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Abstract: Problem statement: The Job Shop Scheduling Problem (JSSP) is observed as one of the 
most difficult NP-hard, combinatorial problem. The problem consists of determining the most efficient 
schedule for jobs that are processed on several machines. Approach: In this study Genetic Algorithm 
(GA) is integrated with the parallel version of Simulated Annealing Algorithm (SA) is applied to 
the job shop scheduling problem. The proposed algorithm is implemented in a distributed 
environment using Remote Method Invocation concept. The new genetic operator and a parallel 
simulated annealing algorithm are developed for solving job shop scheduling. Results: The 
implementation is done successfully to examine the convergence and effectiveness of the 
proposed hybrid algorithm. The JSS problems tested with very well-known benchmark problems, 
which are considered to measure the quality of proposed system. Conclusion/Recommendations: 
The empirical results show that the proposed genetic algorithm with simulated annealing is quite 
successful to achieve better solution than the individual genetic or simulated annealing algorithm. 
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INTRODUCTION 

 
 Meta-heuristics is used to solve with the 
computationally hard optimization problems. Meta-
heuristics consist of a high level algorithm that guides 
the search using other particular methods. Meta-
heuristics can be used as a standalone approach for 
solving hard combinatorial optimization problems. But 
now the standalone approach is drastically changed and 
attention of researchers has shifted to consider another 
type of high level algorithms, namely hybrid 
algorithms. There are at least two issues has to be 
considered while combining more than one meta-
heuristics: (a) how to choose the meta-heuristic 
methods and (b) how to combine the chosen heuristic 
methods into new hybrid approaches. Unfortunately, 
there are no theoretical foundations for these issues. For 
the former, different classes of search algorithms can be 
considered for the purposes of hybridization, such as 
exact methods, simple heuristic methods and meta-
heuristics. Moreover, meta-heuristics themselves are 
classified into local search based methods, population 
based methods and other classes of nature inspired 
meta-heuristics. Therefore, in principle, one could 
combine any methods from the same class or methods 
from different classes. Our hybrid approach combines 

Genetic Algorithms (GAs) and Simulated Annealing 
(SA) methods. Roughly, our hybrid algorithm runs the 
GA as the main algorithm and calls SA procedure to 
improve individuals of the population. 
 The rest of the paper is organized as follows. The 
description of JSSP problem is followed by the 
introduction. Followed by there is a discussion about 
the literature review. In the fourth part, GA and SA 
methodologies are given for job shop scheduling. 
Finally the implementation of the HGAPSA to the 
JSSP is given with the algorithm using the proposed 
method with the experimental results and a 
discussion of the proposed method and a conclusion 
and future enhancement is also given. 
 
Job Shop scheduling problem: The n×m Job Shop 
Scheduling problem labeled by the symbol n, m, J, O, G 
and Cmax. It can be described by the finite set of n jobs J 
= {j 0, j1, j2, j3,…..jn, jn+1} (the operation 0 and n+1 has 
duration and represents the initial an final operations), 
each job consist of a chain of operations O = 
{o1,o2,o3,….om}, Each operation has processing time 
{ʎi1, ʎi2, ʎi3,…. ʎim}, finite set of m machines M = {m1, 
m2, m3….mm}, G is the matrix that represents the 
processing order of job in different machines and Cmax 

is the makespan that represents the completion time of 
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the last operation in job shop. On O define A, a binary 
relation representing precedence between operations. If 
(v, u)∈A then u has to be performed before v. A 
schedule is a function S: 0→IN∪{0} that for each 
operation u defines a start time S(u). A schedule S is 
feasible if Eq. 1-3: 
 

u 0 :S(u) 0∀ ∈ ≥  (1) 
 

u, v 0,(u,v) A : S(u) (u) S(v)∀ ∈ ∈ + λ ≤  (2) 

 
u, v O, u v, M(v) M(v) :S(u)

(u) S(v)orS(v) (v) S(u)

∀ ∈ ≠ = +
λ ≤ + λ ≤

 (3) 

 
 The length of a schedule S is Eq. 4: 
 
len (S) = maxv∈o(S(u)+λ(u)) (4) 
 
