
American Journal of Applied Sciences 9 (10): 1694-1705, 2012
ISSN 1546-9239
© 2012 Science Publication

Corresponding Author: Thamilselvan, R., Department of Computer Science and Engineering, Kongu Engineering College,
Perundurai, Erode 638 052, Tamilnadu, India

1694

Hybridization of Genetic Algorithm with Parallel

Implementation of Simulated Annealing for Job Shop Scheduling

Thamilselvan Rakkiannan and Balasubramanie Palanisamy
Faculty of Computer Science and Engineering,

Kongu Engineering College, Perundurai, Erode 638 052, Tamilnadu, India

Abstract: Problem statement: The Job Shop Scheduling Problem (JSSP) is observed as one of the
most difficult NP-hard, combinatorial problem. The problem consists of determining the most efficient
schedule for jobs that are processed on several machines. Approach: In this study Genetic Algorithm
(GA) is integrated with the parallel version of Simulated Annealing Algorithm (SA) is applied to
the job shop scheduling problem. The proposed algorithm is implemented in a distributed
environment using Remote Method Invocation concept. The new genetic operator and a parallel
simulated annealing algorithm are developed for solving job shop scheduling. Results: The
implementation is done successfully to examine the convergence and effectiveness of the
proposed hybrid algorithm. The JSS problems tested with very well-known benchmark problems,
which are considered to measure the quality of proposed system. Conclusion/Recommendations:
The empirical results show that the proposed genetic algorithm with simulated annealing is quite
successful to achieve better solution than the individual genetic or simulated annealing algorithm.

Key words: Job shop scheduling, genetic algorithm, simulated annealing

INTRODUCTION

 Meta-heuristics is used to solve with the
computationally hard optimization problems. Meta-
heuristics consist of a high level algorithm that guides
the search using other particular methods. Meta-
heuristics can be used as a standalone approach for
solving hard combinatorial optimization problems. But
now the standalone approach is drastically changed and
attention of researchers has shifted to consider another
type of high level algorithms, namely hybrid
algorithms. There are at least two issues has to be
considered while combining more than one meta-
heuristics: (a) how to choose the meta-heuristic
methods and (b) how to combine the chosen heuristic
methods into new hybrid approaches. Unfortunately,
there are no theoretical foundations for these issues. For
the former, different classes of search algorithms can be
considered for the purposes of hybridization, such as
exact methods, simple heuristic methods and meta-
heuristics. Moreover, meta-heuristics themselves are
classified into local search based methods, population
based methods and other classes of nature inspired
meta-heuristics. Therefore, in principle, one could
combine any methods from the same class or methods
from different classes. Our hybrid approach combines

Genetic Algorithms (GAs) and Simulated Annealing
(SA) methods. Roughly, our hybrid algorithm runs the
GA as the main algorithm and calls SA procedure to
improve individuals of the population.
 The rest of the paper is organized as follows. The
description of JSSP problem is followed by the
introduction. Followed by there is a discussion about
the literature review. In the fourth part, GA and SA
methodologies are given for job shop scheduling.
Finally the implementation of the HGAPSA to the
JSSP is given with the algorithm using the proposed
method with the experimental results and a
discussion of the proposed method and a conclusion
and future enhancement is also given.

Job Shop scheduling problem: The n×m Job Shop
Scheduling problem labeled by the symbol n, m, J, O, G
and Cmax. It can be described by the finite set of n jobs J
= {j 0, j1, j2, j3,…..jn, jn+1} (the operation 0 and n+1 has
duration and represents the initial an final operations),
each job consist of a chain of operations O =
{o1,o2,o3,….om}, Each operation has processing time
{ʎi1, ʎi2, ʎi3,…. ʎim}, finite set of m machines M = {m1,
m2, m3….mm}, G is the matrix that represents the
processing order of job in different machines and Cmax

is the makespan that represents the completion time of

Am. J. Applied Sci., 9 (10): 1694-1705, 2012

1695

the last operation in job shop. On O define A, a binary
relation representing precedence between operations. If
(v, u)∈A then u has to be performed before v. A
schedule is a function S: 0→IN∪{0} that for each
operation u defines a start time S(u). A schedule S is
feasible if Eq. 1-3:

u 0 :S(u) 0∀ ∈ ≥ (1)

u, v 0,(u,v) A : S(u) (u) S(v)∀ ∈ ∈ + λ ≤ (2)

u, v O, u v, M(v) M(v) :S(u)

