current
minimize the comprehensive cost and the wholeyopulation with previously-found best non-dominated
production load with time-sequence constraintsctyuise solutions, a combined population RPUQ; is formed.
optimal Collaborative Manufacturing Chain (CMC). The population Rwill be of size 2N. Then, the
population Ris sorted according to non-domination.
Since all the previous and current population membe
are included in R the elitism is ensured. Now,

Proposed GA using jumping genes for AGV based
FIMS: In this study, NSGA Il has been designed to
optimize the material flow and makespan in an AGV

based jobshop manufacturing system. NSGA I iSsolutions belonging to the best non-dominated gatd~

illustrated in Fig. 2. Initially, a random parertpulation of best solu_tlons in the combined populau0n_anc§tmu
P is created. The population is sorted based ondhe n P& €mphasized more than any other solution in the
domination. Each solution is assigned a fitnessiegu  c0Mbined population. Chromosomes of the fronare

its non-domination level (1 is the best level, this next-  included in the new populationi,P The remaining
best level and so on). Thus, minimization of fimés Cchromosomes of the population.,Pis chosen from
assumed. subsequent non-dominated fronts in the order af the
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ranking. Thus, solutions from the froni &e chosen -«

next, followed by solutions from the frong&nd so «

on. This procedure is continued till no more.

chromosomes can be accommodated. To choose
exactly N population chromosomes, the solutions of

the last front using the crowded comparison operatog;
an, in the descending order and the best solutions
needed to fill the population are chosen. The new

population Rsis now used for selection, crossover

and mutation to create a new population, @f size

N.

Input module: The input data required are:

e Number of products

Table 3: Flows between shops problem no 3

Number of shop types
Number of shops
The material floes between shops

For the experimental problem considered in this

udy:

Number of products = 3

Number of shop types = 3

Number of shops =4

The material flows between shops as given in
Table 1-5

velocity of AGV 4,5,6,7,8,9m/sfor the respective
problems

f m n k h f m n k h F m n k h
100,000 1 1 1 1 25 2 2 1 1 14 3 3 1 1
100,000 1 1 1 2 30 2 2 1 2 20 3 3 1 2
100,000 1 1 1 3 15 2 2 1 3 8 3 3 1 3
8 1 1 2 1 100,000 2 2 2 1 18 3 3 2 1
25 1 1 2 2 100,000 2 2 2 2 8 3 3 2 2
100,000 1 1 2 3 100,000 2 2 2 3 100,000 3 3 2 3
11 1 1 3 1 30 2 2 3 1 100,000 3 3 3 1
31 1 1 3 2 20 2 2 3 2 100,000 3 3 3 2
25 1 1 3 3 56 2 2 3 3 100,000 3 3 3 3
20 1 1 4 1 35 2 2 4 1 24 3 3 4 1
30 1 1 4 2 8 2 2 4 2 15 3 3 4 2
100,000 1 1 4 3 100,000 2 2 4 3 100,000 3 3 4 3
100,000 1 2 1 1 100,000 2 3 1 1 20 4 1 1 1
100,000 1 2 1 2 100,000 2 3 1 2 8 4 1 1 2
100,000 1 2 1 3 100,000 2 3 1 3 20 4 1 1 3
20 1 2 2 1 100,000 2 3 2 1 15 4 1 2 1
24 1 2 2 2 100,000 2 3 2 2 35 4 1 2 2
100,000 1 2 2 3 100,000 2 3 2 3 100,000 4 1 2 3
15 1 2 3 1 100,000 2 3 3 1 8 4 1 3 1
8 1 2 3 2 100,000 2 3 3 2 15 4 1 3 2
20 1 2 3 3 100,000 2 3 3 3 26 4 1 3 3
8 1 2 4 1 100,000 2 3 4 1 100,000 4 1 4 1
34 1 2 4 2 100,000 2 3 4 2 100,000 4 1 4 2
100,000 1 2 4 3 100,000 2 3 4 3 100,000 4 1 4 3
100,000 1 3 1 1 15 3 1 1 1 30 4 2 1 1
100,000 1 3 1 2 15 3 1 1 2 35 4 2 1 2
100,000 1 3 1 3 15 3 1 1 3 20 4 2 1 3
27 1 3 2 1 8 3 1 2 1 27 4 2 2 1
15 1 3 2 2 30 3 1 2 2 8 4 2 2 2
100,000 1 3 2 3 100,000 3 1 2 3 100,000 4 2 2 3
18 1 3 3 1 100,000 3 1 3 1 20 4 2 3 1
8 1 3 3 2 100,000 3 1 3 2 26 4 2 3 2
8 1 3 3 3 100,000 3 1 3 3 15 4 2 3 3
20 1 3 4 1 8 3 1 4 1 100,000 4 2 4 1
20 1 3 4 2 37 3 1 4 2 100,000 4 2 4 2
100,000 1 3 4 3 100,000 3 1 4 3 100,000 4 2 4 3
8 2 1 1 1 35 3 2 1 1 100,000 4 3 1 1
20 2 1 1 2 8 3 2 1 2 100,000 4 3 1 2
8 2 1 1 3 8 3 2 1 3 100,000 4 3 1 3
100,000 2 1 2 1 26 3 2 2 1 100,000 4 3 2 1
100,000 2 1 2 2 20 3 2 2 2 100,000 4 3 2 2
100,000 2 1 2 3 100,000 3 2 2 3 100,000 4 3 2 3
8 2 1 3 1 20 3 2 3 1 100,000 4 3 3 1
26 2 1 3 2 100,000 3 2 3 2 100,000 4 3 3 2
25 2 1 3 3 100,000 3 2 3 3 100,000 4 3 3 3
15 2 1 4 1 15 3 2 4 1 100,000 4 3 4 1
30 2 1 4 2 26 3 2 4 2 100,000 4 3 4 2
100,000 2 1 4 3 100,000 3 2 4 3 100,000 4 3 4 3
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Table 4: Flows between shops-problem4