 The goal is to find an optimal schedule, a feasible 
schedule of minimum length, min (len(S)). 
 An instance of the JSS problem can be represented 
by means of a disjunctive graph G = (O, A, E). Here O 
is the vertex which represents the operations and A 
represents the conjunctive arc which represents the 
priority between the operations and the edge in E = {(u, 
v)|u, v∈O, u≠v, M (u) = M(v)} represent the machine 
capacity constraints. Each vertex u has a weight, equal 
to the processing time ʎ(u). Let us consider the bench 
mark problem of the JSSP with four jobs, each has 
three different operations and there are three different 
machines. Operation sequence, machine assignment 
and processing time are given in Table 1. 
 Based on the above bench mark problem, we 
create a matrix G, in which rows represent the 
processing order of operation and the column 
represents the processing order of jobs. Also we 
create a matrix P, in which row i represents the 
processing time of Ji for different operations: 
 

1 2 3

3 2 1

2 3 1

1 3 2

2 3 4M M M

4 4 1M M M
G P

2 2 1M M M

3 3 1M M M

   
   
   = =
   
   
    

 

 
 The processing time of operation i on machine j is 
represented by Oij. Let ʎij be the processing time of Oij in 
the relation Oij→ Oij. Cij represents the completion of 
the operation Oij. So that the value Cij = Cik + ʎij 

represents the completion time of Oij. The main 
objective is to minimize of Cmax. It can be calculated as 
Eq. 5: 
 

max all ij ijC max O O(C )= ∈  (5) 

 The distinctive graph of the above bench mark job 
scheduling problem is shown in Fig. 1, in which 
vertices represents the operation. Precedence among the 
operation of the same job is represented by 
Conjunctive arc, which are doted directed lines. 
Precedence among the operation of different job is 
represented by Disjunctive arc, which areundirected 
solid lines. Two additional vertices S and E 
represents the start and end of the schedule. 
 The Gantt Chart of the above bench mark job 
scheduling problem is shown in Fig. 2. Gantt Chart is 
the simple graphical representation technique for job 
scheduling. It simply represents a graphical chart for 
display schedule; evaluate makespan, idle time, waiting 
time and machine utilization. 
 
Literature review: Many researchers are working in 
job shop scheduling problem. Garey et al. (1976) were 
the first who introduced job shop scheduling problems. 
Some researchers like Brandimart (1993) and Paulli 
(1995) have used dispatching rules for solving flexible 
job shop scheduling problems. Attention to size proved 
that job shop scheduling problems are NP-Hard (Garey 
et al., 1976) and with added flexibility increase 
complexity more than job shop. Ram et al. (1996) have 
applied a parallel simulated annealing for job shop 
scheduling, but the same temperature is maintained in 
all the machines. Bozejko et al. (2009) have proposed 
the parallel simulated annealing for the job shop 
scheduling. But the same sequential algorithm is 
implemented more than one machine in a parallel order. 
Ramkumar et al. (2012) proposed real time fuzzy logic 
for job shop scheduling problem. 
 
Table 1: Processing time and sequence for 4×3 problem instance 
 Operation number and Machine Processing 
Job processing sequence assigned time 
Start operation 0 -- 0 
(Dummy) 
J1 O11 M1 2 
 O12 M2 3 
 O13 M3 4 
J2 O21 M3 4 
 O22 M2 4 
 O23 M1 1 
J3 O31 M2 2 
 O32 M3 2 
 O33 M1 3 
J4 O41 M1 3 
 O42 M3 3 
 O43 M2 1 
End operation 0 -- 0 
(Dummy) 
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Fig. 1:  Illustration of disjunctive graph 
 

 
 

Fig.  2: A Schedule of Gantt Chart for 4×3 problem Instance 
 
Objective of JSP problem is to find the optimal 
schedule with minimum makespan, but this result is not 
clearly shown by author. Thamilselvan and 
Balasubramanie (2011; 2012) have used the various 
crossover strategies for genetic algorithm for JSSP and 
integration of Genetic algorithm with Tabu Search for 
the JSSP. The above two methods were efficient for the 
small size JSP problems. Mohamed (2011) proposed a 
genetic algorithm for JSSP, but this algorithm is efficient 
only for less number of jobs. The ratio scheduling 
algorithm to solve the allocation of jobs in the shop 
floor was proposed by Hemamalini et al. (2010). This 
algorithm is more efficient when the result for the 
bench mark instances when the due date is less than 
half of the total processing time. 
 