(u) S(v)orS(v) (v) S(u)

∀ ∈ ≠ = +
λ ≤ + λ ≤

 (3)

 The length of a schedule S is Eq. 4:

len (S) = maxv∈o(S(u)+λ(u)) (4)

 The goal is to find an optimal schedule, a feasible
schedule of minimum length, min (len(S)).
 An instance of the JSS problem can be represented
by means of a disjunctive graph G = (O, A, E). Here O
is the vertex which represents the operations and A
represents the conjunctive arc which represents the
priority between the operations and the edge in E = {(u,
v)|u, v∈O, u≠v, M (u) = M(v)} represent the machine
capacity constraints. Each vertex u has a weight, equal
to the processing time ʎ(u). Let us consider the bench
mark problem of the JSSP with four jobs, each has
three different operations and there are three different
machines. Operation sequence, machine assignment
and processing time are given in Table 1.
 Based on the above bench mark problem, we
create a matrix G, in which rows represent the
processing order of operation and the column
represents the processing order of jobs. Also we
create a matrix P, in which row i represents the
processing time of Ji for different operations:

1 2 3

3 2 1

2 3 1

1 3 2

2 3 4M M M

4 4 1M M M
G P

2 2 1M M M

3 3 1M M M

 = =

 The processing time of operation i on machine j is
represented by Oij. Let ʎij be the processing time of Oij in
the relation Oij→ Oij. Cij represents the completion of
the operation Oij. So that the value Cij = Cik + ʎij

represents the completion time of Oij. The main
objective is to minimize of Cmax. It can be calculated as
Eq. 5:

max all ij ijC max O O(C)= ∈ (5)

 The distinctive graph of the above bench mark job
scheduling problem is shown in Fig. 1, in which
vertices represents the operation. Precedence among the
operation of the same job is represented by
Conjunctive arc, which are doted directed lines.
Precedence among the operation of different job is
represented by Disjunctive arc, which areundirected
solid lines. Two additional vertices S and E
represents the start and end of the schedule.
 The Gantt Chart of the above bench mark job
scheduling problem is shown in Fig. 2. Gantt Chart is
the simple graphical representation technique for job
scheduling. It simply represents a graphical chart for
display schedule; evaluate makespan, idle time, waiting
time and machine utilization.

Literature review: Many researchers are working in
job shop scheduling problem. Garey et al. (1976) were
the first who introduced job shop scheduling problems.
Some researchers like Brandimart (1993) and Paulli
(1995) have used dispatching rules for solving flexible
job shop scheduling problems. Attention to size proved
that job shop scheduling problems are NP-Hard (Garey
et al., 1976) and with added flexibility increase
complexity more than job shop. Ram et al. (1996) have
applied a parallel simulated annealing for job shop
scheduling, but the same temperature is maintained in
all the machines. Bozejko et al. (2009) have proposed
the parallel simulated annealing for the job shop
scheduling. But the same sequential algorithm is
implemented more than one machine in a parallel order.
Ramkumar et al. (2012) proposed real time fuzzy logic
for job shop scheduling problem.

Table 1: Processing time and sequence for 4×3 problem instance
 Operation number and Machine Processing
Job processing sequence assigned time
Start operation 0 -- 0
(Dummy)
J1 O11 M1 2
 O12 M2 3
 O13 M3 4
J2 O21 M3 4
 O22 M2 4
 O23 M1 1
J3 O31 M2 2
 O32 M3 2
 O33 M1 3
J4 O41 M1 3
 O42 M3 3
 O43 M2 1
End operation 0 -- 0
(Dummy)

Am. J. Applied Sci., 9 (10): 1694-1705, 2012

1696

Fig. 1: Illustration of disjunctive graph

Fig. 2: A Schedule of Gantt Chart for 4×3 problem Instance

Objective of JSP problem is to find the optimal
schedule with minimum makespan, but this result is not
clearly shown by author. Thamilselvan and
Balasubramanie (2011; 2012) have used the various
crossover strategies for genetic algorithm for JSSP and
integration of Genetic algorithm with Tabu Search for
the JSSP. The above two methods were efficient for the
small size JSP problems. Mohamed (2011) proposed a
genetic algorithm for JSSP, but this algorithm is efficient
only for less number of jobs. The ratio scheduling
algorithm to solve the allocation of jobs in the shop
floor was proposed by Hemamalini et al. (2010). This
algorithm is more efficient when the result for the
bench mark instances when the due date is less than
half of the total processing time.

