
American Journal of Applied Sciences 9 (10): 1706-1720, 2012
ISSN 1546-9239
© 2012 Science Publication

Corresponding Author: Paul Pandian, P., Department of Mechanical Engineering, Sethu Institute of Technology Kariapatti-
626 115, India

1706

Scheduling of Automated Guided Vehicle and

Flexible Jobshop using Jumping Genes Genetic Algorithm

1Paul Pandian, P., 2S. Saravana Sankar,
3S.G. Ponnambalam and 4M. Victor Raj

1Department of Mechanical Engineering,
Sethu Institute of Technology Kariapatti-626 115, India
2Department of Mechanical Engineering Kalasalingam,

University Krishnankoil-626 190, India
3Department of Mechatronics,

Monash University, Petaling Jaya, Selangor, Malaysia
4Department of Mechanical Engineering,

Dr. Sivanthi Aditanar College of Engineering-628 215, India

Abstract: Problem statement: Now a day’s many researchers try Genetic algorithm based
optimization to find near optimal solution for flexible job shop. It is a global search. In Our study in
the GA, some changes are made to search locally and globally by adding jumping genes operation. A
typical flexible job shop model is considered for this research study. For that layout, five different
example problems are formulated for purpose of evaluation. The material flow time for different shop
types, processing times of products, waiting times of products, sequences of products are created and
given in tabular form. Approach: The one of best evolutionary approach i.e., genetic algorithm with
jumping genes operation is applied in this study, to optimize AGV flow time and the performance
measures of Flexible Job shop manufacturing system. The non dominated sorting approach is used.
Genetic algorithm with jumping genes operator is used to evaluate the method. Results: The AGV
flow sequence is found out. Using this flow sequence make span, flow time of products with AGV,
completion of the products is minimized. The position of the shop types are calculated for all products.
The effectiveness of the proposed method is proved by comparing with Hamed Fazlollahtabar method.
Conclusion: It is found that jumping genes genetic algorithm delivered good solutions as like as other
evolutionary algorithms. Jumping genes genetic algorithm may applied to Multi objective optimization
techniques in future.

Key words: Flexible jobshop manufacturing system, automated guided vehicle, jumping genes GA

INTRODUCTION

 In the classical Job-Shop Scheduling Problem
(JSP), n jobs are processed to completion on m
unrelated machines. In order to match today’s market
requirements, manufacturing systems have to become
more flexible (Saidi-Mehrabad and Fattahi, 2007). In
the modern manufacturing plant, a machine has the
capability of processing more than one type of
operation. This leads to a modified version of JSP
called the flexible JSP (Chen et al., 2008).
 Flexible Job-Shop Scheduling Problem (FJSP) is
an extended traditional job-shop scheduling problem. It
breaks the restriction of unique resources and allows
each operation to be processed by several different

machines, thus making the job-shop scheduling
problem accord with actual production situation more
closely. FJSP is more complicated than the Job-Shop
Scheduling Problem (JSP), since it needs to assign each
operation to a machine from a set of capable machines
and then sequence the assigned operations on each
machine, referring to the study by (Xia and Wu, 2005).
 Brucker and Schlie (1990) initially proposed the
problem that one operation could be processed on
several machines and have studied this problem deeply
as pioneer. This marks the beginning of the study on
FJSP. The methods for solving this kind of problem can
be concluded into hierarchical approaches and
integrated approaches. Hierarchical approach, which
was firstly proposed by Brandimarte (1993), considered

Am. J. Applied Sci., 9 (10): 1706-1720, 2012

1707

the assigning sub-problem and the sequencing sub-
problem separately. Its basic idea is decomposing the
complex problem into some sub-problems in order to
decrease the complexity.
 However, the integrated approaches solve the
assigning sub-problem and the sequencing sub-problem
simultaneously, such as greedy heuristics (Kannaiah et
al., 2011), Simulated Annealing (SA) algorithm (Yussof
et al., 2011) and Tabu Search (TS).
 Most of the research on FJSP has been
concentrated on single objective. However, several
objectives must be considered simultaneously in the
real-world production situation.
 Recently, multi-objective FJSP has gained
attention of some researchers. Kacem et al. (2002a;
2002b) used an approach by localization and multi-
objective evolutionary optimization and proposed a
Pareto approach based on the hybridization of Fuzzy
Logic (FL) and Evolutionary Algorithms (EAs) to solve
the FJSP. Xia and Wu (2005) proposed a practical
hierarchical solution approach for solving MOFJSP.
The proposed approach utilizes Particle Swarm
Optimization (PSO) to assign operations on machines
and Simulated Annealing (SA) algorithm to schedule
operations on each machine. Liu et al. (2006) proposed
the Variable Neighborhood Particle Swarm
Optimization (VNPSO) consisting of a combination of
the Variable Neighborhood Search (VNS) and Particle
Swarm Optimization (PSO) for solving the multi-
objective flexible job-shop scheduling problems. Ho
and Tay (2007) presented an efficient approach for
solving the multi-objective flexible job-shop by
combining evolutionary algorithm and guided local
search. They also solved the multi-objective flexible
job-shop problems by using dispatching rules
discovered through genetic programming (Tay and Ho,
2008). Gao et al. (2007) developed a hybrid Genetic
Algorithm (GA) for the FJSP with three objectives: min
makespan, min maximal machine workload and min
total workload. Zhang et al. (2009) combined the PSO
algorithm and Tabu Search (TS) algorithm for the
multi-objective flexible job-shop problem. Xing et al.
(2009) proposed an efficient search method for the
multi-objective flexible job-shop scheduling problems.
 Unordered subsequence Exchange crossover is
tried by Thmilselvan and Balasubramanie (2012) in
their work. Ripon et al. (2006) describes the jumping
gene GA evolutionary algorithm that it imitates the
jumping genes phenomenon discovered by Barbara
McMlintock in which the induction of transposition of
genes, within the chromosome itself that it consists or
others. The concept of jumping genes is to provide local
search capability to fine tune the scheduling solutions
during evolution and produce a set of well converged and
diverged solutions for job shop problem. Mansour (2011)

developed a mathematical nonlinear integer programming
model with stochastic controllable processing.
 Although some improvements regarding optimization
in FJMS have been achieved, heuristic algorithms to solve
multi-objective AGV based FJMS. Fazlollahtabar et al.
(2010) developed a mathematic programming approach to
optimize material flow in an AGV-based FJMS. In this
study, jumping genes GA is proposed to optimize material
flow and makespan in an AGV-based jobshop
manufacturing system Ripon et al. (2006) solve using
jumping genes GA for jobshop problem.

Problem descriptions and assumptions: Here, we
consider a jobshop layout which employs an AGV for
material handling. The AGV carries raw material, semi
produced and final products in batch sizes. Because of
the increase in demands, advance in technology and rise
in the production capacity, more shops than the existing
shops are required. The new shops are associated with
higher-technology machines. Therefore, more than one
shop with the same performance is evolved. The
difference among shops with the same performance is
machines with various specifications that effect the
production time/cost and productivity. As a result, the
system could be a flexible jobshop model where
multishops of the same performance exist and each
operation is possible to be processed on any type of
machine. The sequences of jobs are specified and the
jobs are independent. To evaluate the performance of
the proposed manufacturing system, we assess the
material flow between any two shops of different types.
In the proposed model, the aim is to optimize the
material flow, i.e., finding a set of shops which
minimize the material flow throughout the system and
makespan. Here, flow is considered as the distance
which the AGV moves to satisfy the production plan
and demand. The proposed model is presented
schematically in Fig. 1.

Fig. 1: Layout of flexible Jopshop

Am. J. Applied Sci., 9 (10): 1706-1720, 2012

1708

 The sequence of the jobs is {1, 3, 2, 4}. After
processing jobs 1 and 3, the accumulated total
processing time is 10+15 = 25. Now, it is impossible to
process the third job (job 2) because it has the
processing time of 20 min, which would result in an
accumulated total processing time of 45 min.