f m n k h f m n k h f m n k h
100,000 11 1 1 20 2 2 1 1 14 3 3 1 1
100,000 11 1 2 24 2 2 1 2 18 3 3 1 2
100,000 11 1 3 12 2 2 1 3 6 3 3 1 3
6 11 2 1 100,000 2 2 2 1 14 3 3 2 1
20 1 1 2 2 100,000 2 2 2 2 6 3 3 2 2
100,000 1 1 2 3 100,000 2 2 2 3 100,000 3 3 2 3
12 1 1 3 1 26 2 2 3 1 100,000 3 3 3 1
30 1 1 3 2 18 2 2 3 2 100,000 3 3 3 2
20 1 1 3 3 6 2 2 3 3 100,000 3 3 3 3
18 1 1 4 1 30 2 2 4 1 24 3 3 4 1
26 11 4 2 6 2 2 4 2 12 3 3 4 2
100,000 11 4 3 100,000 2 2 4 3 100,000 3 3 4 3
100,000 1 2 1 1 100,000 2 3 1 1 18 4 1 1 1
100,000 1 2 1 2 100,000 2 3 1 2 6 4 1 1 2
100,000 1 2 1 3 100,000 2 3 1 3 18 4 1 1 3
18 1 2 2 1 100,000 2 3 2 1 12 4 1 2 1
24 1 2 2 2 100,000 2 3 2 2 30 4 1 2 2
100,000 1 2 2 3 100,000 2 3 2 3 100,000 4 1 2 3
12 1 2 3 1 100,000 2 3 3 1 6 4 1 3 1
6 1 2 3 2 100,000 2 3 3 2 12 4 1 3 2
18 1 2 3 3 100,000 2 3 3 3 24 4 1 3 3
6 1 2 4 1 100,000 2 3 4 1 100,000 4 1 4 1
33 1 2 4 2 100,000 2 3 4 2 100,000 4 1 4 2
100,000 1 2 4 3 100,000 2 3 4 3 100,000 4 1 4 3
100,000 1 3 1 1 12 3 1 1 1 26 4 2 1 1
100,000 1 3 1 2 12 3 1 1 2 30 4 2 1 2
100,000 1 3 1 3 12 3 1 1 3 18 4 2 1 3
23 1 3 2 1 6 3 1 2 1 23 4 2 2 1
12 1 3 2 2 26 3 1 2 2 6 4 2 2 2
100,000 1 3 2 3 100,000 3 1 2 3 100,000 4 2 2 3
14 1 3 3 1 100,000 3 1 3 1 18 4 2 3 1
6 1 3 3 2 100,000 3 1 3 2 24 4 2 3 2
6 1 3 3 3 100,000 3 1 3 3 12 4 2 3 3
18 1 3 4 1 6 3 1 4 1 100,000 4 2 4 1
18 1 3 4 2 32 3 1 4 2 100,000 4 2 4 2
100,000 1 3 4 3 100,000 3 1 4 3 100,000 4 2 4 3
6 2 1 1 1 30 3 2 1 1 100,000 4 3 1 1
18 2 1 1 2 6 3 2 1 2 100,000 4 3 1 2
6 2 1 1 3 6 3 2 1 3 100,000 4 3 1 3
100,000 2 1 2 1 24 3 2 2 1 100,000 4 3 2 1
100,000 2 1 2 2 18 3 2 2 2 100,000 4 3 2 2
100,000 2 1 2 3 100,000 3 2 2 3 100,000 4 3 2 3
6 2 1 3 1 18 3 2 3 1 100,000 4 3 3 1
24 2 1 3 2 100,000 3 2 3 2 100,000 4 3 3 2
20 2 1 3 3 100,000 3 2 3 3 100,000 4 3 3 3
12 2 1 4 1 12 3 2 4 1 100,000 4 3 4 1
26 2 1 4 2 24 3 2 4 2 100,000 4 3 4 2
100,000 2 1 4 3 100,000 3 2 4 3 100,000 4 3 4 3

Initialization module: The geno style coding is used to Non-dominated sorting: This module sorts the
represent the solutions of the problem as chromesom Population based on non-domination. To start wiite,

Every chromosome consists of three substrings. Eacgf,s'[ solution from the population is kept in angimset
substring consists of 8 bits, the genes of the ’ Thereafter, each soll_mon P (the second salutio
o i onwards) is compared with all members of the set P’
chromosomes. Every twp bits in a subs_,trlng reptssen gne by one. If solution p is dominated by any membe
a number between 1-3 (i.e., example 1 is repredea#e of P’ the solution p is ignored. If solution p it
01, two is represented as 10 and three is repeb@st dominated by any member of P, it is entered inTiis
11). First substring represents the shop typestfer is how the set P’ grows with non-dominated soligion
given positions for product one. Similarly, secamti ~ When all solutions of the population is checked th
third substring represents the shop types for fieng €maining _mgmbers of_ P’ constitute the non-domithate
positions for product two and three respectively. front. This is illustrated in the Fig. 3.