MATERIALS AND METHODS

Genetic algorithm: Genetic algorithms are
probabilistic meta-heuristic technique, which may be
used to solve computationally hard optimization
problems. They are based on the genetic process of
chromosome. Over many generations, natural

populations evolve according to the principles of
natural selection of genes, i.e., survival of the fittest,
first clearly stated by Charles Darwin in The Origin of
Species. There is a initial solution as a Population to start
the process and it filled with different order of
chromosome. The chromosome consists of collection
genes. Job is represented by each gene in
chromosome and the job sequence in a schedule
based on the position of the gene. GA uses Crossover
and Mutation operation to generate a new population.
By crossover operation, GA generates the
neighborhood to explore new feasible solution.
 A typical genetic algorithm is illustrated in Fig. 3.
It first creates an initial solution as a population
consisting of randomly generated collection of genes.
After applying genetic operations like crossover,
mutation and selection, the new solutions are
generated.After generating the new solutions, evaluate
each individual in the population. The optimal solutions
are used to carry the next generation. The above steps
are repeated until the termination condition is satisfied.
A GA is terminated after a certain number of iterations
or if a certain level of fitness value has been reached.

Am. J. Applied Sci., 9 (10): 1694-1705, 2012

1697

Fig. 3: A standard genetic algorithm

The structure of a genetic algorithm for the scheduling
problem can be divided into four parts: the choice of
representation of individual in the population; the
determination of the fitness function; the design of
genetic operators; the determination of probabilities
controlling the genetic operators. Yamada and Nakano
(1997) was implemented the GA for the job shop
scheduling problems.

Sequential Simulated Annealing (SSA): SSA
belongs to the type of local search algorithms (Eglese,
1990). SA algorithm is inspired metal cooling process.
In this process, the temperature is gradually reduced to
reach the optimal solutions. SA algorithm searches
current solution neighborhoods for a better solution and
uses it for many complementary problems. Some
researchers like Fattahi et al. (2007; 2009) and Zandieh
et al. (2008) used SA algorithm in flexible job shop
environment. SA algorithm generates an initial solution
randomly. A neighbor of this solution is then generated
by a suitable mechanism and the change in the cost
function is calculated. If a decrease in the cost function
is obtained, the current solution is replaced by the
generated neighbor. If the cost function fun of the
neighbor is greater, the newly generated neighbor
replaces the current solution with an acceptance
probability function given in Eq. 6:

d
P(d,T) exp()

T
= − (6)

Where:

d Cs[j] Cs[i]= −

 CS[i] and CS[j] are the cost function generated state
and the present state respectively. T is the temperature

to control the annealing process. The above equation
implies that a small increase in fun are more likely to be
accepted than large increases in the fun and also that
when T is high, most of the newly generated neighbors
are accepted. However, most of the cost increasing
transactions are rejected if T approaches zero. Initially
the temperature of the SA algorithm is kept as high so
that the algorithm proceeds by generating a certain
number of neighbors at each temperature, while the
temperature parameter is gradually dropped. This
algorithm leads to an optimal solution. The typical
procedure for SSA algorithm is shown in Fig. 4.
 For SSA the initial schedule is generated from a
disjunctive graph G for solving job shop scheduling
problem. The Giffer and Thompson (1960) algorithm is
used to find the initial schedule. This algorithm obtains
the schedule with all the operations (n) and all the
machines (m) with the criteria employed being the
earliest starting time and the processing time of each
of the operations. The operation not yet included in
the partial schedule at each stage, if the minimum
time is chosen. If all the operations are included in
the schedule, then the partial schedule becomes a
complete schedule. The generated complete schedule
can be represented in a diagraph.
 The earliest and the latest start time of each
operations in a diagraph are calculated after obtain the
diagraph with all the operations. The critical path is
used to find the earliest and latest start time. The
earliest start time or the latest start time of the last
operation is known as the makespan. This is the cost of
the schedule (Krishna et al., 1995).
 The critical path in a diagraph is obtained after
evaluate the cost of the schedule. The critical path can
be defined as a set of edges from the first vertex to the
last vertex which satisfy the following properties.