MATERIALS AND METHODS 
 
Genetic algorithm: Genetic algorithms are 
probabilistic meta-heuristic technique, which may be 
used to solve computationally hard optimization 
problems. They are based on the genetic process of 
chromosome. Over many generations, natural 

populations evolve according to the principles of 
natural selection of genes, i.e., survival of the fittest, 
first clearly stated by Charles Darwin in The Origin of 
Species. There is a initial solution as a Population to start 
the process and it filled with different order of 
chromosome. The chromosome consists of collection 
genes. Job is represented by each gene in 
chromosome and the job sequence in a schedule 
based on the position of the gene. GA uses Crossover 
and Mutation operation to generate a new population. 
By crossover operation, GA generates the 
neighborhood to explore new feasible solution.  
 A typical genetic algorithm is illustrated in Fig. 3. 
It first creates an initial solution as a population 
consisting of randomly generated collection of genes. 
After applying genetic operations like crossover, 
mutation and selection, the new solutions are 
generated.After generating the new solutions, evaluate 
each individual in the population. The optimal solutions 
are used to carry the next generation. The above steps 
are repeated until the termination condition is satisfied. 
A GA is terminated after a certain number of iterations 
or if a certain level of fitness value has been reached. 
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Fig. 3: A standard genetic algorithm 
 
The structure of a genetic algorithm for the scheduling 
problem can be divided into four parts: the choice of 
representation of individual in the population; the 
determination of the fitness function; the design of 
genetic operators; the determination of probabilities 
controlling the genetic operators. Yamada  and Nakano 
(1997) was implemented the GA for the job shop 
scheduling problems. 
 
Sequential Simulated Annealing (SSA):  SSA 
belongs to the type of local search algorithms (Eglese, 
1990). SA algorithm is inspired metal cooling process. 
In this process, the temperature is gradually reduced to 
reach the optimal solutions. SA algorithm searches 
current solution neighborhoods for a better solution and 
uses it for many complementary problems. Some 
researchers like Fattahi et al. (2007; 2009) and Zandieh 
et al. (2008) used SA algorithm in flexible job shop 
environment. SA algorithm generates an initial solution 
randomly. A neighbor of this solution is then generated 
by a suitable mechanism and the change in the cost 
function is calculated. If a decrease in the cost function 
is obtained, the current solution is replaced by the 
generated neighbor. If the cost function fun of the 
neighbor is greater, the newly generated neighbor 
replaces the current solution with an acceptance 
probability function given in Eq. 6: 
 

d
P(d,T) exp( )

T
= −   (6) 

 
Where: 
 

d Cs[ j] Cs[i]= −  
 
 CS[i] and CS[j] are the cost function generated state 
and the present state respectively. T is the temperature 

to control the annealing process. The above equation 
implies that a small increase in fun are more likely to be 
accepted than large increases in the fun and also that 
when T is high, most of the newly generated neighbors 
are accepted. However, most of the cost increasing 
transactions are rejected if T approaches zero. Initially 
the temperature of the SA algorithm is kept as high so 
that the algorithm proceeds by generating a certain 
number of neighbors at each temperature, while the 
temperature parameter is gradually dropped. This 
algorithm leads to an optimal solution. The typical 
procedure for SSA algorithm is shown in Fig. 4. 
 For SSA the initial schedule is generated from a 
disjunctive graph G for solving job shop scheduling 
problem. The Giffer and Thompson (1960) algorithm is 
used to find the initial schedule. This algorithm obtains 
the schedule with all the operations (n) and all the 
machines (m) with the criteria employed being the 
earliest starting time and the processing time of each 
of the operations. The operation not yet included in 
the partial schedule at each stage, if the minimum 
time is chosen. If all the operations are included in 
the schedule, then the partial schedule becomes a 
complete schedule. The generated complete schedule 
can be represented in a diagraph. 
 The earliest and the latest start time of each 
operations in a diagraph are calculated after obtain the 
diagraph with all the operations. The critical path is 
used to find the earliest and latest start time. The 
earliest start time or the latest start time of the last 
operation is known as the makespan. This is the cost of 
the schedule (Krishna et al., 1995). 
 The critical path in a diagraph is obtained after 
evaluate the cost of the schedule. The critical path can 
be defined as a set of edges from the first vertex to the 
last vertex which satisfy the following properties. 
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Fig. 4:  A standard simulated annealing algorithm 
 

 
 