MATERIALS AND METHODS

 The proposed mathematical model of the flexible
jobshop problem is represented below. The indices,
parameters and decision variables are as follows:
Indices:

M = Index for shops, m=1, 2,…, M
K = Index for shops, k=1, 2,…, K
N = Index for shop type mth, n=1, 2,…, N
H = Index for shop type kth, h=1, 2,…, H
I = Index for products, i=1, 2,…, I
P = Index for job position, p=1, 2,…, P

Parameters:
Cipmn = Completion time of product ith in position

pth in shop mth of type nth
P.Timn = Processing time of shop mth of type nth for

product ith
T.Timnkk = Transferring time from shop mth of type nth

toshop kth of type hth for product ith
 VAGV Velocity of AGV
fimnkk = Flow (distance) for product ith between

shop mth of type nth and shop kth of type hth
Wimn = Waiting time for product ith in shop mth of

type nth
C.Ti = Cycle time for product ith
T = Total working time in each day:

0, otherwise
Zipm

1, if shop n th of type m th is chosen i th in position p th


= 


Decision variable:

0, otherwise
Zipm

1, if shop n th of type m th is chosen i th in position p th


= 


Objective function:

1

H K N M P I

n n
h 1 k 1 n 1 m 1;m k p 1 i 1

Min Z

Zipm.Zi(p 1)kh.T Tim k
= = = = = = =

−∑∑∑ ∑ ∑∑
 (1)

�()
P N M

n ipmn imn imn
p 1 n 1 m 1

H k N M P

ipmn n imn k
h 1 k 1 n 1 m 1 p 1

Cipm z (P.T W)

z (p 1)m .T.T k

− − −

− − − − −

= +

+ −

∑∑∑

∑∑∑∑∑

�
��

 (2)

n k imn imn imn h

i,p,m,n

Cipm Cip 1k P.T W T.T k

i,p,m,n,k,h

∀
− − ≥ + +

∀
 (3)

N

n ipm
n 1

zipm z , i,p,m.
=

= ∀∑ (4)

n n izipm ,Cipm C.T , i,p,m,n,≤ ∀ (5)

nipm
C T≤ (6)

n h
n h

AGV

fim k
T.Tm k , i,k,h,m,m

V
= ∀ (7)

n
ipmz {0,1}∈ (8)

 Equation 1 is the objective function of the
proposed problem which minimizes the material flow.
The output of the objective function is the types of the
shops which minimize the total material flow. Equation
2 indicates the computation of completion time for each
product. Equation 3 certifies that the differences
between completion time of product ith in position pth in
shop mth of type nth is larger than or equal to the
addition of the processing time and waiting time of
shop mth of type nth and the transferring time between
shop mth of type nth and shop kth of type hth. Equation 4
warranties that if any shop in any position for any
product is allocated, then the corresponding shop type
is also chosen.
 Equation 5 guarantees that if a shop is chosen then
the corresponding completion time for each product is
lower than or equal to the cycle time. Equation 6 certifies
that the completion time for any product in any position
in any shop is lower than or equal to the total working
time in each day. Equation 7 indicates the transferring
time between two shops is related directly to the flow of
each product. Equation 8 presents the values of the
decision variables.
 In order to illustrate the proposed mathematical
model, we propose a numerical example. In this
example, we consider three products that should be
processed in four types of shops each of which is in
three shops. Five jobs are existing with respect to their
position in the sequence. The material flows between
the shops are given in Table 1-5. A large number is
assigned to impossible flows. The processing times of
each product in the shops are presented in Table 6. The
waiting times of each product in the shops are given in
Table 7. The shop selection considering the sequence
for each product is shown in Table 8.

Am. J. Applied Sci., 9 (10): 1706-1720, 2012

1709

Table 1: Flows between shops-problem no-1
f m n k h f m n k h F m n k h
100,000 1 1 1 1 19 2 2 1 1 13 3 3 1 1
100,000 1 1 1 2 23 2 2 1 2 17 3 3 1 2
100,000 1 1 1 3 11 2 2 1 3 5 3 3 1 3
5 1 1 2 1 100,000 2 2 2 1 13 3 3 2 1
19 1 1 2 2 100,000 2 2 2 2 5 3 3 2 2
100,000 1 1 2 3 100,000 2 2 2 3 100,000 3 3 2 3
10 1 1 3 1 25 2 2 3 1 100,000 3 3 3 1
29 1 1 3 2 17 2 2 3 2 100,000 3 3 3 2
19 1 1 3 3 5 2 2 3 3 100,000 3 3 3 3
17 1 1 4 1 29 2 2 4 1 23 3 3 4 1
25 1 1 4 2 5 2 2 4 2 11 3 3 4 2
100,000 1 1 4 3 100,000 2 2 4 3 100,000 3 3 4 3
100,000 1 2 1 1 100,000 2 3 1 1 17 4 1 1 1
100,000 1 2 1 2 100,000 2 3 1 2 5 4 1 1 2
100,000 1 2 1 3 100,000 2 3 1 3 17 4 1 1 3
17 1 2 2 1 100,000 2 3 2 1 11 4 1 2 1
23 1 2 2 2 100,000 2 3 2 2 29 4 1 2 2
100,000 1 2 2 3 100,000 2 3 2 3 100,000 4 1 2 3
11 1 2 3 1 100,000 2 3 3 1 5 4 1 3 1
5 1 2 3 2 100,000 2 3 3 2 11 4 1 3 2
17 1 2 3 3 100,000 2 3 3 3 23 4 1 3 3
5 1 2 4 1 100,000 2 3 4 1 100,000 4 1 4 1
32 1 2 4 2 100,000 2 3 4 2 100,000 4 1 4 2
100,000 1 2 4 3 100,000 2 3 4 3 100,000 4 1 4 3
100,000 1 3 1 1 11 3 1 1 1 25 4 2 1 1
100,000 1 3 1 2 11 3 1 1 2 29 4 2 1 2
100,000 1 3 1 3 11 3 1 1 3 17 4 2 1 3
22 1 3 2 1 5 3 1 2 1 22 4 2 2 1
11 1 3 2 2 25 3 1 2 2 5 4 2 2 2
100,000 1 3 2 3 100,000 3 1 2 3 100,000 4 2 2 3
13 1 3 3 1 100,000 3 1 3 1 17 4 2 3 1
5 1 3 3 2 100,000 3 1 3 2 23 4 2 3 2
5 1 3 3 3 100,000 3 1 3 3 11 4 2 3 3
17 1 3 4 1 5 3 1 4 1 100,000 4 2 4 1
17 1 3 4 2 31 3 1 4 2 100,000 4 2 4 2
100,000 1 3 4 3 100,000 3 1 4 3 100,000 4 2 4 3
5 2 1 1 1 29 3 2 1 1 100,000 4 3 1 1
17 2 1 1 2 5 3 2 1 2 100,000 4 3 1 2
5 2 1 1 3 5 3 2 1 3 100,000 4 3 1 3
100,000 2 1 2 1 23 3 2 2 1 100,000 4 3 2 1
100,000 2 1 2 2 17 3 2 2 2 100,000 4 3 2 2
100,000 2 1 2 3 100,000 3 2 2 3 100,000 4 3 2 3
5 2 1 3 1 17 3 2 3 1 100,000 4 3 3 1
23 2 1 3 2 100,000 3 2 3 2 100,000 4 3 3 2
19 2 1 3 3 100,000 3 2 3 3 100,000 4 3 3 3
11 2 1 4 1 11 3 2 4 1 100,000 4 3 4 1
25 2 1 4 2 23 3 2 4 2 100,000 4 3 4 2
100,000 2 1 4 3 100,000 3 2 4 3 100,000 4 3 4 3

NSGA II algorithm: The notion of NSGA was first
suggested by (Goldberg, 1989) and then implemented
by Srinivas and Deb (1994). The main idea behind the
non-dominated sorting procedure is that a ranking
selection method is used to emphasize good points and
a niching method is used to maintain a stable
subpopulation of good points. NSGA differs from a
simple genetic algorithm only in the way to select
operator works. The crossover and mutation operators
remain as usual. The efficiency of NSGA lies in the
way of multiple objectives is reduced to a single fitness
measure by the creation of number of fronts, sorted
according to nondomination. Although the NSGA
approach has been successfully applied on a number of

multi-objective optimization problems, the main
criticism of the NSGA approach has been (i) its high
computational complexity of non-dominated sorting, O
(MN3) where M is the number of objectives and N is
the population size, (ii) the lack of elitism and (iii) the
need for specifying the tunable sharing parameter.
Recently, Deb et al. (2002) reported an improved
version of NSGA called NSGA-II to address all of
these issues. Specifically, NSGA-II alleviates all the
above difficulties by introducing a fast non-dominated
sorting procedure with O (MN2) computational
complexity, an elitist-preserving approach and a
parameterless niching operator for diversity
preservation.