Measurement of crowding distance: To get an
Evaluation module: The objective function is to estimate of the density of solutions surrounding a
minimize the material flow and makespan in the AGVparticular solution in the population, the average
based flexible jobshop manufacturing system. Thedlistance of two points on either side of this pailuing
material flow is calculated by using Eq. 1 andeach of the objectives is calculated. The crowghioimt
makespan is calculated by using Eq. 2. computation requires sorting of the population
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according to each objective function value in itsm,, = Maximum value of objective function in the

ascending order of magnitude. Infinite distance is front
assigned to boundary values for each individua&in m . = Minimum value of objective function in the
particular front. All the remaining solutions are front

assigned a distance value equal to the absolute
difference in the function value of two adjacent
solutions. This calculation is continued with other The basic idea behind the crowding distance is
objective functions. The overall crowding distancefinding the Euclidian distance between each
value is calculated as the sum of individual dise@n ;,qiigual in a front based on their objectives.eTh

values corresponding to each objective, CrOWOIinqndividual in the boundary are always selected sinc
distance is calculated by the following formula: o _ y . Y .
they have infinite distance assignment. The crogdin

Here: distance of the chromosomes in initial populatien i
m(j+1) = Objective function value of (j+1)ndividual found. The Fig. 4 shows the sorting process of
m(j-1 = Objective function value of (j-1)ndividual crowding distance.

Table 5: Flows between shops problem 5

f m n k h f m n k h f M n k h
100,000 1 1 1 1 20 2 2 1 1 14 3 3 1 1
100,000 1 1 1 2 24 2 2 1 2 18 3 3 1 2
100,000 1 1 1 3 12 2 2 1 3 6 3 3 1 3
6 1 1 2 1 100,000 2 2 2 1 14 3 3 2 1
20 1 1 2 2 100,000 2 2 2 2 6 3 3 2 2
100,000 1 1 2 3 100,000 2 2 2 3 100,000 3 3 2 3
12 1 1 3 1 26 2 2 3 1 100,000 3 3 3 1
30 1 1 3 2 18 2 2 3 2 100,000 3 3 3 2
20 1 1 3 3 6 2 2 3 3 100,000 3 3 3 3
18 1 1 4 1 30 2 2 4 1 24 3 3 4 1
26 1 1 4 2 6 2 2 4 2 12 3 3 4 2
100,000 1 1 4 3 100,000 2 2 4 3 100,000 3 3 4 3
100,000 1 2 1 1 100,000 2 3 1 1 18 4 1 1 1
100,000 1 2 1 2 100,000 2 3 1 2 6 4 1 1 2
100,000 1 2 1 3 100,000 2 3 1 3 18 4 1 1 3
18 1 2 2 1 100,000 2 3 2 1 12 4 1 2 1
24 1 2 2 2 100,000 2 3 2 2 30 4 1 2 2
100,000 1 2 2 3 100,000 2 3 2 3 100,000 4 1 2 3
12 1 2 3 1 100,000 2 3 3 1 6 4 1 3 1
6 1 2 3 2 100,000 2 3 3 2 12 4 1 3 2
18 1 2 3 3 100,000 2 3 3 3 24 4 1 3 3
6 1 2 4 1 100,000 2 3 4 1 100,000 4 1 4 1
33 1 2 4 2 100,000 2 3 4 2 100,000 4 1 4 2
100,000 1 2 4 3 100,000 2 3 4 3 100,000 4 1 4 3
100,000 1 3 1 1 12 3 1 1 1 26 4 2 1 1
100,000 1 3 1 2 12 3 1 1 2 30 4 2 1 2
100,000 1 3 1 3 12 3 1 1 3 18 4 2 1 3
23 1 3 2 1 6 3 1 2 1 23 4 2 2 1
12 1 3 2 2 26 3 1 2 2 6 4 2 2 2
100,000 1 3 2 3 100,000 3 1 2 3 100,000 4 2 2 3
14 1 3 3 1 100,000 3 1 3 1 18 4 2 3 1
6 1 3 3 2 100,000 3 1 3 2 24 4 2 3 2
6 1 3 3 3 100,000 3 1 3 3 12 4 2 3 3
18 1 3 4 1 6 3 1 4 1 100,000 4 2 4 1
18 1 3 4 2 32 3 1 4 2 100,000 4 2 4 2
100,000 1 3 4 3 100,000 3 1 4 3 100,000 4 2 4 3
6 2 1 1 1 30 3 2 1 1 100,000 4 3 1 1
18 2 1 1 2 6 3 2 1 2 100,000 4 3 1 2
6 2 1 1 3 6 3 2 1 3 100,000 4 3 1 3
100,000 2 1 2 1 24 3 2 2 1 100,000 4 3 2 1
100,000 2 1 2 2 18 3 2 2 2 100,000 4 3 2 2
100,000 2 1 2 3 100,000 3 2 2 3 100,000 4 3 2 3
6 2 1 3 1 18 3 2 3 1 100,000 4 3 3 1
24 2 1 3 2 100,000 3 2 3 2 100,000 4 3 3 2
20 2 1 3 3 100,000 3 2 3 3 100,000 4 3 3 3
12 2 1 4 1 12 3 2 4 1 100,000 4 3 4 1
26 2 1 4 2 24 3 2 4 2 100,000 4 3 4 2
100,000 2 1 4 3 100,000 3 2 4 3 100,000 4 3 4 3
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Table 6: Processing times