Fig. 5: Permutation of operations on a critical block 
 
• The earliest start time and latest start of each vertex 

on the edge must be the same 
• For the same edge u→v, the operation time and the 

sum of the start time of u must be equal to the start 
time of v 

 
Neighborhood of a schedule S can be defined as a set of 
schedules that can be obtained by applying the 
transition operator on the given schedule S (Li-Ning et 
al., 2009). The transition operator permutes the order of 
operations in a critical block by moving an operation to 
the beginning or end of the critical block, thus forming 
the CB neighborhood. In this neighborhood, the 
distance between S and any element in N(S) can vary 
depending on the position of the moving operation. It 
has been experimentally shown in (Yamada et al., 

1994) that SA using the CB neighborhood is more 
powerful than SA using the AS neighborhood. Thus, 
the CB neighborhood may as well be investigated in the 
GA context. Figure 5 illustrates how the two transition 
operators work. 
 Parallel Simulated Annealing: For solving the job 
shop scheduling problem, there are two approaches 
adapted in the SA algorithm. The first approach is to 
assign the operations to machines in a sequential order. 
In the second approach, the operations are assigned to 
machines and processed in two levels to reduce the 
complexity of the problem. In the first level, the 
operations are assigned to machines and in the second 
level, the operations are scheduled in machines. The 
second approach is known as the parallel 
implementation of job shop scheduling. 
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 The main objective function of the proposed 
algorithm is to minimize the makespan. We use the 
second approach for solving job shop scheduling 
problem. The procedure SA_Parallel() generate an 
initial schedule S[i] and then the algorithm is parallelly 
running on different machines. Let N be the total 
number of iterations in each SA algorithm temperature, 
S[j] is the neighbourhood of S[i], Bc is best known 
solution cost, Bs is the best known schedule of JSSP. As 
mentioned earlier, the given scheduling algorithm to 
schedule operations on machines. The generated S[j] is 
the input to the scheduling algorithm and then the 
algorithm compute the cost of S[j] as CS[j]. The cost of 
the new schedule is compared with the cost of the initial 
schedule to process the algorithm. 

 
Procedure: SA_Parallel() 
Input: 
temperature T, starting temperature Ts, ending 
temperature Te, number of iteration N. 
Begin 
 generate initial schedule S[i]. 
 compute the cost CS[i] of initial schedule S[i]. 
 n=1, T=Ts. 
 while T<Te 
   while n<N 
 select neighbourhood S[j] of S[i]. 
   compute the cost CS[j] of the new schedule S[j]. 
   compute = Cs[j]-Cs[i] . 
   if δ≤0 then 
  S[i]=S[j]. 
  CS[i]=CS[j]. 
   else 
 generate a random variable R∼(0, 1). 
 if exp (-δ/T)>R 
  S[i]=S[j]. 
   CS[i]=CS[j]. 
 end if 
   end if  
 n=n+1. 
 end while  
 T= T*0.995. 
 end while 
 if CS[i]<Bc 
Bc=CS[i]. 
Bs=S[i]. 
 end if 
 End  
 
 The implementation of the above algorithm is done 
by a server machine and a set of client machines. The 
server node generates the initial schedule S[i], the 
processing times of all the operations and the machine 

order for each job. This server machine then sends the 
initial schedule and different range of temperature 
parameters to each of the client machines on the 
network. Each client machine has its maximum 
temperature Ts and minimum temperature Te. The client 
machines execute the above algorithm with different 
range of temperature and send the solution to the server 
machine. After receiving the solutions from the client 
machines, the server machine selects the best solution 
with the minimal makespan. 
 
Hybrid Genetic Algorithm with Parallel Simulated 
Annealing (HGAPSA): Parallel implementation of 
SA generates a better solution with faster 
convergence. Initially, n number of client machines 
processes the SA algorithm with different initial 
schedule. After the fixed number of iterations, the 
client machines are exchange the results with the 
server machine to get the best schedule.  
 In genetic algorithm, an initial population 
consisting of a set of schedule is selected and then the 
schedules are evaluated. Relatively more effective 
schedule are selected to have more off springs, where 
are in some way, related to the original solutions. The 
performance of the genetic algorithm depends on the 
crossover operation. If it is properly selected, the final 
population will produce the better solution. Simulated 
annealing algorithm aims to produce such a solution. 
For the parallel SA implementation, we need good 
initial solutions for the fast convergence of SA. GA will 
produce a good number of initial solutions. The 
operator used for generating off springs in job shop 
scheduling is related to the processing order of jobs on 
different machines of the two parent solutions.  
 We introduce new cross over strategy named as 
Unordered Subsequence Exchange Crossover (USXX) 
that children inherit subsequences on each machine as 
far as possible from parents. Unordered Subsequence 
exchange crossover creates a new children’s even the 
subsequence of parent1 is not in the same order in 
parent 2. The algorithm for USXX is as follows: 
 
Step 1: Generate two random parent individual 

namely P1 and P2 with a sequence of all 
operations.  