Am. J. Applied Sci., 9 (10): 1706-1720, 2012

1710

Table 2: Flows between shops problem no 2
f m n k h f m n k h f m n k H
100,000 1 1 1 1 18 2 2 1 1 12 3 3 1 1
100,000 1 1 1 2 24 2 2 1 2 16 3 3 1 2
100,000 1 1 1 3 10 2 2 1 3 4 3 3 1 3
4 1 1 2 1 100,000 2 2 2 1 12 3 3 2 1
18 1 1 2 2 100,000 2 2 2 2 4 3 3 2 2
100,000 1 1 2 3 100,000 2 2 2 3 100,000 3 3 2 3
9 1 1 3 1 24 2 2 3 1 100,000 3 3 3 1
28 1 1 3 2 16 2 2 3 2 100,000 3 3 3 2
18 1 1 3 3 54 2 2 3 3 100,000 3 3 3 3
16 1 1 4 1 28 2 2 4 1 22 3 3 4 1
24 1 1 4 2 4 2 2 4 2 10 3 3 4 2
100,000 1 1 4 3 100,000 2 2 4 3 100,000 3 3 4 3
100,000 1 2 1 1 100,000 2 3 1 1 16 4 1 1 1
100,000 1 2 1 2 100,000 2 3 1 2 4 4 1 1 2
100,000 1 2 1 3 100,000 2 3 1 3 16 4 1 1 3
16 1 2 2 1 100,000 2 3 2 1 10 4 1 2 1
22 1 2 2 2 100,000 2 3 2 2 28 4 1 2 2
100,000 1 2 2 3 100,000 2 3 2 3 100,000 4 1 2 3
10 1 2 3 1 100,000 2 3 3 1 4 4 1 3 1
4 1 2 3 2 100,000 2 3 3 2 10 4 1 3 2
16 1 2 3 3 100,000 2 3 3 3 22 4 1 3 3
4 1 2 4 1 100,000 2 3 4 1 100,000 4 1 4 1
32 1 2 4 2 100,000 2 3 4 2 100,000 4 1 4 2
100,000 1 2 4 3 100,000 2 3 4 3 100,000 4 1 4 3
100,000 1 3 1 1 10 3 1 1 1 24 4 2 1 1
100,000 1 3 1 2 10 3 1 1 2 28 4 2 1 2
100,000 1 3 1 3 10 3 1 1 3 16 4 2 1 3
21 1 3 2 1 4 3 1 2 1 21 4 2 2 1
10 1 3 2 2 24 3 1 2 2 4 4 2 2 2
100,000 1 3 2 3 100,000 3 1 2 3 100,000 4 2 2 3
12 1 3 3 1 100,000 3 1 3 1 16 4 2 3 1
4 1 3 3 2 100,000 3 1 3 2 22 4 2 3 2
4 1 3 3 3 100,000 3 1 3 3 10 4 2 3 3
16 1 3 4 1 4 3 1 4 1 100,000 4 2 4 1
16 1 3 4 2 30 3 1 4 2 100,000 4 2 4 2
100,000 1 3 4 3 100,000 3 1 4 3 100,000 4 2 4 3
4 2 1 1 1 28 3 2 1 1 100,000 4 3 1 1
16 2 1 1 2 4 3 2 1 2 100,000 4 3 1 2
4 2 1 1 3 4 3 2 1 3 100,000 4 3 1 3
100,000 2 1 2 1 22 3 2 2 1 100,000 4 3 2 1
100,000 2 1 2 2 16 3 2 2 2 100,000 4 3 2 2
100,000 2 1 2 3 100,000 3 2 2 3 100,000 4 3 2 3
4 2 1 3 1 16 3 2 3 1 100,000 4 3 3 1
22 2 1 3 2 100,000 3 2 3 2 100,000 4 3 3 2
18 2 1 3 3 100,000 3 2 3 3 100,000 4 3 3 3
10 2 1 4 1 10 3 2 4 1 100,000 4 3 4 1
24 2 1 4 2 22 3 2 4 2 100,000 4 3 4 2
100,000 2 1 4 3 100,000 3 2 4 3 100,000 4 3 4 3

Yang and Natarajan (2010) made an attempt to solve
multi-objective optimization problem in turning by using
NSGA-II. Cheng et al. (2009) applied NSGA-II to
minimize the comprehensive cost and the whole
production load with time-sequence constraints to acquire
optimal Collaborative Manufacturing Chain (CMC).

Proposed GA using jumping genes for AGV based
FJMS: In this study, NSGA II has been designed to
optimize the material flow and makespan in an AGV
based jobshop manufacturing system. NSGA II is
illustrated in Fig. 2. Initially, a random parent population
Pi is created. The population is sorted based on the non-
domination. Each solution is assigned a fitness equal to
its non-domination level (1 is the best level, 2 is the next-
best level and so on). Thus, minimization of fitness is
assumed.

 At first, the usual selection, crossover and mutation
operators are used to create a child population Qi of size
N. Since elitism is introduced by comparing current
population with previously-found best non-dominated
solutions, a combined population Ri = PiUQi is formed.
The population Ri will be of size 2N. Then, the
population Ri is sorted according to non-domination.
Since all the previous and current population members
are included in Ri, the elitism is ensured. Now,
solutions belonging to the best non-dominated set F1 are
of best solutions in the combined population and must
be emphasized more than any other solution in the
combined population. Chromosomes of the front F1 are
included in the new population Pi+1. The remaining
chromosomes of the population Pi+1 is chosen from
subsequent non-dominated fronts in the order of their

Am. J. Applied Sci., 9 (10): 1706-1720, 2012

1711

ranking. Thus, solutions from the front F2 are chosen
next, followed by solutions from the front F3 and so
on. This procedure is continued till no more
chromosomes can be accommodated. To choose
exactly N population chromosomes, the solutions of
the last front using the crowded comparison operator
αn, in the descending order and the best solutions
needed to fill the population are chosen. The new
population Pi+1is now used for selection, crossover
and mutation to create a new population Qi+1 of size
N.