Product one Product two Product three
n n n
Problem nol
m 1 2 3 m 1 2 3 m 1 2 3
1 6 3 4 1 7 7 4 1 6 8 6
2 5 8 1,000 2 8 6 1,000 2 5 9 1,000
3 10 9 6 4 11 13 4 3 8 12 8
4 12 14 1,000 4 12 7 1,000 4 7 11 1,000
Problem no2
m 1 2 3 m 1 2 3 M 1 2 3
1 1 1 2 1 4 4 2 1 3 3 2
2 3 4 1,000 2 4 3 1,000 2 4 5 1,000
3 1 5 5 3 1 3 3 3 3 6 3
4 2 4 1,000 4 2 4 1,000 4 3 1 1,000
Problem no3
m 1 2 3 m 1 2 3 M 1 2 3
1 2 3 1 1 2 6 3 1 2 2 4
2 3 2 1,000 2 1 3 1,000 2 1 1 1,000
3 2 4 3 3 6 1 2 3 4 4 2
4 3 2 1,000 4 3 2 1,000 4 2 2 1,000
Problem no 4
m 1 2 3 m 1 2 3 M 1 2 3
1 4 4 3 1 2 2 4 1 2 6 5
2 5 5 1,000 2 2 4 1,000 2 2 2 1,000
3 4 3 1 3 3 1 5 3 2 7 7
4 2 3 1,000 4 1 2 1,000 4 2 3 1,000
Problem no 5
m 1 2 3 m 1 2 3 M 1 2 3
1 7 6 3 1 1 2 4 1 2 3 5
2 6 4 1,000 2 2 1 1,000 2 3 2 1,000
3 3 3 1 3 1 1 2 3 3 2 7
4 2 2 1,000 4 2 3 1,000 4 2 2 1,000

Selection module: This module is constructed on the population. Out of three, one chromosome is salecte
basis of tournament selection mechanism. The dize ®ased on rank and crowding distance value.
the mating pool N is filled by randomly choosing n

chromosomes for each individual in the populatione : i q d h d
hromosome out of n is selected based on the ragk a - ac eature depends upon chromosome. In ouy stu
¢ two genes at different positions are randomly set&c

crowding distance. That is, the chromosome witlstlea ¢ equal number of genes selected from the other
rank is selected. In case of more chromosomes §avirchromosomes at random position. The two selected
same rank, the chromosome having highest crowdinghromosomes are transferred mutually each other.
distance is selected. This selected chromosomedisda Durir]g jumping genes operation e_ach chromosome
to the mating pool. Thus, tournament selectioroisedto ~ consists transposons. These are having the tendancy

generate the mating pool based on the rank and tidmp to other chromosomes. The number of
crowding distance: transposons canbe more than one in general case but

inour case it is two. The locations of transposoa a
. . randomly chosen. The cut and paste method is wsed t
m@+1)-m(-1) implement the jumping gene operation. The element i

Minax ™ Miin cut from the original site and pasted into a negatmn
in our case two genes are consider as transposens.T
. . . jumping genes operation is illustrated in Tablén%this

In this proposed algorithm n value is taken as 3@, mpe the last position of parent one is settand

Therefore, for every chromosome in the new matintgene is jumped last position of second parent
pool, three chromosomes are randomly chosen frem thchromosome and vice versa.
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Table 7: Waiting time

Product one Product two Product three

n n n
Problem nol
m 1 2 3 m 1 2 3 m 1 2 3
1 2 4 5 1 1 3 3 1 2 2 1
2 4 6 1,000 2 3 2 1,000 2 5 3 1,000
3 2 8 3 3 4 1 4 3 2 2
4 1 3 1,000 4 3 1 1,000 4 5 11 1,000
Problem no2

n n n
m 1 2 3 m 1 2 3 m 1 2 3
1 2 3 2 1 3 8 7 1 3 3 9
2 8 2 1,000 2 6 8 1,000 2 7 9 1,000
3 9 6 7 3 4 5 6 3 6 6 4
4 10 7 1,000 4 2 9 1,000 4 3 5 1,000
Problem no3

n n n

m 1 2 3 m 1 2 3 m 1 2 3
1 2 3 1 1 2 6 3 1 2 2 4
2 3 2 1,000 2 1 3 1,000 2 1 1 1,000
3 2 4 3 3 6 1 2 3 4 4 2
4 3 2 1,000 4 3 2 1,000 4 2 2 1,000
Problem no 4

n n n
m 1 2 3 m 1 2 3 m 1 2 3
1 4 4 3 1 2 2 4 1 2 6 5
2 5 5 1,000 2 2 4 1,000 2 2 2 1,000
3 4 3 1 3 3 1 5 3 2 7 7
4 2 3 1,000 4 1 2 1,000 4 2 3 1,000
Problemno 5

n n n

m 1 2 3 m 1 2 3 m 1 2 3
1 7 6 3 1 1 2 4 1 2 3 5
2 6 4 1,000 2 2 1 1,000 2 3 2 1,000
3 3 3 1 3 1 1 2 3 3 2 7
4 2 2 1,000 4 2 3 1,000 4 2 2 1,000