Step 2: Generate two child individual namely C1 and 
C2. 

Step 3: Select random subset of operations (genes) 
from P1 and copy it into C1.  

Step 4: Starting from the first crossover point from P1, 
look for elements in P2 that have been copied 
as in the same order. 
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Step 5: The remaining operations of P2 that are not in 
the subset can be filled in C1 so as to maintain 
their relative ordering. 

 
Procedure: HGAPSA_Server() 
Input: Initialize number of iterations Ni. 

Begin 
iter = 1. 
while iter< = Ni 
server machine generates a n initial solutions S[1], 
S[2],…S[n] using GA.  
for i = 1 to n  
assign S[i] to Ci where Ci is the ith client machine. 
each Ci run SA_Parallel() algorithm using S[i]. 
after getting the best solution, client machine send it to 
server machine. 
end for 
iter=iter+1. 
end while 
End 
 
 The above GA and PSA algorithms are 
implemented in a network of one server and five 
workstations. The server node use GA to generates n 
number of initial schedule and assigns those schedules 
to the n number of client machines as an initial solution. 
The genetic algorithm starts with an initial schedule and 
then it performs USXX crossover operation to update 
the population. This process has to be repeated number 
of times. The client machine use 
SA_Parallel()procedure to find the best schedule and 
then the best schedule is send to the server machine. 
 

RESULTS AND DISCUSSION 
 
 The performance of the proposed HGAPSA 
algorithm is compared with the Genetic Algorithm 
(GA), Sequential Simulated Annealing (SSA) 
Algorithm and Parallel Simulated Annealing (PSA) 
for standard JSP test instances of Lawrence (1984) 
instances from LA30 to LA40 and Storer et al. 
(1992) instances SWV11-SWV20. 
 Table 2 shows comparison of makespan value 
produced from different algorithms for problem 
instances LA30-LA40 (Lawrence, 1984) Column 1 
specifies the problem instances, Column 2 specifies the 
number of jobs, Column 3 shows the number of 
machines, Column 4 specify the optimal value for each 
problem. Column 5, 6, 7 and 8 specify results from SA, 
SSA, PSA and HGAPSA respectively. It shows that the 
proposed hybrid algorithm has succeeded in getting the 
optimal solutions for all the problems. 