Input module: The input data required are:

• Number of products

• Number of shop types
• Number of shops
• The material floes between shops

 For the experimental problem considered in this
study:

• Number of products = 3
• Number of shop types = 3
• Number of shops = 4
• The material flows between shops as given in

Table 1-5
• velocity of AGV 4,5,6,7,8,9m/sfor the respective

problems

Table 3: Flows between shops problem no 3
f m n k h f m n k h F m n k h
100,000 1 1 1 1 25 2 2 1 1 14 3 3 1 1
100,000 1 1 1 2 30 2 2 1 2 20 3 3 1 2
100,000 1 1 1 3 15 2 2 1 3 8 3 3 1 3
8 1 1 2 1 100,000 2 2 2 1 18 3 3 2 1
25 1 1 2 2 100,000 2 2 2 2 8 3 3 2 2
100,000 1 1 2 3 100,000 2 2 2 3 100,000 3 3 2 3
11 1 1 3 1 30 2 2 3 1 100,000 3 3 3 1
31 1 1 3 2 20 2 2 3 2 100,000 3 3 3 2
25 1 1 3 3 56 2 2 3 3 100,000 3 3 3 3
20 1 1 4 1 35 2 2 4 1 24 3 3 4 1
30 1 1 4 2 8 2 2 4 2 15 3 3 4 2
100,000 1 1 4 3 100,000 2 2 4 3 100,000 3 3 4 3
100,000 1 2 1 1 100,000 2 3 1 1 20 4 1 1 1
100,000 1 2 1 2 100,000 2 3 1 2 8 4 1 1 2
100,000 1 2 1 3 100,000 2 3 1 3 20 4 1 1 3
20 1 2 2 1 100,000 2 3 2 1 15 4 1 2 1
24 1 2 2 2 100,000 2 3 2 2 35 4 1 2 2
100,000 1 2 2 3 100,000 2 3 2 3 100,000 4 1 2 3
15 1 2 3 1 100,000 2 3 3 1 8 4 1 3 1
8 1 2 3 2 100,000 2 3 3 2 15 4 1 3 2
20 1 2 3 3 100,000 2 3 3 3 26 4 1 3 3
8 1 2 4 1 100,000 2 3 4 1 100,000 4 1 4 1
34 1 2 4 2 100,000 2 3 4 2 100,000 4 1 4 2
100,000 1 2 4 3 100,000 2 3 4 3 100,000 4 1 4 3
100,000 1 3 1 1 15 3 1 1 1 30 4 2 1 1
100,000 1 3 1 2 15 3 1 1 2 35 4 2 1 2
100,000 1 3 1 3 15 3 1 1 3 20 4 2 1 3
27 1 3 2 1 8 3 1 2 1 27 4 2 2 1
15 1 3 2 2 30 3 1 2 2 8 4 2 2 2
100,000 1 3 2 3 100,000 3 1 2 3 100,000 4 2 2 3
18 1 3 3 1 100,000 3 1 3 1 20 4 2 3 1
8 1 3 3 2 100,000 3 1 3 2 26 4 2 3 2
8 1 3 3 3 100,000 3 1 3 3 15 4 2 3 3
20 1 3 4 1 8 3 1 4 1 100,000 4 2 4 1
20 1 3 4 2 37 3 1 4 2 100,000 4 2 4 2
100,000 1 3 4 3 100,000 3 1 4 3 100,000 4 2 4 3
8 2 1 1 1 35 3 2 1 1 100,000 4 3 1 1
20 2 1 1 2 8 3 2 1 2 100,000 4 3 1 2
8 2 1 1 3 8 3 2 1 3 100,000 4 3 1 3
100,000 2 1 2 1 26 3 2 2 1 100,000 4 3 2 1
100,000 2 1 2 2 20 3 2 2 2 100,000 4 3 2 2
100,000 2 1 2 3 100,000 3 2 2 3 100,000 4 3 2 3
8 2 1 3 1 20 3 2 3 1 100,000 4 3 3 1
26 2 1 3 2 100,000 3 2 3 2 100,000 4 3 3 2
25 2 1 3 3 100,000 3 2 3 3 100,000 4 3 3 3
15 2 1 4 1 15 3 2 4 1 100,000 4 3 4 1
30 2 1 4 2 26 3 2 4 2 100,000 4 3 4 2
100,000 2 1 4 3 100,000 3 2 4 3 100,000 4 3 4 3

Am. J. Applied Sci., 9 (10): 1706-1720, 2012

1712

Table 4: Flows between shops-problem4
f m n k h f m n k h f m n k h
100,000 1 1 1 1 20 2 2 1 1 14 3 3 1 1
100,000 1 1 1 2 24 2 2 1 2 18 3 3 1 2
100,000 1 1 1 3 12 2 2 1 3 6 3 3 1 3
6 1 1 2 1 100,000 2 2 2 1 14 3 3 2 1
20 1 1 2 2 100,000 2 2 2 2 6 3 3 2 2
100,000 1 1 2 3 100,000 2 2 2 3 100,000 3 3 2 3
12 1 1 3 1 26 2 2 3 1 100,000 3 3 3 1
30 1 1 3 2 18 2 2 3 2 100,000 3 3 3 2
20 1 1 3 3 6 2 2 3 3 100,000 3 3 3 3
18 1 1 4 1 30 2 2 4 1 24 3 3 4 1
26 1 1 4 2 6 2 2 4 2 12 3 3 4 2
100,000 1 1 4 3 100,000 2 2 4 3 100,000 3 3 4 3
100,000 1 2 1 1 100,000 2 3 1 1 18 4 1 1 1
100,000 1 2 1 2 100,000 2 3 1 2 6 4 1 1 2
100,000 1 2 1 3 100,000 2 3 1 3 18 4 1 1 3
18 1 2 2 1 100,000 2 3 2 1 12 4 1 2 1
24 1 2 2 2 100,000 2 3 2 2 30 4 1 2 2
100,000 1 2 2 3 100,000 2 3 2 3 100,000 4 1 2 3
12 1 2 3 1 100,000 2 3 3 1 6 4 1 3 1
6 1 2 3 2 100,000 2 3 3 2 12 4 1 3 2
18 1 2 3 3 100,000 2 3 3 3 24 4 1 3 3
6 1 2 4 1 100,000 2 3 4 1 100,000 4 1 4 1
33 1 2 4 2 100,000 2 3 4 2 100,000 4 1 4 2
100,000 1 2 4 3 100,000 2 3 4 3 100,000 4 1 4 3
100,000 1 3 1 1 12 3 1 1 1 26 4 2 1 1
100,000 1 3 1 2 12 3 1 1 2 30 4 2 1 2
100,000 1 3 1 3 12 3 1 1 3 18 4 2 1 3
23 1 3 2 1 6 3 1 2 1 23 4 2 2 1
12 1 3 2 2 26 3 1 2 2 6 4 2 2 2
100,000 1 3 2 3 100,000 3 1 2 3 100,000 4 2 2 3
14 1 3 3 1 100,000 3 1 3 1 18 4 2 3 1
6 1 3 3 2 100,000 3 1 3 2 24 4 2 3 2
6 1 3 3 3 100,000 3 1 3 3 12 4 2 3 3
18 1 3 4 1 6 3 1 4 1 100,000 4 2 4 1
18 1 3 4 2 32 3 1 4 2 100,000 4 2 4 2
100,000 1 3 4 3 100,000 3 1 4 3 100,000 4 2 4 3
6 2 1 1 1 30 3 2 1 1 100,000 4 3 1 1
18 2 1 1 2 6 3 2 1 2 100,000 4 3 1 2
6 2 1 1 3 6 3 2 1 3 100,000 4 3 1 3
100,000 2 1 2 1 24 3 2 2 1 100,000 4 3 2 1
100,000 2 1 2 2 18 3 2 2 2 100,000 4 3 2 2
100,000 2 1 2 3 100,000 3 2 2 3 100,000 4 3 2 3
6 2 1 3 1 18 3 2 3 1 100,000 4 3 3 1
24 2 1 3 2 100,000 3 2 3 2 100,000 4 3 3 2
20 2 1 3 3 100,000 3 2 3 3 100,000 4 3 3 3
12 2 1 4 1 12 3 2 4 1 100,000 4 3 4 1
26 2 1 4 2 24 3 2 4 2 100,000 4 3 4 2
100,000 2 1 4 3 100,000 3 2 4 3 100,000 4 3 4 3

Initialization module: The geno style coding is used to
represent the solutions of the problem as chromosomes.
Every chromosome consists of three substrings. Each
substring consists of 8 bits, the genes of the
chromosomes. Every two bits in a substring represents
a number between 1-3 (i.e., example 1 is represented as
01, two is represented as 10 and three is represented as
11). First substring represents the shop types for the
given positions for product one. Similarly, second and
third substring represents the shop types for the given
positions for product two and three respectively.

Evaluation module: The objective function is to
minimize the material flow and makespan in the AGV
based flexible jobshop manufacturing system. The
material flow is calculated by using Eq. 1 and
makespan is calculated by using Eq. 2.