Am. J. Applied Sci., 9 (10): 1694-1705, 2012

1698

Fig. 4: A standard simulated annealing algorithm

Fig. 5: Permutation of operations on a critical block

• The earliest start time and latest start of each vertex

on the edge must be the same
• For the same edge u→v, the operation time and the

sum of the start time of u must be equal to the start
time of v

Neighborhood of a schedule S can be defined as a set of
schedules that can be obtained by applying the
transition operator on the given schedule S (Li-Ning et
al., 2009). The transition operator permutes the order of
operations in a critical block by moving an operation to
the beginning or end of the critical block, thus forming
the CB neighborhood. In this neighborhood, the
distance between S and any element in N(S) can vary
depending on the position of the moving operation. It
has been experimentally shown in (Yamada et al.,

1994) that SA using the CB neighborhood is more
powerful than SA using the AS neighborhood. Thus,
the CB neighborhood may as well be investigated in the
GA context. Figure 5 illustrates how the two transition
operators work.
 Parallel Simulated Annealing: For solving the job
shop scheduling problem, there are two approaches
adapted in the SA algorithm. The first approach is to
assign the operations to machines in a sequential order.
In the second approach, the operations are assigned to
machines and processed in two levels to reduce the
complexity of the problem. In the first level, the
operations are assigned to machines and in the second
level, the operations are scheduled in machines. The
second approach is known as the parallel
implementation of job shop scheduling.

Am. J. Applied Sci., 9 (10): 1694-1705, 2012

1699

 The main objective function of the proposed
algorithm is to minimize the makespan. We use the
second approach for solving job shop scheduling
problem. The procedure SA_Parallel() generate an
initial schedule S[i] and then the algorithm is parallelly
running on different machines. Let N be the total
number of iterations in each SA algorithm temperature,
S[j] is the neighbourhood of S[i], Bc is best known
solution cost, Bs is the best known schedule of JSSP. As
mentioned earlier, the given scheduling algorithm to
schedule operations on machines. The generated S[j] is
the input to the scheduling algorithm and then the
algorithm compute the cost of S[j] as CS[j]. The cost of
the new schedule is compared with the cost of the initial
schedule to process the algorithm.

Procedure: SA_Parallel()
Input:
temperature T, starting temperature Ts, ending
temperature Te, number of iteration N.
Begin
 generate initial schedule S[i].
 compute the cost CS[i] of initial schedule S[i].
 n=1, T=Ts.
 while T<Te
 while n<N
 select neighbourhood S[j] of S[i].
 compute the cost CS[j] of the new schedule S[j].
 compute = Cs[j]-Cs[i] .
 if δ≤0 then
 S[i]=S[j].
 CS[i]=CS[j].
 else
 generate a random variable R∼(0, 1).
 if exp (-δ/T)>R
 S[i]=S[j].
 CS[i]=CS[j].
 end if
 end if
 n=n+1.
 end while
 T= T*0.995.
 end while
 if CS[i]<Bc
Bc=CS[i].
Bs=S[i].
 end if
 End

 The implementation of the above algorithm is done
by a server machine and a set of client machines. The
server node generates the initial schedule S[i], the
processing times of all the operations and the machine

order for each job. This server machine then sends the
initial schedule and different range of temperature
parameters to each of the client machines on the
network. Each client machine has its maximum
temperature Ts and minimum temperature Te. The client
machines execute the above algorithm with different
range of temperature and send the solution to the server
machine. After receiving the solutions from the client
machines, the server machine selects the best solution
with the minimal makespan.

Hybrid Genetic Algorithm with Parallel Simulated
Annealing (HGAPSA): Parallel implementation of
SA generates a better solution with faster
convergence. Initially, n number of client machines
processes the SA algorithm with different initial
schedule. After the fixed number of iterations, the
client machines are exchange the results with the
server machine to get the best schedule.
 In genetic algorithm, an initial population
consisting of a set of schedule is selected and then the
schedules are evaluated. Relatively more effective
schedule are selected to have more off springs, where
are in some way, related to the original solutions. The
performance of the genetic algorithm depends on the
crossover operation. If it is properly selected, the final
population will produce the better solution. Simulated
annealing algorithm aims to produce such a solution.
For the parallel SA implementation, we need good
initial solutions for the fast convergence of SA. GA will
produce a good number of initial solutions. The
operator used for generating off springs in job shop
scheduling is related to the processing order of jobs on
different machines of the two parent solutions.
 We introduce new cross over strategy named as
Unordered Subsequence Exchange Crossover (USXX)
that children inherit subsequences on each machine as
far as possible from parents. Unordered Subsequence
exchange crossover creates a new children’s even the
subsequence of parent1 is not in the same order in
parent 2. The algorithm for USXX is as follows:

Step 1: Generate two random parent individual

namely P1 and P2 with a sequence of all
operations.