Crossover module: In the population obtained through appropriate crossover probability a sensitivity lgsia

the selection module, the crossover operatioris conducted. The algorithm is executed with ten

combines two good chromosomes to hopefully formdifferent initial seeds for different combinatioref

two better chromosomes. genetic algorithm parameters. After doing the
Every crossover may not create better solutiods ansensitivity analysis, it is found that minimum maé

if bad solutions are created they will get elimethin ~ flow and makespan are attainable for a crossover

the next selection operation due to lower fitnesisi@. ~ Probability, p of 0.6. Therefore, 60% of the

Again, in order to preserve some good chromosomeghromosomes are selected to undergo crossover
selected during the selection operation, not a# th operation. Random number r between zero and one are
chromosomes in the population are used in th&enerated for all chromosomes. If the generatedoran
crossover. Hence crossover operation is exercised dwumber r is less than 0.6 then the corresponding
the chromosomes of the population with a probahilit chromosome is selected for crossover operation.
known as cross over probability JpCrossover module Step 2: Crossover operation
consists of the following two steps.
The chromosomes selected for crossover are mated

Step 1: Selection of chromosome for crossover. pair wise and undergo two point crossover operaiibe

crossover-site genes are chosen by creating twapman

Selection of chromosomes for crossover is donewumbers between 1 and 50. An illustrative example o

with a crossover probability ;pand to choose an crossover operation between two chromosomes is
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exhibited in Table 10. In this example th8 d@nd 12  operation in subsequent generations and if goadisns

genesare randomly selected as the crossover die. Tare created, they will be emphasized. The need for

genes within the crossover site of the parent chsames  muytation is to create a point in the neighbourhobthe

are crossed to produce the two offsprings. current point, thereby achieving a local searclimiche
current solution. The mutation is also used to ta#in

Mutation module: The mutation operator alters genesthe diversity in the population. The mutation oper&as

of a chromosome locally to hopefully create a bettea constructive as well as destructive effect. Asaih

chromosome. It is expected that if bad chromosomesreate a better solution by perturbing a solutibrgan

are created they will be eliminated by the selectio also destroy a good solution.

Table 8: Sequences

Product 1 Product 2 Product 3
n n n

Problemno 1

M 1 2 3 4 m 1 2 3 4 m 1 2 3 4
1 1 0 0 0 1 0 1 0 0 1 1 0 0 0
2 0 1 0 0 2 1 0 0 0 2 0 1 0 0
3 0 0 1 0 3 0 0 1 0 3 0 0 0 1
4 0 0 0 1 4 0 0 0 1 4 0 0 1 0
Problem no 2

M 1 2 3 4 m 1 2 3 4 m 1 2 3 4
1 0 0 0 1 1 0 1 0 0 1 1 0 0 0
2 0 1 0 0 2 0 0 0 1 2 0 0 1 0
3 0 0 1 0 3 0 0 1 0 3 0 1 0 0
4 1 0 0 0 4 1 0 0 0 4 0 0 0 1
Problemno 3

M 1 2 3 4 m 1 2 3 4 m 1 2 3 4
1 0 0 0 1 1 0 0 1 0 1 1 0 0 0
2 0 1 0 0 2 0 0 0 1 2 0 1 0 0
3 1 0 0 0 3 0 1 0 0 3 0 0 1 0
4 0 0 1 0 4 1 0 0 0 4 0 0 0 1
M 1 2 3 4 m 1 2 3 4 m 1 2 3 4
1 1 0 0 0 1 0 0 1 0 1 0 1 0 0
2 0 1 0 0 2 0 1 0 0 2 1 0 0 0
3 0 0 0 1 3 1 0 0 0 3 0 0 1 0
4 0 0 1 0 4 0 0 0 1 4 0 0 0 1
Problem no 5

M 1 2 3 4 m 1 2 3 4 m 1 2 3 4
1 0 1 0 0 1 0 0 1 0 1 1 0 0 0
2 0 0 0 1 2 0 1 0 0 2 0 0 1 0
3 0 0 1 0 3 1 0 0 0 3 0 0 0 1
4 1 0 0 0 4 0 0 0 1 4 0 1 0 0

Non-dominated sorting Crowding
distance

i

<+— Rejected

Fig. 2: A sketch of NSGA-II
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Start

Apply rule of dominance

A 4

Front=1

b4

Is population
classified?