Non-dominated sorting: This module sorts the
population based on non-domination. To start with, the
first solution from the population is kept in an empty set
P’. Thereafter, each solution p (the second solution
onwards) is compared with all members of the set P’
one by one. If solution p is dominated by any member
of P’, the solution p is ignored. If solution p is not
dominated by any member of P’, it is entered in P’. This
is how the set P’ grows with non-dominated solutions.
When all solutions of the population is checked, the
remaining members of P’ constitute the non-dominated
front. This is illustrated in the Fig. 3.

Measurement of crowding distance: To get an
estimate of the density of solutions surrounding a
particular solution in the population, the average
distance of two points on either side of this point along
each of the objectives is calculated. The crowding point
computation requires sorting of the population

Am. J. Applied Sci., 9 (10): 1706-1720, 2012

1713

according to each objective function value in its
ascending order of magnitude. Infinite distance is
assigned to boundary values for each individual in a
particular front. All the remaining solutions are
assigned a distance value equal to the absolute
difference in the function value of two adjacent
solutions. This calculation is continued with other
objective functions. The overall crowding distance
value is calculated as the sum of individual distance
values corresponding to each objective. Crowding
distance is calculated by the following formula:

Here:
m(j+1) = Objective function value of (j+1)th individual
m(j-1 = Objective function value of (j−1)th individual

mmax = Maximum value of objective function in the
front

mmin = Minimum value of objective function in the
front

 The basic idea behind the crowding distance is
finding the Euclidian distance between each
individual in a front based on their objectives. The
individual in the boundary are always selected since
they have infinite distance assignment. The crowding
distance of the chromosomes in initial population is
found. The Fig. 4 shows the sorting process of
crowding distance.

Table 5: Flows between shops problem 5
f m n k h f m n k h f M n k h
100,000 1 1 1 1 20 2 2 1 1 14 3 3 1 1
100,000 1 1 1 2 24 2 2 1 2 18 3 3 1 2
100,000 1 1 1 3 12 2 2 1 3 6 3 3 1 3
6 1 1 2 1 100,000 2 2 2 1 14 3 3 2 1
20 1 1 2 2 100,000 2 2 2 2 6 3 3 2 2
100,000 1 1 2 3 100,000 2 2 2 3 100,000 3 3 2 3
12 1 1 3 1 26 2 2 3 1 100,000 3 3 3 1
30 1 1 3 2 18 2 2 3 2 100,000 3 3 3 2
20 1 1 3 3 6 2 2 3 3 100,000 3 3 3 3
18 1 1 4 1 30 2 2 4 1 24 3 3 4 1
26 1 1 4 2 6 2 2 4 2 12 3 3 4 2
100,000 1 1 4 3 100,000 2 2 4 3 100,000 3 3 4 3
100,000 1 2 1 1 100,000 2 3 1 1 18 4 1 1 1
100,000 1 2 1 2 100,000 2 3 1 2 6 4 1 1 2
100,000 1 2 1 3 100,000 2 3 1 3 18 4 1 1 3
18 1 2 2 1 100,000 2 3 2 1 12 4 1 2 1
24 1 2 2 2 100,000 2 3 2 2 30 4 1 2 2
100,000 1 2 2 3 100,000 2 3 2 3 100,000 4 1 2 3
12 1 2 3 1 100,000 2 3 3 1 6 4 1 3 1
6 1 2 3 2 100,000 2 3 3 2 12 4 1 3 2
18 1 2 3 3 100,000 2 3 3 3 24 4 1 3 3
6 1 2 4 1 100,000 2 3 4 1 100,000 4 1 4 1
33 1 2 4 2 100,000 2 3 4 2 100,000 4 1 4 2
100,000 1 2 4 3 100,000 2 3 4 3 100,000 4 1 4 3
100,000 1 3 1 1 12 3 1 1 1 26 4 2 1 1
100,000 1 3 1 2 12 3 1 1 2 30 4 2 1 2
100,000 1 3 1 3 12 3 1 1 3 18 4 2 1 3
23 1 3 2 1 6 3 1 2 1 23 4 2 2 1
12 1 3 2 2 26 3 1 2 2 6 4 2 2 2
100,000 1 3 2 3 100,000 3 1 2 3 100,000 4 2 2 3
14 1 3 3 1 100,000 3 1 3 1 18 4 2 3 1
6 1 3 3 2 100,000 3 1 3 2 24 4 2 3 2
6 1 3 3 3 100,000 3 1 3 3 12 4 2 3 3
18 1 3 4 1 6 3 1 4 1 100,000 4 2 4 1
18 1 3 4 2 32 3 1 4 2 100,000 4 2 4 2
100,000 1 3 4 3 100,000 3 1 4 3 100,000 4 2 4 3
6 2 1 1 1 30 3 2 1 1 100,000 4 3 1 1
18 2 1 1 2 6 3 2 1 2 100,000 4 3 1 2
6 2 1 1 3 6 3 2 1 3 100,000 4 3 1 3
100,000 2 1 2 1 24 3 2 2 1 100,000 4 3 2 1
100,000 2 1 2 2 18 3 2 2 2 100,000 4 3 2 2
100,000 2 1 2 3 100,000 3 2 2 3 100,000 4 3 2 3
6 2 1 3 1 18 3 2 3 1 100,000 4 3 3 1
24 2 1 3 2 100,000 3 2 3 2 100,000 4 3 3 2
20 2 1 3 3 100,000 3 2 3 3 100,000 4 3 3 3
12 2 1 4 1 12 3 2 4 1 100,000 4 3 4 1
26 2 1 4 2 24 3 2 4 2 100,000 4 3 4 2
100,000 2 1 4 3 100,000 3 2 4 3 100,000 4 3 4 3

Am. J. Applied Sci., 9 (10): 1706-1720, 2012

1714

Table 6: Processing times
Product one Product two Product three
-- -- ---
 n n n

Problem no1
m 1 2 3 m 1 2 3 m 1 2 3
1 6 3 4 1 7 7 4 1 6 8 6
2 5 8 1,000 2 8 6 1,000 2 5 9 1,000
3 10 9 6 4 11 13 4 3 8 12 8
4 12 14 1,000 4 12 7 1,000 4 7 11 1,000
Problem no2
m 1 2 3 m 1 2 3 M 1 2 3
1 1 1 2 1 4 4 2 1 3 3 2
2 3 4 1,000 2 4 3 1,000 2 4 5 1,000
3 1 5 5 3 1 3 3 3 3 6 3
4 2 4 1,000 4 2 4 1,000 4 3 1 1,000
Problem no3
 m 1 2 3 m 1 2 3 M 1 2 3
1 2 3 1 1 2 6 3 1 2 2 4
2 3 2 1,000 2 1 3 1,000 2 1 1 1,000
3 2 4 3 3 6 1 2 3 4 4 2
4 3 2 1,000 4 3 2 1,000 4 2 2 1,000
Problem no 4
m 1 2 3 m 1 2 3 M 1 2 3
1 4 4 3 1 2 2 4 1 2 6 5
2 5 5 1,000 2 2 4 1,000 2 2 2 1,000
3 4 3 1 3 3 1 5 3 2 7 7
4 2 3 1,000 4 1 2 1,000 4 2 3 1,000
Problem no 5
m 1 2 3 m 1 2 3 M 1 2 3
1 7 6 3 1 1 2 4 1 2 3 5
2 6 4 1,000 2 2 1 1,000 2 3 2 1,000
3 3 3 1 3 1 1 2 3 3 2 7
4 2 2 1,000 4 2 3 1,000 4 2 2 1,000

Selection module: This module is constructed on the
basis of tournament selection mechanism. The size of
the mating pool N is filled by randomly choosing n
chromosomes for each individual in the population. One
chromosome out of n is selected based on the rank and
crowding distance. That is, the chromosome with least
rank is selected. In case of more chromosomes having
same rank, the chromosome having highest crowding
distance is selected. This selected chromosome is added
to the mating pool. Thus, tournament selection is done to
generate the mating pool based on the rank and the
crowding distance:

max min

m(j 1) m(j 1)
d d(0)

m m

+ − −= +
−

 In this proposed algorithm n value is taken as 3.
Therefore, for every chromosome in the new mating
pool, three chromosomes are randomly chosen from the

population. Out of three, one chromosome is selected
based on rank and crowding distance value.