Step 2: Generate two child individual namely C1 and
C2.

Step 3: Select random subset of operations (genes)
from P1 and copy it into C1.

Step 4: Starting from the first crossover point from P1,
look for elements in P2 that have been copied
as in the same order.

Am. J. Applied Sci., 9 (10): 1694-1705, 2012

1700

Step 5: The remaining operations of P2 that are not in
the subset can be filled in C1 so as to maintain
their relative ordering.

Procedure: HGAPSA_Server()
Input: Initialize number of iterations Ni.

Begin
iter = 1.
while iter< = Ni
server machine generates a n initial solutions S[1],
S[2],…S[n] using GA.
for i = 1 to n
assign S[i] to Ci where Ci is the ith client machine.
each Ci run SA_Parallel() algorithm using S[i].
after getting the best solution, client machine send it to
server machine.
end for
iter=iter+1.
end while
End

 The above GA and PSA algorithms are
implemented in a network of one server and five
workstations. The server node use GA to generates n
number of initial schedule and assigns those schedules
to the n number of client machines as an initial solution.
The genetic algorithm starts with an initial schedule and
then it performs USXX crossover operation to update
the population. This process has to be repeated number
of times. The client machine use
SA_Parallel()procedure to find the best schedule and
then the best schedule is send to the server machine.

RESULTS AND DISCUSSION

 The performance of the proposed HGAPSA
algorithm is compared with the Genetic Algorithm
(GA), Sequential Simulated Annealing (SSA)
Algorithm and Parallel Simulated Annealing (PSA)
for standard JSP test instances of Lawrence (1984)
instances from LA30 to LA40 and Storer et al.
(1992) instances SWV11-SWV20.
 Table 2 shows comparison of makespan value
produced from different algorithms for problem
instances LA30-LA40 (Lawrence, 1984) Column 1
specifies the problem instances, Column 2 specifies the
number of jobs, Column 3 shows the number of
machines, Column 4 specify the optimal value for each
problem. Column 5, 6, 7 and 8 specify results from SA,
SSA, PSA and HGAPSA respectively. It shows that the
proposed hybrid algorithm has succeeded in getting the
optimal solutions for all the problems.

 Figure 6 shows average makespan value generated
by GA, SSA, PSA and HGAPSA for different problem
instances of Lawrence (1984). It also shows that SSA
produce the worst result compare to other two algorithms
and the HGAPSA algorithm is better than the other two
algorithms. Figure 7 shows the comparison of Average
Relative Error for all the three methods. It clearly shows
that the Average Relative Error for HGAPSA is 0.13
Table 3 shows comparison of makespan value produced
from different algorithms for problem instances
SWV11-SWV20 (Storer et al., 1992) Column 1
specifies the problem instances, Column 2 specifies the
number of jobs, Column 3 shows the number of
machines, Column 4 specify the optimal value for each
problem. Column 5, 6, 7 and 8 specify results from SA,
SSA, PSA and HGAPSA respectively. It shows that the
proposed hybrid algorithm has succeeded in getting the
optimal solutions for all the problems.
 Figure 8 shows average makespan value generated
by GA, SSA, PSA and HGAPSA for different problem
instances of Storer et al. (1992). It also shows that SSA
produce the worst result compare to other two algorithms
and the HGAPSA algorithm is better than the other two
algorithms. Figure 9 shows the comparison of Average
Relative Error for all the three methods. It clearly shows
that the Average Relative Error for HGAPSA is 0.17.
 Typical runs of problem instances LA30
(Lawrence, 1984) are illustrated in Fig. 10 by the GA,
SSA, PSA and HGAPSA. The graph shows that the
proposed HGAPSA reach the optimal solution faster
than other two methods. For LA30, GA, SSA and PSA
never produces the best known solution. But HGAPSA
produced the optimal solution with 2000 iterations. We
have tested with 5000 iterations, but other algorithms
does not produce a optimal solution.
 Typical runs of problem instances SWV15 (Storer
et al., 1992) are illustrated in Fig. 11 by the GA, SSA,
PSA and HGAPSA. The graph shows that the proposed
HGAPSA reach the optimal solution faster than other
two methods. For SWV15, GA, SSA and PSA never
produces the best known solution. But HGAPSA
produced the optimal solution with 2500 iterations.
We have tested with 6000 iterations, but other
algorithms does not produce a optimal solution.
 Table 4 shows the computational time of all the
above mentioned problems. It is given in the brackets
with the makespan. For all the problems, proposed
algorithm took a minimum time to reach the optimal
value. The average makespan and computational time
for LA30-LA40 and SWV11-SWV20 are shown in
Table 5. It clearly shows that the proposed algorithm
produce a minimum makespan with less computational
time. It is shown in the Fig. 12.