 Figure 6 shows average makespan value generated 
by GA, SSA, PSA and HGAPSA for different problem 
instances of Lawrence (1984). It also shows that SSA 
produce the worst result compare to other two algorithms 
and the HGAPSA algorithm is better than the other two 
algorithms. Figure 7 shows the comparison of Average 
Relative Error for all the three methods. It clearly shows 
that the Average Relative Error for HGAPSA is 0.13  
Table 3 shows comparison of makespan value produced 
from different algorithms for problem instances 
SWV11-SWV20 (Storer et al., 1992) Column 1 
specifies the problem instances, Column 2 specifies the 
number of jobs, Column 3 shows the number of 
machines, Column 4 specify the optimal value for each 
problem. Column 5, 6, 7 and 8 specify results from SA, 
SSA, PSA and HGAPSA respectively. It shows that the 
proposed hybrid algorithm has succeeded in getting the 
optimal solutions for all the problems. 
 Figure 8 shows average makespan value generated 
by GA, SSA, PSA and HGAPSA for different problem 
instances of Storer et al. (1992). It also shows that SSA 
produce the worst result compare to other two algorithms 
and the HGAPSA algorithm is better than the other two 
algorithms. Figure 9 shows the comparison of Average 
Relative Error for all the three methods. It clearly shows 
that the Average Relative Error for HGAPSA is 0.17. 
 Typical runs of problem instances LA30 
(Lawrence, 1984) are illustrated in Fig. 10 by the GA, 
SSA, PSA and HGAPSA. The graph shows that the 
proposed HGAPSA reach the optimal solution faster 
than other two methods. For LA30, GA, SSA and PSA 
never produces the best known solution. But HGAPSA 
produced the optimal solution with 2000 iterations. We 
have tested with 5000 iterations, but other algorithms 
does not produce a optimal solution. 
 Typical runs of problem instances SWV15 (Storer 
et al., 1992) are illustrated in Fig. 11 by the GA, SSA, 
PSA and HGAPSA. The graph shows that the proposed 
HGAPSA reach the optimal solution faster than other 
two methods. For SWV15, GA, SSA and PSA never 
produces the best known solution. But HGAPSA 
produced the optimal solution with 2500 iterations. 
We have tested with 6000 iterations, but other 
algorithms does not produce a optimal solution. 
 Table 4 shows the computational time of all the 
above mentioned problems. It is given in the brackets 
with the makespan. For all the problems, proposed 
algorithm took a minimum time to reach the optimal 
value. The average makespan and computational time 
for LA30-LA40 and SWV11-SWV20 are shown in 
Table 5. It clearly shows that the proposed algorithm 
produce a minimum makespan with less computational 
time. It is shown in the Fig. 12. 
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Table 2: Results for instances by Lawrence (1984) 
 Problem size       
 ---------------------------- Makespan ttime    Relative error (%) 
Problem Jobs Machines -------------------------------------------------------------------------- ---------------------------------------------- 
Name  (n)  (m) Optimal GA SSA PSA HGAPSA GA SSA PSA HGAPSA 
LA30 20 10 1355.00 1398.00 1430.00 1360.00 1355.00 3.17 5.54 0.37 0.00 
LA31 30 10 1784.00 1829.00 1950.00 1800.00 1790.00 2.52 9.30 0.90 0.34 
LA32 30 10 1850.00 1877.00 2126.00 1875.00 1860.00 1.46 14.92 1.35 0.54 
LA33 30 10 1719.00 1820.00 2006.00 1740.00 1719.00 5.88 16.70 1.22 0.00 
LA34 30 10 1721.00 1810.00 1945.00 1742.00 1725.00 5.17 13.02 1.22 0.23 
LA35 30 10 1888.00 1950.00 2105.00 1953.00 1895.00 3.28 11.49 3.44 0.37 
LA36 15 15 1279.00 1279.00 1305.00 1285.00 1279.00 0.00 2.03 0.47 0.00 
LA37 15 15 1408.00 1441.00 1453.00 1423.00 1408.00 2.34 3.20 1.07 0.00 
LA38 15 15 1219.00 1220.00 1220.00 1219.00 1219.00 0.08 0.08 0.00 0.00 
LA39 15 15 1246.00 1246.00 1255.00 1250.00 1246.00 0.00 0.72 0.32 0.00 
LA40 15 15 1241.00 1241.00 1248.00 1245.00 1241.00 0.00 0.56 0.32 0.00 
Average   1519.09 1555.55 1640.27 1535.64 1521.55 2.17 7.05 0.97 0.13 

 
Table 3: Results for instances by Storer et al. (1992) 

 Problem size        
 --------------------- Optimal  Makespan time    Relative error (%) 
Problem Jobs Machines --------------------------- ------------------------------------------- ------------------------------------------------------- 
Name  (n)  (m) UB LB GA SSA PSA HGAPSA GA SSA PSA HGAPSA 

SWV11 50 10 2991 2983.00 3200.00 3259.00 3012.00 3048.00 6.99 8.96 0.70 1.91 
SWV12 50 10 3003 2972.00 3250.00 3328.00 3120.00 3012.00 8.23 10.82 3.90 0.30 
SWV13 50 10 3104   3754.00 3762.00 3250.00 3108.00 20.94 21.20 4.70 0.13 
SWV14 50 10 2968   3487.00 3502.00 3212.00 2968.00 17.49 17.99 8.22 0.00 
SWV15 50 10 2904 2885.00 4235.00 4240.00 3225.00 2904.00 45.83 46.01 11.05 0.00 
SWV16 50 10 2924   3547.00 3605.00 3332.00 3025.00 21.31 23.29 13.95 3.45 
SWV17 50 10 2794   3269.00 3280.00 3002.00 2800.00 17.00 17.39 7.44 0.21 
SWV18 50 10 2852   3156.00 3193.00 2962.00 2875.00 10.66 11.96 3.86 0.81 
SWV19 50 10 2843   3169.00 3201.00 2930.00 2850.00 11.47 12.59 3.06 0.25 
SWV20 50 10 2823   3231.00 3235.00 2963.00 2823.00 14.45 14.59 4.96 0.00 
Average   2920.60 2946.67 3429.80 3460.50 3100.80 2941.30 17.44 18.48 6.19 0.71 