Jumping genes module: Jumping operatiors has
unique feature depends upon chromosome. In our study
two genes at different positions are randomly selected.
The equal number of genes selected from the other
chromosomes at random position. The two selected
chromosomes are transferred mutually each other.
During jumping genes operation each chromosome
consists transposons. These are having the tendancy to
jump to other chromosomes. The number of
transposons canbe more than one in general case but,
inour case it is two. The locations of transposon are
randomly chosen. The cut and paste method is used to
implement the jumping gene operation. The element is
cut from the original site and pasted into a new location
in our case two genes are consider as transposons.The
jumping genes operation is illustrated in Table 9. In this
example the last position of parent one is selected and
gene is jumped last position of second parent
chromosome and vice versa.

Am. J. Applied Sci., 9 (10): 1706-1720, 2012

1715

Table 7: Waiting time

Product one Product two Product three
-- -- ---
 n n n

Problem no1
m 1 2 3 m 1 2 3 m 1 2 3
1 2 4 5 1 1 3 3 1 2 2 1
2 4 6 1,000 2 3 2 1,000 2 5 3 1,000
3 2 8 3 3 4 1 4 3 2 2
4 1 3 1,000 4 3 1 1,000 4 5 11 1,000
Problem no2
 n n n
m 1 2 3 m 1 2 3 m 1 2 3
1 2 3 2 1 3 8 7 1 3 3 9
2 8 2 1,000 2 6 8 1,000 2 7 9 1,000
3 9 6 7 3 4 5 6 3 6 6 4
4 10 7 1,000 4 2 9 1,000 4 3 5 1,000
Problem no3
 n n n
m 1 2 3 m 1 2 3 m 1 2 3
1 2 3 1 1 2 6 3 1 2 2 4
2 3 2 1,000 2 1 3 1,000 2 1 1 1,000
3 2 4 3 3 6 1 2 3 4 4 2
4 3 2 1,000 4 3 2 1,000 4 2 2 1,000
Problem no 4
 n n n
m 1 2 3 m 1 2 3 m 1 2 3
1 4 4 3 1 2 2 4 1 2 6 5
2 5 5 1,000 2 2 4 1,000 2 2 2 1,000
3 4 3 1 3 3 1 5 3 2 7 7
4 2 3 1,000 4 1 2 1,000 4 2 3 1,000
Problem no 5
 n n n
m 1 2 3 m 1 2 3 m 1 2 3
1 7 6 3 1 1 2 4 1 2 3 5
2 6 4 1,000 2 2 1 1,000 2 3 2 1,000
3 3 3 1 3 1 1 2 3 3 2 7
4 2 2 1,000 4 2 3 1,000 4 2 2 1,000

Crossover module: In the population obtained through
the selection module, the crossover operation
combines two good chromosomes to hopefully form
two better chromosomes.
 Every crossover may not create better solutions and
if bad solutions are created they will get eliminated in
the next selection operation due to lower fitness value.
Again, in order to preserve some good chromosomes
selected during the selection operation, not all the
chromosomes in the population are used in the
crossover. Hence crossover operation is exercised on
the chromosomes of the population with a probability,
known as cross over probability (pc). Crossover module
consists of the following two steps.

Step 1: Selection of chromosome for crossover.

 Selection of chromosomes for crossover is done
with a crossover probability pc and to choose an

appropriate crossover probability a sensitivity analysis
is conducted. The algorithm is executed with ten
different initial seeds for different combinations of
genetic algorithm parameters. After doing the
sensitivity analysis, it is found that minimum material
flow and makespan are attainable for a crossover
probability, pc of 0.6. Therefore, 60% of the
chromosomes are selected to undergo crossover
operation. Random number r between zero and one are
generated for all chromosomes. If the generated random
number r is less than 0.6 then the corresponding
chromosome is selected for crossover operation.

Step 2: Crossover operation

 The chromosomes selected for crossover are mated
pair wise and undergo two point crossover operation. The
crossover-site genes are chosen by creating two random
numbers between 1 and 50. An illustrative example of
crossover operation between two chromosomes is

Am. J. Applied Sci., 9 (10): 1706-1720, 2012

1716

exhibited in Table 10. In this example the 7th and 12th
genesare randomly selected as the crossover site. The
genes within the crossover site of the parent chromosomes
are crossed to produce the two offsprings.

Mutation module: The mutation operator alters genes
of a chromosome locally to hopefully create a better
chromosome. It is expected that if bad chromosomes
are created they will be eliminated by the selection

operation in subsequent generations and if good solutions
are created, they will be emphasized. The need for
mutation is to create a point in the neighbourhood of the
current point, thereby achieving a local search around the
current solution. The mutation is also used to maintain
the diversity in the population. The mutation operator has
a constructive as well as destructive effect. As it can
create a better solution by perturbing a solution, it can
also destroy a good solution.

Table 8: Sequences
Product 1 Product 2 Product 3
-- --- --
 n n n
Problem no 1
M 1 2 3 4 m 1 2 3 4 m 1 2 3 4
1 1 0 0 0 1 0 1 0 0 1 1 0 0 0
2 0 1 0 0 2 1 0 0 0 2 0 1 0 0
3 0 0 1 0 3 0 0 1 0 3 0 0 0 1
4 0 0 0 1 4 0 0 0 1 4 0 0 1 0
Problem no 2
M 1 2 3 4 m 1 2 3 4 m 1 2 3 4
1 0 0 0 1 1 0 1 0 0 1 1 0 0 0
2 0 1 0 0 2 0 0 0 1 2 0 0 1 0
3 0 0 1 0 3 0 0 1 0 3 0 1 0 0
4 1 0 0 0 4 1 0 0 0 4 0 0 0 1
Problem no 3
M 1 2 3 4 m 1 2 3 4 m 1 2 3 4
1 0 0 0 1 1 0 0 1 0 1 1 0 0 0
2 0 1 0 0 2 0 0 0 1 2 0 1 0 0
3 1 0 0 0 3 0 1 0 0 3 0 0 1 0
4 0 0 1 0 4 1 0 0 0 4 0 0 0 1
M 1 2 3 4 m 1 2 3 4 m 1 2 3 4
1 1 0 0 0 1 0 0 1 0 1 0 1 0 0
2 0 1 0 0 2 0 1 0 0 2 1 0 0 0
3 0 0 0 1 3 1 0 0 0 3 0 0 1 0
4 0 0 1 0 4 0 0 0 1 4 0 0 0 1
Problem no 5
M 1 2 3 4 m 1 2 3 4 m 1 2 3 4
1 0 1 0 0 1 0 0 1 0 1 1 0 0 0
2 0 0 0 1 2 0 1 0 0 2 0 0 1 0
3 0 0 1 0 3 1 0 0 0 3 0 0 0 1
4 1 0 0 0 4 0 0 0 1 4 0 1 0 0

Fig. 2: A sketch of NSGA-II

Am. J. Applied Sci., 9 (10): 1706-1720, 2012

1717

Fig. 3: Flowchart for non-dominated sorting

Fig. 4: Crowding distance calculation between pareto

solutions in a solution space

 As it is preferred in accepting the constructive
effect and since it is computationally expensive to
check the worth of every possible mutation for its
outcome, the mutation is generally used with a small
probability (pm). It is found that the minimum material
flow and makespan are attainable for a mutation
probability pm of 0.05. Hence, pm is taken as 0.05. In
this problem, the mutation is carried out for all genes. A
random number is generated corresponding to all genes
in the population. If the random number r is less than
0.05, then that corresponding gene is mutated. In
mutation, the gene value 0 is converted into 1 and 1 is
converted into 0. The mutation operation is illustrated
in Table 11.