Am. J. Applied Sci., 9 (10): 1694-1705, 2012

1701

Table 2: Results for instances by Lawrence (1984)
 Problem size
 ---------------------------- Makespan ttime Relative error (%)
Problem Jobs Machines -- --
Name (n) (m) Optimal GA SSA PSA HGAPSA GA SSA PSA HGAPSA
LA30 20 10 1355.00 1398.00 1430.00 1360.00 1355.00 3.17 5.54 0.37 0.00
LA31 30 10 1784.00 1829.00 1950.00 1800.00 1790.00 2.52 9.30 0.90 0.34
LA32 30 10 1850.00 1877.00 2126.00 1875.00 1860.00 1.46 14.92 1.35 0.54
LA33 30 10 1719.00 1820.00 2006.00 1740.00 1719.00 5.88 16.70 1.22 0.00
LA34 30 10 1721.00 1810.00 1945.00 1742.00 1725.00 5.17 13.02 1.22 0.23
LA35 30 10 1888.00 1950.00 2105.00 1953.00 1895.00 3.28 11.49 3.44 0.37
LA36 15 15 1279.00 1279.00 1305.00 1285.00 1279.00 0.00 2.03 0.47 0.00
LA37 15 15 1408.00 1441.00 1453.00 1423.00 1408.00 2.34 3.20 1.07 0.00
LA38 15 15 1219.00 1220.00 1220.00 1219.00 1219.00 0.08 0.08 0.00 0.00
LA39 15 15 1246.00 1246.00 1255.00 1250.00 1246.00 0.00 0.72 0.32 0.00
LA40 15 15 1241.00 1241.00 1248.00 1245.00 1241.00 0.00 0.56 0.32 0.00
Average 1519.09 1555.55 1640.27 1535.64 1521.55 2.17 7.05 0.97 0.13

Table 3: Results for instances by Storer et al. (1992)

 Problem size
 --------------------- Optimal Makespan time Relative error (%)
Problem Jobs Machines --------------------------- --- ---
Name (n) (m) UB LB GA SSA PSA HGAPSA GA SSA PSA HGAPSA

SWV11 50 10 2991 2983.00 3200.00 3259.00 3012.00 3048.00 6.99 8.96 0.70 1.91
SWV12 50 10 3003 2972.00 3250.00 3328.00 3120.00 3012.00 8.23 10.82 3.90 0.30
SWV13 50 10 3104 3754.00 3762.00 3250.00 3108.00 20.94 21.20 4.70 0.13
SWV14 50 10 2968 3487.00 3502.00 3212.00 2968.00 17.49 17.99 8.22 0.00
SWV15 50 10 2904 2885.00 4235.00 4240.00 3225.00 2904.00 45.83 46.01 11.05 0.00
SWV16 50 10 2924 3547.00 3605.00 3332.00 3025.00 21.31 23.29 13.95 3.45
SWV17 50 10 2794 3269.00 3280.00 3002.00 2800.00 17.00 17.39 7.44 0.21
SWV18 50 10 2852 3156.00 3193.00 2962.00 2875.00 10.66 11.96 3.86 0.81
SWV19 50 10 2843 3169.00 3201.00 2930.00 2850.00 11.47 12.59 3.06 0.25
SWV20 50 10 2823 3231.00 3235.00 2963.00 2823.00 14.45 14.59 4.96 0.00
Average 2920.60 2946.67 3429.80 3460.50 3100.80 2941.30 17.44 18.48 6.19 0.71

Fig. 6: Average makespan values by different algorithms for LA30-LA40

Am. J. Applied Sci., 9 (10): 1694-1705, 2012

1702

Fig. 7: Average relative error values by different algorithms for LA30-LA40

Fig. 8: Average makespan values by different algorithms for SWV11-SWV20

Fig. 9: Average relative error values by different algorithms for SWV11-SWV20

Am. J. Applied Sci., 9 (10): 1694-1705, 2012

1703

Fig. 10: The time evolutions of makespans for the LA30 (20 jobs and 10 machines)