Identify non dominated
individual

Front= Front +1

Fig. 3: Flowchart for non-dominated sorting

0

Solution space

1
[

Fig. 4:Crowding distance calculation between paret
solutions in a solution space

As it is preferred in accepting the constructive

Table 9: Chromosomes before and after jumping djpera

Chromosome with three substring

Operation (gene position)

Before jumping Parent | 11101110 1101110 10010010
Operation parent Il 111011 10101111 11011001
After jumping  Parent | 11101100 1111110 1010010

Operation Parent Il 10111011 10101101 11011010

Table 10: Chromosomes before and after crossover

Chromosome with three substring

Operation (gene position)

Before Parent | 11101110 01101110 10010010
Cross over  parent Il 00111011 10101111 11011001
After Parent | 11101111 10101110 10010010

Cross over Parent Il 00111010 01101111 11011001

effect and since it is computationally expensive toTable 11: Chromosomes before and after mutation

check the worth of every possible mutation for its

Chromosomes with three
substrings each (Gene Positipns)

outcome, the mutation is generally used with a km
probability (p). It is found that the minimum material

flow and makespan are attainable for a mutation

probability p, of 0.05. Hence, Jpis taken as 0.05. In
this problem, the mutation is carried out for ahgs. A
random number is generated corresponding to akgen
in the population. If the random number r is lesant
0.05, then that corresponding gene is mutated. |
mutation, the gene value 0 is converted into 1 hnsl
converted into 0. The mutation operation is illagtd

in Table 11.

Generation of intermediate population: In NSGA-II, an
intermediate population is formed which is the corad

apperation

11011001 011010010001
11010001 0110000110001

Before mutation
After mutation

Original chromosome
Mutated chromosome

Non-dominated sorting is performed again on the
intermediate population since potential chromosomag

be present both in the parent and the offspringllatipns.
New population is formed by replacing chromosonmes i
the original population. The chromosomes with highe
ranks are selected and added to the populatioh thati
population size is reached. The last front is ietlin the
population based on the crowding distance.

Termination criterion: The NSGA-Il is terminated

population of parents and offsprings of the currentwhen the iteration number reaches its maximum value

generation. Naturally, the resultant populatione siz
greater than the original population size.

In this algorithm, 500 is taken as the maximum nemb
of iteration.
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RESULTS

Then for every problem, an experiment is condutted
obtain shop types for products which is used tindpée

The proposed jumping genes GA algorithmthe material flow time seperately. The obtainediltes
designed for the AGV based flexible jobshopgiVen in Table 12. For example for illustrating the
manufacturing system, is coded in MATLAB and theProblem one, to complete this process, the AGVtbas
experiments were conducted on an Intel Core2 Dudpllow the sequence 2-1;1-1;2-1;1-2;2-1;1-3;2-2;3-1

Processor computer.

3;2-1;3-3;2-2;3-1;1-1;3-1;4-1;3-3;4-2;3-3;4-1. Thew

The proposed algorithm is tested on five exampléime is 85.6 m. Total makespan is 57+85.6 = 142.6 m

problems. The proposed algorithm try to minimizethb
the material flow time and makespan.

Table 12: Makespan and flow time of respective As&duences

This experiment is repeated again to obtain shop
types which minimize the makespan alone. In order t
utilize the machine shops effectively, a simultareo
processing of products and the completion time of
products are also considered to minimize the total

AGV Flow Product
Problem _sequence Makespan time completiontime makespan. These results are shown in Table 14-23.
1 57 85.6  142.6 . s ; :
1121 1-22-1:1-8:2-2:1-1:3-3: In orde_r to find the gfflClency of the jumping gen
2 2-133-3:2-2;3-1;1-1;3-1;4-1;3-3:4-2;3 32 10 142 GA algorithm, the five example problems are
3:4-11-2,3-1:2-2:4-1,3-1:4-12-2.3- 1.2-1; experimented using Hamed fazlollahtabar matheniatica
3 1-3;2-2;3-1;4-1;3-1;2-1;4-1;3-1;1-2; 53 412 942 .
31,11 3-3,4-214-1,2-1;4-2,2-2,1-3,2-1;2- method and the results are shown in Table 13.
4 1;3-1;2-2;1-1;2-1;1-3;1-3;3-3;3-1;4-1 51 59.8 B0
2-1;1-3;2-1;1-3;3-2;1-2;2-1;3-3;2-1;3-2; . : H :
5 4292002214 11241331241, 4l 63.42104.42 Table 16: Makespan calculation for simultaneous c@seing of
3-2;2-1;1-1;3-3;2-2;4-1;3-3;4-1;3-1; produgs
4-1;3-3;4-1;2-2;1-3;4-1;3-3;1-3 Time Product one (m-n) Product two (m-n) Productéh(m-n)
0 4-1 2-2 1-2
o 6 - - 3-1
Table 13: Comarision 12 22 41 -
Completion time 15 - -- 2-1
) 16 3-1- -
Flow time Product 1 Product 2 Product 3 18 3-1
Hamed Hamed Hamed Hamed 21 11 -
Fazlollah Jumping Fazlollah Jumping Fazlollah Jingp Fazlollah Jumping 26 41
Problem tabaret al genes tabaretal genes tabamgeres tabaret al genes 28 1-2
1 88.6 856 61 57 31 31 47 43 32 -
2 110 110 38 32 31 28 32 32
i 23_66 85le iez ‘122 ‘;3_—, ‘?1 5334 5334 Table 17:Shop types in different positions for ethr products
5 63.42 6366 38 38 44 41 34 34 minimizing both material flow time and makespan

Table 14: Makespan calculation for simultaneousgssing of products

Time Product one (m-n)  Product two (m-n)  Produoteh(m-n)