Generation of intermediate population: In NSGA-II, an
intermediate population is formed which is the combined
population of parents and offsprings of the current
generation. Naturally, the resultant population size is
greater than the original population size.

Table 9: Chromosomes before and after jumping operation
 Chromosome with three substring
Operation (gene position)
Before jumping Parent I 11101110 1101110 10010010
Operation parent II 111011 10101111 11011001
After jumping Parent I 11101100 1111110 1010010
Operation Parent II 10111011 10101101 11011010

Table 10: Chromosomes before and after crossover
 Chromosome with three substring
Operation (gene position)
Before Parent I 11101110 01101110 10010010
Cross over parent II 00111011 10101111 11011001
After Parent I 11101111 10101110 10010010
Cross over Parent II 00111010 01101111 11011001

Table 11: Chromosomes before and after mutation
 Chromosomes with three
Operation substrings each (Gene Positions)1
Before mutation Original chromosome 11011001 01100111 10010001
After mutation Mutated chromosome 11010001 01100011 10110001

Non-dominated sorting is performed again on the
intermediate population since potential chromosomes may
be present both in the parent and the offspring populations.
New population is formed by replacing chromosomes in
the original population. The chromosomes with higher
ranks are selected and added to the population until the
population size is reached. The last front is included in the
population based on the crowding distance.

Termination criterion: The NSGA-II is terminated
when the iteration number reaches its maximum value.
In this algorithm, 500 is taken as the maximum number
of iteration.

Am. J. Applied Sci., 9 (10): 1706-1720, 2012

1718

RESULTS

 The proposed jumping genes GA algorithm
designed for the AGV based flexible jobshop
manufacturing system, is coded in MATLAB and the
experiments were conducted on an Intel Core2 Duo
Processor computer.
 The proposed algorithm is tested on five example
problems. The proposed algorithm try to minimizes both
the material flow time and makespan.

Table 12: Makespan and flow time of respective AGV sequences
 AGV Flow Product
Problem sequence Makespan time completion time

1 57 85.6 142.6
 2-1;1-1;2-1;1-2;2-1;1-3;2-2;1-1;3-3;
2 2-1;3-3;2-2;3-1;1-1;3-1;4-1;3-3;4-2;3- 32 110 142
 3;4-11-2;3-1;2-2;4-1;3-1;4-1;2-2;3-1;2-1;
3 1-3;2-2;3-1;4-1;3-1;2-1;4-1;3-1;1-2; 53 41.2 94.2
 3-1;1-1 3-3;4-2;4-1;2-1;4-2;2-2;1-3;2-1;2-
4 1;3-1;2-2;1-1;2-1;1-3;1-3;3-3;3-1;4-1 51 59.8 110.8
 2-1;1-3;2-1;1-3;3-2;1-2;2-1;3-3;2-1;3-2;
5 4-2;2-1;1-2;2-1;4-1;1-2;4-1;3-3;1-2;4-1. 41 63.42 104.42
 3-2;2-1;1-1;3-3;2-2;4-1;3-3;4-1;3-1;
 4-1;3-3;4-1;2-2;1-3;4-1;3-3;1-3

Table 13: Comarision
 Completion time
 --
 Flow time Product 1 Product 2 Product 3
 ------------------------ ------------------------ -----------------------
 Hamed Hamed Hamed Hamed
 Fazlollah Jumping Fazlollah Jumping Fazlollah Jumping Fazlollah Jumping
Problem tabaret al genes tabaret al genes tabaret al genes tabaret al genes

1 88.6 85.6 61 57 31 31 47 43
2 110 110 38 32 31 28 32 32
3 87 87 46 32 48 48 53 53
4 60.66 59.8 42 42 55 51 34 34
5 63.42 63.66 38 38 44 41 34 34

Table 14: Makespan calculation for simultaneous processing of products
Time Product one (m-n) Product two (m-n) Product three (m-n)
0 1-2 2-1 1-3
7 -- 1-1 --
8 2-1 -- --
9 -- -- 2-2
15 -- 3-3 --
21 -- -- 3-1
23 -- 4-2 --
31 -- 4-1
35 3-3 --
44 4-1 -- --
47 --
57 -- -- --

Table15: Shop types in different positions for three products

minimizing both material flow time and makespan
Problem 1
--
 Completion Completion
Completion time m n time m n time m n
8 1 2 7 2 1 9 1 3
35 2 1 15 1 1 21 2 2
44 3 3 23 3 3 31 3 1
57 4 1 31 4 2 43 4 1

Then for every problem, an experiment is conducted to
obtain shop types for products which is used to optimize
the material flow time seperately. The obtained result is
given in Table 12. For example for illustrating the
problem one, to complete this process, the AGV has to
follow the sequence 2-1;1-1;2-1;1-2;2-1;1-3;2-2;1-1;3-
3;2-1;3-3;2-2;3-1;1-1;3-1;4-1;3-3;4-2;3-3;4-1. The flow
time is 85.6 m. Total makespan is 57+85.6 = 142.6 m.
 This experiment is repeated again to obtain shop
types which minimize the makespan alone. In order to
utilize the machine shops effectively, a simultaneous
processing of products and the completion time of
products are also considered to minimize the total
makespan. These results are shown in Table 14-23.
 In order to find the efficiency of the jumping genes
GA algorithm, the five example problems are
experimented using Hamed fazlollahtabar mathematical
method and the results are shown in Table 13.

Table 16: Makespan calculation for simultaneous processing of

products
Time Product one (m-n) Product two (m-n) Product three (m-n)
0 4-1 2-2 1-2
6 -- -- 3-1
12 2-2 4-1 --
15 -- -- 2-1
16 3-1-- --
18 3-1 --
21 1-1 --
26 4-1
28 1-2
32 -- --

Table 17: Shop types in different positions for three products

minimizing both material flow time and makespan
Problem 2
--
Completion Completion Completion
time m n time m n time m n
12 4 1 12 2 2 6 1 2
18 2 2 16 4 1 15 3 1
28 3 1 21 3 1 26 2 1
32 1 2 28 1 1 32 4 1

Table 18: Makespan calculation for simultaneous processing of

products

Time Product Product Product
 one (m-n) two (m-n) three (m-n)
0 4-1 3-3 1-3
5 -- 4-2 --
15 2-1 -- --
19 1-3
20 2-2 2-1
24 3-3 --
27 -- 3-1
29 -- 1-1 --
32
40 -- --
48 -- -- 4-1
53 -- --

Am. J. Applied Sci., 9 (10): 1706-1720, 2012

1719

Table 19: Shop types in different positions for three products
minimizing both material flow time and makespan

Problem 3
--
Completion Completion Completion
time m n time m n time m n

15 4 1 5 3 3 20 1 3
19 2 1 20 4 2 27 2 1
24 1 3 29 2 2 48 3 1
32 3 3 48 1 1 53 4 1

Table 20: Makespan calculation for simultaneous processing of products

 Product Product Product
Time one (m-n) two (m-n) three (m-n)

0 1-2 3-3 2-1
4 -- -- 1-3
12 -- -- 3-2
16 2-1 -- --
26 -- 4-2
27 4-1 2-1
33 3-3 --
34 1-2 --
48 4-1
51 -- --

Table 21: Shop types in different positions for three products

minimizing both material flow time and makespan
Problem 4
--
Completion Completion Completion
time m n time m n time m n

16 1 2 27 3 3 4 2 1
27 2 1 34 2 1 12 1 3
33 4 1 48 1 2 26 3 2
42 3 3 51 4 1 34 4 2

Table 22: Makespan calculation for simultaneous processing of products

 Product Product Product
Time one (m-n) two (m-n) three (m-n)

0 2-2 3-2 1-1
8 -- 2-1 3-3
9 4-1 -- --
11 -- 1-3 --
15 -- -- 4-1
19 -- --
23 3-3 --
27 -- 4-1 2-2
29 1-3 -- --
38 -- --

Table 23: Shop types in different positions for three products

minimizing both material flow time and makespan
Problem 5
--
Completion Completion Completion
time m n time m n time m n
9 2 2 8 3 2 8 1 1
23 4 1 11 2 1 15 3 3
29 3 3 27 1 3 27 4 1
38 1 3 41 4 1 34 2 2

DISCUSSION

 The completion time of the product two is minimum
for the problem number 2, problem number 4 and
problem5 thant problem number 1 and 3.For the product
three, the completion time is comparably minimum for
the problem number one only.
 Almost flowtime and completion time of each
product is comparably minimum than Hamed
fazlollahtabar method. The completion time of product
one is minimum for problem number 1-3 except problem
number 4 and 5.