Fig. 11: The time evolutions of makespans for the SWV15 (50 jobs and 10 machines)

Fig. 12: Comparision of average makespan and computational time

Am. J. Applied Sci., 9 (10): 1694-1705, 2012

1704

Table 4: Computational time for LA30-LA40 and SWV11-SWV20
 Problem size
 ----------------------------------- Makespan (CPU time)
Problem Jobs Machines ---
Name (n) (m) Optimal GA SSA PSA HGAPSA
LA30 20 10 1355 1398(2539) 1430(3152) 1360(1925) 1355(1554)
LA31 30 10 1784 1829(2780) 1950(3750) 1800(2532) 1790(2106)
LA32 30 10 1850 1877(2850) 2126(4104) 1875(2585) 1860(2151)
LA33 30 10 1719 1820(2829) 2006(4007) 1740(2581) 1719(1922)
LA34 30 10 1721 1810(2971) 1945(3945) 1742(2625) 1725(2051)
LA35 30 10 1888 1950(2920) 2105(4398) 1953(2453) 1895(2264)
LA36 15 15 1279 1279(1978) 1305(2585) 1285(1615) 1279(1432)
LA37 15 15 1408 1441(2752) 1453(3485) 1423(2125) 1408(1659)
LA38 15 15 1219 1220(1885) 1220(2423) 1219(1598) 1219(1264)
LA39 15 15 1246 1246(1800) 1255(2540) 1250(1605) 1246(1351)
LA40 15 15 1241 1241(1752) 1248(2408) 1245(1620) 1241(1337)
SWV11 50 10 2991 3200(4438) 3259(5632) 3012(3625) 3048(3184)
SWV12 50 10 3003 3250(5235) 3328(6780) 3120(3882) 3012(3537)
SWV13 50 10 3104 3754(5498) 3762(7720) 3250(4250) 3108(3691)
SWV14 50 10 2968 3487(4531) 3502(5751) 3212(3632) 2968(3177)
SWV15 50 10 2904 4235(4427) 4240(5675) 3225(3421) 2904(3124)
SWV16 50 10 2924 3547(4513) 3605(5712) 3332(3438) 3025(3149)
SWV17 50 10 2794 3269(3900) 3280(4520) 3002(3185) 2800(2870)
SWV18 50 10 2852 3156(4104) 3193(4732) 2962(3278) 2875(3037)
SWV19 50 10 2843 3169(4098) 3201(4532) 2930(3185) 2850(2964)
SWV20 50 10 2823 3231(4075) 3235(4572) 2963(3004) 2823(2832)

Table 5: Average makespan and Computational time for LA30-LA40 and SWV11-SWV20
 Average makespan (Average CPU time)
 No of ---
Problem Name problems GA SSA PSA HGAPSA
LA30- LA40 11 1555.55 (2459.64) 1640.27 (3345.18) 1535.64 (2114.91) 1521.55 (1735.55)
SWV11- SWV20 10 3429.80 (4481.90) 3460.50 (5562.60) 3100.80 (3490.00) 2941.30 (3156.50)

CONCLUSION

 In this study integration of genetic algorithm with
parallel simulated annealing algorithm is implemented
for job shop scheduling. The implementation has been
done in a client server environment with the well-
known benchmark problems. The results of the
proposed algorithm are compared with the other
standard meta-heuristic algorithms. It shows that the
proposed algorithm is quite successful for the large size
problems compare to other algorithms. Even the
proposed algorithm produce the better result, there is
a ambiguity in the population size. This problem
needs to be addressed in the future. Also more than
two meta-heuristic algorithms may be interpreted to
improve the solution space.

REFERENCES

Bozejko, W., J. Pempera and C. Smuntnicki, 2009.

Parallel simulated annealing for the job shop
scheduling problem. Comput. Sci., 5544: 631-640.
DOI: 10.1007/978-3-642-01970-8_62

Brandimart, P., 1993. Routing and scheduling in a
flexible job shop by tabu search. Annal. Operat.
Res., 41: 157-183. DOI: 10.1007/BF02023073

Eglese, R.W., 1990. Simulated annealing: A tool for
operational research. Euo. J. Operation Res., 46:
271-281.