0 12 2-1 1-3
7 - 1-1 -
8 21 - -

15 - 3-3
21 - - 31
23 - 4-2 -

Tablel5: Shop types in different positions for ér@roducts
minimizing both material flow time and makespan

Problem 1

Completion Completion
Completiontime m n time m n time m n
8 1 2 7 2 1 9 1 3
35 2 1 15 1 1 21 2 2
44 3 3 23 3 3 31 3 1
57 4 1 31 4 2 43 4 1

Problem 2

Completion Completion Completion

time m n time m n time m n
12 4 1 12 2 2 6 1 2
18 2 2 16 4 1 15 3 1
28 3 1 21 3 1 26 2 1
32 1 2 28 1 1 32 4 1

Table 18: Makespan calculation for simultaneouscessing of

products
Time Product Product Product
one (m-n) two (m-n) three (m-n)
0 4-1 3-3 1-3
5 -- 4-2 --
15 2-1 - --
19 1-3
20 2-2 2-1
24 3-3 -
27 -- 3-1
29 -- 1-1 --
32
40 -- --
48 -- -- 4-1
53 -- --
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Table 19: Shop types in different positions foreth products
minimizing both material flow time and makespan

Problem 3

Completion Completion Completion

time m n time m n time m n
15 4 1 5 3 3 20 1 3
19 2 1 20 4 2 27 2 1
24 1 3 29 2 2 48 3 1
32 3 3 48 1 1 53 4 1

Table 20: Makespan calculation for simultaneousgssing of products

Product Product Product
Time one (m-n) two (m-n) three (m-n)
0 1-2 3-3 2-1
4 - - 1-3
12 - - 3-2
16 2-1 - -
26 - 4-2
27 4-1 2-1
33 3-3
34 1-2
48 4-1
51 -

Table 21: Shop types in different positions for ethr products
minimizing both material flow time and makespan

Problem 4

Completion Completion Completion

time m n time m n time m n
16 1 2 27 3 3 4 2 1
27 2 1 34 2 1 12 1 3
33 4 1 48 1 2 26 3 2
42 3 3 51 4 1 34 4 2

Table 22: Makespan calculation for simultaneousgssing of products

Product Product Product
Time one (m-n) two (m-n) three (m-n)
0 2-2 3-2 1-1
8 - 2-1 3-3
9 4-1 - -
11 - 1-3 -
15 - - 4-1
19 - -
23 3-3 -
27 - 4-1 2-2
29 1-3 - -
38 - -

Table 23: Shop types in different positions for ethr products
minimizing both material flow time and makespan

Problem 5

Completion Completion Completion

time m n time m n time m n
9 2 2 8 3 2 8 1 1
23 4 1 11 2 1 15 3 3
29 3 3 27 1 3 27 4 1
38 1 3 41 4 1 34 2 2

DISCUSSION

The completion time of the product two is minimum
for the problem number 2, problem number 4 and
problem5 thant problem number 1 and 3.For the mtodu
three, the completion time is comparably minimum fo
the problem number one only.

Almost flowtime and completion time of each
product is comparably minimum than Hamed
fazlollahtabar method. The completion time of piidu
one is minimum for problem number 1-3 except pnoble
number 4 and 5.

CONCLUSION

In this study, an attempt is made to address the
issues related to an AGV based flexible jobshop
manufacturing system with the objectives of
minimizing the material flow and makespan as a whol
Since it is a nonlinear programming problem, jungpin
genes GA algorithm is developed to solve this mobl

The proposed algorithm is tested with an AGV
based flexible manufacturing system. It is foundtth
the proposed algorithm is able to produce quality
solutions yielding minimum material flow time
(minutes) and makespan (minutes). The jumping genes
GA algorithm results are compared with Hamed
fazlollahtabar method.

In order to maximize the machine utilization, a
simultaneous processing of products is considétece,
all the three products are processed simultaneotbly
result shows that, the makespan to complete all the
products minimized. This algorithm may applied for
more number of AGV s. for future study.

REFERENCES

Brandimarte, P., 1993. Routing and scheduling in a
flexible job shop by tabu search. Ann. Oper Res.,
41: 157-183DOI: 10.1007/BF02023073

Brucker, P. and R. Schlie, 1990. Job-shop scheglulin
with multi-purpose machines. Computing, 45: 369-
375.DOI: 10.1007/BF02238804

Chen, J.C., K.H. Chen, J.J. Wu and C.W. Chen, 2008.
A study of the flexible job shop scheduling
problem with parallel machines and reentrant
process. Int. J. Adv. Manuf Techno., 39: 344-354.
DOI: 10.1007/s00170-007-1227-1

Cheng, F., J. Yang and F. Ye, 2009. Multi-objective
optimization of collaborative manufacturing chain
with time-sequence constraints. Int. J. Adv. Manuf.
Technol., 40: 1024-1032DOI: 10.1007/s00170-
008-1388-6

1719



Am. J. Applied Si., 9 (10): 1706-1720, 2012

Deb, K., A. Pratap and S.A. Meyarivan, 2002. A fastRipon, K.S.N., C.H. Tsang and S. Kwong, 2006. Multi

and elitist multiobjective genetic algorithm:

NSGA-II. IEEE Evolut Comput 6: 182-19N0l:
10.1109/4235.996017

Fazlollahtabar, H., B. Rezaie and H. Kalantari, 201
Mathematical programming approach to optimize
material flow in an AGV-based flexible jobshop

objective evolutionary job-shop scheduling using
jumping genes genetic algorithm. Proceedings of
the International Joint Conference on Neural
Networks, (IJCNN '06), IEEE Xplore Press,
Vancouver, BC., pp: 3100-3107. DOI:
10.1109/IICNN.2006.247291

manufacturing system with performance analysisSaidi-Mehrabad, M. and P. Fattahi, 2007. Flexilole |

Int. J. Adv. Manuf. Technol., 51: 1149-11330I:
10.1007/s00170-010-2700-9

Gao, J., M. Gen, LY. Sun and X.H. Zhao, 2007. A

shop scheduling with tabu search algorithms. Int. J
Adv. Manuf. Technol.,, 32: 563-570. DOI:
10.1007/s00170-005-0375-4

hybrid of genetic algorithm and bottleneck shifting Srinivas, N. and K. Deb, 1994. Multiobjective

for multiobjective flexible job shop scheduling

problems. Comput. Ind. Eng., 53: 149-1620l:
10.1016/j.cie.2007.04.010

optimization using nondominated sorting in genetic
algorithm. Evolut. Comput., 2: 221-2480I:
10.1162/evc0.1994.2.3.221

Goldberg, D.E., 1989. Genetic Algorithms in Search,Tay, J.C. and N.B. Ho, 2008. Evolving dispatching
Optimization and Machine Learning. 1st Edn., rules using genetic programming for solving multi-
Addison-Wesley, New York, ISBN-10: objective flexible job-shop problems. Comput.
0201157675, pp: 432. Indus. Eng., 54: 453-473. DOLl:

Ho, N.B. and J.C. Tay, 2007. Using evolutionary 10.1016/j.cie.2007.08.008
computation and local search to solve multi-Thmilselvan, R. and P. Balasubramanie, 2012.
objective flexible job shop problems. Proceedings Intergration of genetic algorithm with tabusearch
of the 9th Annual Conference on Genetic and for jobshop scheduling with  unordered
Evolutionary Computation, (GEC’ 07), ACM New subsequence exchange crossover. J. Comput. Sci.,
York, NY, USA, pp: 821-828. DOI: 8: 681-693. DOI10.3844/jcssp.2012.681.693
10.1145/1276958.1277121 Xia, W. and Z. Wu, 2005. An effective hybrid

Kacem, I., S. Hammadi and P. Borne 2002a. Pareto- optimization approach for multi-objective flexible
optimality approach for flexible job-shop schedglin job-shop scheduling problems. Comput. Ind. Eng.,
problems: hybridization of evolutionary algorithms 48: 409-425. DOI: 10.1016/j.cie.2005.01.018
and fuzzy logic. Math. Comput. Simul., 60: 245- Xing, L.N., Y.W. Chen and K.W. Yang, 2009. An
276.DOI: 10.1016/S0378-4754(02)00019-8 efficient search method for multi-objective flexabl

Kacem, I., S. Hammadi and P. Borne, 2002b. Approach job shop scheduling problems. J. Intell. Manuf., 20
by localization and multiobjective evolutionary 283-293.D0I: 10.1007/s10845-008-0216-z
optimization for flexible job-shop scheduling Yang, S.H. and U. Natarajan, 2010. Multi-objective
problems. IEEE Syst. Man Cybern, 32: 1-D®I: optimization of cutting parameters in turning
10.1109/TSMCC.2002.1009117 process using differential evolution and non-

Kannaiah, S.K., J. Thangavel, D.P. Kothari, 2011. A dominated sorting genetic algorithm-II approaches.
genetic algorithm based multi objective service Intell. J. Adv. Manuf. Technol., 49: 773-7820I:
restoraton in distribution system. J. Comput. Sci.,  10.1007/s00170-009-2404-1
7: 448-453. DOI: 10.3844/jcssp.2011.448.453 Yussof, S., A. Raina and H. Razali, 2011. An

Liu, H.B., A. Abraham, O. Choi and S.H. Moon, 2006. Investigation of using parallel genetic algorithom f
Variable neighborhood particle swarm solving the shortest path routing problem. J.
optimization for multi-objective flexible job-shop Comput. Sci., 7 206-215. DOI:
scheduling problems. Proceedings of the 6th  10.3844/jcssp.2011.206.215
International Conference on Simulated EvolutionZhang, G., X. Shao, P. Li and L. Gao, 2009. An
and Learning, (SEL’ 06), Springer-Verlag Berlin, effective hybrid particle swarm optimization
Heidelberg, pp: 197-204. DOI: algorithm for multi-objective flexible job-shop
10.1007/11903697_26 scheduling problem. Comput. Ind. Eng., 56: 1309-

Mansour, M.A.A.F., 2011. A Genetic algorithm for 1318. DOI: 10.1016/j.cie.2008.07.021
scheduling n jobs on a single machine with stoahast
controllable processing, tooling cost and earliness
tardiness penelties. Am. J. Eng. Applied Sci.,4-3
349.DOI: 10.3844/ajeassp.2011.341.349

1720