CONCLUSION

 In this study, an attempt is made to address the
issues related to an AGV based flexible jobshop
manufacturing system with the objectives of
minimizing the material flow and makespan as a whole.
Since it is a nonlinear programming problem, jumping
genes GA algorithm is developed to solve this problem.
 The proposed algorithm is tested with an AGV
based flexible manufacturing system. It is found that
the proposed algorithm is able to produce quality
solutions yielding minimum material flow time
(minutes) and makespan (minutes). The jumping genes
GA algorithm results are compared with Hamed
fazlollahtabar method.
 In order to maximize the machine utilization, a
simultaneous processing of products is considered. Here,
all the three products are processed simultaneously. The
result shows that, the makespan to complete all the
products minimized. This algorithm may applied for
more number of AGV s. for future study.

REFERENCES

Brandimarte, P., 1993. Routing and scheduling in a

flexible job shop by tabu search. Ann. Oper Res.,
41: 157-183. DOI: 10.1007/BF02023073

Brucker, P. and R. Schlie, 1990. Job-shop scheduling
with multi-purpose machines. Computing, 45: 369-
375. DOI: 10.1007/BF02238804

Chen, J.C., K.H. Chen, J.J. Wu and C.W. Chen, 2008.
A study of the flexible job shop scheduling
problem with parallel machines and reentrant
process. Int. J. Adv. Manuf Techno., 39: 344-354.
DOI: 10.1007/s00170-007-1227-1

Cheng, F., J. Yang and F. Ye, 2009. Multi-objective
optimization of collaborative manufacturing chain
with time-sequence constraints. Int. J. Adv. Manuf.
Technol., 40: 1024-1032. DOI: 10.1007/s00170-
008-1388-6

Am. J. Applied Sci., 9 (10): 1706-1720, 2012

1720

Deb, K., A. Pratap and S.A. Meyarivan, 2002. A fast
and elitist multiobjective genetic algorithm:
NSGA-II. IEEE Evolut Comput 6: 182-197. DOI:
10.1109/4235.996017

Fazlollahtabar, H., B. Rezaie and H. Kalantari, 2010.
Mathematical programming approach to optimize
material flow in an AGV-based flexible jobshop
manufacturing system with performance analysis.
Int. J. Adv. Manuf. Technol., 51: 1149-1158. DOI:
10.1007/s00170-010-2700-9

Gao, J., M. Gen, L.Y. Sun and X.H. Zhao, 2007. A
hybrid of genetic algorithm and bottleneck shifting
for multiobjective flexible job shop scheduling
problems. Comput. Ind. Eng., 53: 149-162. DOI:
10.1016/j.cie.2007.04.010

Goldberg, D.E., 1989. Genetic Algorithms in Search,
Optimization and Machine Learning. 1st Edn.,
Addison-Wesley, New York, ISBN-10:
0201157675, pp: 432.

Ho, N.B. and J.C. Tay, 2007. Using evolutionary
computation and local search to solve multi-
objective flexible job shop problems. Proceedings
of the 9th Annual Conference on Genetic and
Evolutionary Computation, (GEC’ 07), ACM New
York, NY, USA, pp: 821-828. DOI:
10.1145/1276958.1277121

Kacem, I., S. Hammadi and P. Borne 2002a. Pareto-
optimality approach for flexible job-shop scheduling
problems: hybridization of evolutionary algorithms
and fuzzy logic. Math. Comput. Simul., 60: 245-
276. DOI: 10.1016/S0378-4754(02)00019-8

Kacem, I., S. Hammadi and P. Borne, 2002b. Approach
by localization and multiobjective evolutionary
optimization for flexible job-shop scheduling
problems. IEEE Syst. Man Cybern, 32: 1-13. DOI:
10.1109/TSMCC.2002.1009117

Kannaiah, S.K., J. Thangavel, D.P. Kothari, 2011. A
genetic algorithm based multi objective service
restoraton in distribution system. J. Comput. Sci.,
7: 448-453. DOI: 10.3844/jcssp.2011.448.453

Liu, H.B., A. Abraham, O. Choi and S.H. Moon, 2006.
Variable neighborhood particle swarm
optimization for multi-objective flexible job-shop
scheduling problems. Proceedings of the 6th
International Conference on Simulated Evolution
and Learning, (SEL’ 06), Springer-Verlag Berlin,
Heidelberg, pp: 197-204. DOI:
10.1007/11903697_26

Mansour, M.A.A.F., 2011. A Genetic algorithm for
scheduling n jobs on a single machine with stochastic
controllable processing, tooling cost and earliness –
tardiness penelties. Am. J. Eng. Applied Sci., 4: 341-
349. DOI: 10.3844/ajeassp.2011.341.349

Ripon, K.S.N., C.H. Tsang and S. Kwong, 2006. Multi-
objective evolutionary job-shop scheduling using
jumping genes genetic algorithm. Proceedings of
the International Joint Conference on Neural
Networks, (IJCNN '06), IEEE Xplore Press,
Vancouver, BC., pp: 3100-3107. DOI:
10.1109/IJCNN.2006.247291

Saidi-Mehrabad, M. and P. Fattahi, 2007. Flexible job
shop scheduling with tabu search algorithms. Int. J.
Adv. Manuf. Technol., 32: 563-570. DOI:
10.1007/s00170-005-0375-4

Srinivas, N. and K. Deb, 1994. Multiobjective
optimization using nondominated sorting in genetic
algorithm. Evolut. Comput., 2: 221-248. DOI:
10.1162/evco.1994.2.3.221

Tay, J.C. and N.B. Ho, 2008. Evolving dispatching
rules using genetic programming for solving multi-
objective flexible job-shop problems. Comput.
Indus. Eng., 54: 453-473. DOI:
10.1016/j.cie.2007.08.008

Thmilselvan, R. and P. Balasubramanie, 2012.
Intergration of genetic algorithm with tabusearch
for jobshop scheduling with unordered
subsequence exchange crossover. J. Comput. Sci.,
8: 681-693. DOI: 10.3844/jcssp.2012.681.693

Xia, W. and Z. Wu, 2005. An effective hybrid
optimization approach for multi-objective flexible
job-shop scheduling problems. Comput. Ind. Eng.,
48: 409-425. DOI: 10.1016/j.cie.2005.01.018

Xing, L.N., Y.W. Chen and K.W. Yang, 2009. An
efficient search method for multi-objective flexible
job shop scheduling problems. J. Intell. Manuf., 20:
283-293. DOI: 10.1007/s10845-008-0216-z

Yang, S.H. and U. Natarajan, 2010. Multi-objective
optimization of cutting parameters in turning
process using differential evolution and non-
dominated sorting genetic algorithm-II approaches.
Intell. J. Adv. Manuf. Technol., 49: 773-784. DOI:
10.1007/s00170-009-2404-1

Yussof, S., A. Raina and H. Razali, 2011. An
Investigation of using parallel genetic algorithm for
solving the shortest path routing problem. J.
Comput. Sci., 7: 206-215. DOI:

10.3844/jcssp.2011.206.215
Zhang, G., X. Shao, P. Li and L. Gao, 2009. An

effective hybrid particle swarm optimization
algorithm for multi-objective flexible job-shop
scheduling problem. Comput. Ind. Eng., 56: 1309-
1318. DOI: 10.1016/j.cie.2008.07.021