Fattahi, P, F. Jolai and J. Arkat, 2009. Flexible job shop
scheduling with overlapping in operations. Appl.
Math. Model., 33: 3076-3087. DOI:
10.1016/j.apm.2008.10.029, 2008

Fattahi, P., M.S. Mehrabad and F. Jolai, 2007.
Mathematical modeling and heuristic approaches to
flexible job shop scheduling problems. J. Intell.
Manuf., 18: 331-342. DOI: 10.1007/s10845-007-0026-8

Garey, M.R., D.S. Johnson and R. Sethi, 1976. The
complexity of flowshop and jobshop scheduling.
Math. Operat. Res., 1: 117-129. DOI:
10.1287/moor.1.2.117

Giffer, B. and G.L. Thompson, 1960. Algorithms for
solving production-scheduling problems. Operat.
Res., 8: 487-503. DOI: 10.1287/opre.8.4.487

Hemamalini, T., A. N.Senthilvel and S. Somasundaram,
2010. Scheduling algorithm to optimize jobs in
shop floor. J. Math. Stat., 6: 416-420. DOI:
10.3844/jmssp.2010.416.420

Krishna, K., K. Ganeshan and D.J. Ram, 1995.
Distributed simulated annealing algorithms for job
shop scheduling. IEEE Syst. Man Cybernetics
Soc., 25: 1102-1109. DOI: 10.1109/21.391290

Am. J. Applied Sci., 9 (10): 1694-1705, 2012

1705

Lawrence, S., 1984. Supplement to resource
constrained project scheduling: An experimental
investigation of heuristic scheduling techniques.

Li-Ning, X., Y.W. Chen and K.W. Yang, 2009. An
efficient search method for multi-objective flexible
job shop scheduling problems. J. Intell. Manuf., 20:
283-293. DOI: 10.1007/s10845-008-0216-z

Mohamed, A.A.F., 2011. A genetic algorithm for
scheduling n jobs on a single machine with a
stochastic controllable processing, tooling cost and
earliness-tardiness penalties. Am. J. Eng. Applied
Sci., 4: 341-349. DOI:
10.3844/ajeassp.2011.341.349

Paulli, J., 1995. A hierarchical approach for the FMS
scheduling problem. Eur. J. Operat. Res., 89: 32-
425. DOI: 10.1016/0377-2217(95)00059-Y

Ram, D.J., T.H. Sreenivas and K.G. Subramaniam,
1996. Parallel simulated annealing algorithms. J.
Parallel Distributed Comput., 37: 207-212.

Ramkumar, R., A. Tamilarasi and T. Devi, 2012. A
real time practical approach for multi objective job
shop scheduling using fuzzy logic approach. J.
Comput. Sci., 8: 606-612. DOI:
10.3844/jcssp.2012.606.612

Storer, R.H., S.D. Wu and R. Vaccari, 1992. New
search spaces for sequencing problems with
application to job shop scheduling. Manage. Sci.,
38: 1495-1509.

Thamilselvan, R. and P. Balasubramanie, 2011.
Analysis of various alternate crossover strategies
for genetic algorithm to solve job shop scheduling

problems. Eur. J. Sci. Res., 64: 538-554.
Thamilselvan, R., P.Balasubramanie, 2012. Integration

of genetic algorithm with tabu search for job shop
scheduling with unordered subsequence exchange
crossover. J. Comput. Sci., 8: 681-693. DOI:
10.3844/jcssp.2012.681.693

Yamada, T. and R. Nakano, 1997. Genetic algorithms
for job-shop scheduling problems. Proceedings of
Modern Heuristic for Decision Support, Mar. 18-
19, UNICOM Seminar, London, pp: 67-81.

Yamada, T., B.E. Rosen and R. Nakano, 1994. A
simulated annealing approach to job shop
scheduling using critical block transition operators.
Proceedings of the IEEE International Conference
on Neural Networks, IEEE World Congress on
Computational Intelligence, Jun. 27-Jul. 2, IEEE
Xplore Press, Orlando, FL., pp: 4687-4692. DOI:
10.1109/ICNN.1994.375033

Zandieh, M., I. Mahdavi and A. Bagheri, 2008. Solving
flexible job shop scheduling problems by a genetic
algorithm. J. Applied Sci., 8: 4650-4655. DOI:
10.3923/jas.2008.4650.4655