 

 
 

Fig. 6: Average makespan values by different algorithms for LA30-LA40 
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Fig. 7: Average relative error values by different algorithms for LA30-LA40 
 

 
 

Fig. 8: Average makespan values by different algorithms for SWV11-SWV20 
 

 
 

Fig. 9: Average relative error values by different algorithms for SWV11-SWV20 
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Fig. 10: The time evolutions of makespans for the LA30 (20 jobs and 10 machines) 

 

 
 

Fig. 11: The time evolutions of makespans for the SWV15 (50 jobs and 10 machines) 

 

 
 

Fig. 12: Comparision of average makespan and computational time 
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Table 4: Computational time for LA30-LA40 and SWV11-SWV20  
 Problem size    
 -----------------------------------  Makespan (CPU time) 
Problem Jobs Machines  ----------------------------------------------------------------------------------------------- 
Name  (n)  (m) Optimal GA SSA PSA HGAPSA 
LA30 20 10 1355 1398(2539) 1430(3152) 1360(1925) 1355(1554) 
LA31 30 10 1784 1829(2780) 1950(3750) 1800(2532) 1790(2106) 
LA32 30 10 1850 1877(2850) 2126(4104) 1875(2585) 1860(2151) 
LA33 30 10 1719 1820(2829) 2006(4007) 1740(2581) 1719(1922) 
LA34 30 10 1721 1810(2971) 1945(3945) 1742(2625) 1725(2051) 
LA35 30 10 1888 1950(2920) 2105(4398) 1953(2453) 1895(2264) 
LA36 15 15 1279 1279(1978) 1305(2585) 1285(1615) 1279(1432) 
LA37 15 15 1408 1441(2752) 1453(3485) 1423(2125) 1408(1659) 
LA38 15 15 1219 1220(1885) 1220(2423) 1219(1598) 1219(1264) 
LA39 15 15 1246 1246(1800) 1255(2540) 1250(1605) 1246(1351) 
LA40 15 15 1241 1241(1752) 1248(2408) 1245(1620) 1241(1337) 
SWV11 50 10 2991 3200(4438) 3259(5632) 3012(3625) 3048(3184) 
SWV12 50 10 3003 3250(5235) 3328(6780) 3120(3882) 3012(3537) 
SWV13 50 10 3104 3754(5498) 3762(7720) 3250(4250) 3108(3691) 
SWV14 50 10 2968 3487(4531) 3502(5751) 3212(3632) 2968(3177) 
SWV15 50 10 2904 4235(4427) 4240(5675) 3225(3421) 2904(3124) 
SWV16 50 10 2924 3547(4513) 3605(5712) 3332(3438) 3025(3149) 
SWV17 50 10 2794 3269(3900) 3280(4520) 3002(3185) 2800(2870) 
SWV18 50 10 2852 3156(4104) 3193(4732) 2962(3278) 2875(3037) 
SWV19 50 10 2843 3169(4098) 3201(4532) 2930(3185) 2850(2964) 
SWV20 50 10 2823 3231(4075) 3235(4572) 2963(3004) 2823(2832) 

 
Table 5: Average makespan and Computational time for LA30-LA40 and SWV11-SWV20 
  Average makespan  (Average CPU time) 
 No of --------------------------------------------------------------------------------------------------------------------------- 
Problem Name problems GA SSA PSA HGAPSA 
LA30- LA40 11 1555.55 (2459.64) 1640.27 (3345.18) 1535.64 (2114.91) 1521.55 (1735.55) 
SWV11- SWV20 10 3429.80 (4481.90) 3460.50 (5562.60) 3100.80 (3490.00) 2941.30 (3156.50) 

 
CONCLUSION 

 
 In this study integration of genetic algorithm with 
parallel simulated annealing algorithm is implemented 
for job shop scheduling. The implementation has been 
done in a client server environment with the well-
known benchmark problems. The results of the 
proposed algorithm are compared with the other 
standard meta-heuristic algorithms. It shows that the 
proposed algorithm is quite successful for the large size 
problems compare to other algorithms. Even the 
proposed algorithm produce the better result, there is 
a ambiguity in the population size. This problem 
needs to be addressed in the future. Also more than 
two meta-heuristic algorithms may be interpreted to 
improve the solution space.  
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