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Abstract: Problem statement: The security of elliptic curve cryptosystems are based on elliptic curve 
discrete logarithm problem (ECDLP). However, if an attacker finds a solution to ECDLP, the elliptic 
curve-based systems will no longer be secure. Approach: To improve this, we develop a new elliptic 
curve cryptosystem using one of the old/novel problem in computational number theory; factoring 
problem (FAC). Specifically, our encrypting and decrypting equations will heavily depends on two 
public keys and two secret keys respectively. Results: We show that, the newly designed cryptosystem 
is heuristically secure against various algebraic attacks. The complexity of the scheme shows that the 
time complexity for each encryption and decryption are given by 299Tmul and 270Tmul. Conclusion: 
The new system provides greater security than that system based on a single hard problem. The 
attacker has not enough resources to solve the two hard problems simultaneously in a polynomial time.  
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INTRODUCTION 

 
 Diffie and Hellman (1976) were the first to 
propose the idea of transmitting secret message 
between two communicating parties; a sender and a 
receiver in an insecure channel (with the presence of 
attackers). Their idea (is called cryptosystem) 
consists of these following properties: 
 
• The sender first encrypts the message using 

receiver’s public key and sends the encrypted 
message to the receiver 

• The receiver who possesses the secret key can 
decrypt and read the original message 

• The security of the system is depends on the 
underlying hard problems in computational number 
theory 

• Knowing only the public key of receiver, the 
attacker is not able to read the message since he has 
no information about the corresponding secret key 

 
 Unfortunately, they did not develop any such 
system. The first realization was developed by Rivest et 
al. (1978) and is called RSA cryptosystem after their 
first names. The security of RSA is based on the 
hardness of solving factoring problem (FAC). 
Informally, if the attacker manages to solve FAC, the 
underlying system will no longer be secure. With the 
proper selection of parameters, no one is able to break 
the novel RSA system. Rabin (1979) designed a new 

cryptosystem whose security is depends heavily on 
residuosity problem (RES). His system relies on the 
difficulty of finding prime divisors of a given large 
composite integer as in RSA. However, no concrete 
relationship between the hardness of solving FAC and 
RES is found. Six years later, Elgamal (1985) proposed 
his new cryptosystem based on Discrete Logarithm 
Problem (DLP). Later, Koblitz (1987) and Miller 
(1986) independently proposed the use of elliptic curve 
in cryptosystems. Their security lies on the so-called 
Elliptic Curve Discrete Logarithm Problem (ECDLP). 
Their systems are more efficient than previous systems 
since the size of the main parameter is only 160-bits. 
Many such systems were then been developed 
(Menezes, 1993; Rabah, 2005). One common feature of 
these schemes is that the security of the systems is 
based on a single hard problem. If one day in a near 
future an attacker solves the hard problem, the 
underlying system will no longer be secure. Thus to 
overcome this disadvantage, many designers are 
proposing cryptosystems based on two hard problems 
(Baocang and Yupu, 2005; Elkamchouchi et al., 2004; 
Harn, 1994; Ismail and Hijazi, 2011). If the attacker 
find a solution to one of these hard problem the system 
stays secure as the another problem is still hard to 
solve. It is impossible for the attacker to solve the two 
problem simultaneosly. In this study, we develop a new 
cryptosystem based on two hard problems; ECDLP and 
FAC. A desirable system with two hard problems 
should come with the following criteria: (1) the system 
uses only one pair of public and private keys; (2) each 



Am. J. Applied Sci., 9 (9): 1443-1447, 2012 
 

1444 

user uses common arithmetic modulus; and (3) the 
system uses the most novel two hard mathematical 
problems for its security base. Our system enjoys the 
last two criteria.  
 

MATERIALS AND METHODS 
 

An elliptic curve in a general form is given by: 
 
y2 + axy + by = x3 + cx2 + dx + e 
 
where, a, b, c, d and e are real numbers. We define on 
this curve an elliptic curve addition operation with a 
point at infinity and we denote this point as ∞. Now, 
suppose that q is a 160-bits prime with characteristics 
neither two nor three. We thus obtain an elliptic group 
over the Galois Field E(Fq) defined by: 
 
y2 = x3 + ax + b (mod q) where 0 ≤ x ≤ q 
 
 The coefficients a, b < q are non-negative integers 
and satisfy the condition 4a3 +27b2 

≠ 0 (mod q). This 
condition guarantees that the defined elliptic curve has 
no multiple roots of unity.  
 The laws for elliptic curve addition over the elliptic 
group E(Fq) are given as follows: 
 
• If three elliptic curve points are on a straight line 

and intersects an elliptic curve, then their sum 
equals the point at infinity ∞ 

• Suppose that Q = (r, s) and N = (t, u) are two 
elliptic curve points in E(Fq). Then: 

 
i. Q + ∞ = Q = ∞ + Q. 
ii.  If N = -Q = (r, -s), then Q + N = ∞. 
iii.  If Q ≠ N, then Q + N = (e, f) where e = µ2-r-t 

(mod q) and f = µ(r-e)-s (mod q) and the 
number µ is calculated by µ = (u-s)/(t-r) if r≠t 
and µ=(3r2+a)/2s if r=t, s≠0. 

iv. If n is a positive integer greater than 1, we can 
calculate nQ = Q + Q + Q + … (n times) in 
E(Fq). 

 
 If Q is a point on the elliptic curve and m is the 
smallest positive integer satisfying mQ = ∞, then we 
say that Q has an order m and Q is called the base point 
of E(Fq).  
 Washington (2003) for a solid material on elliptic 
curve and its application in cryptography. We now 
define the two hard problems that we apply in our new 
system. 
 
Definition 1: (ECDLP problem) Let Q and N be two 
elliptic curve points in E(Fq) where q is a 160-bits 
prime. Then find a positive integer k satisfying kQ = N. 

Definition 2: (FAC problem) Let n be a large composite 
integer with n = rs where r and s are two large strong 
primes of 512-bits. Then find the primes r or s. 
 

 RESULTS 
 

We propose a new cryptosystem based on FAC and 
ECDLP problems. The scheme consists of three phases: 
 
• Initialization 
• Encryption 
• Decryption 
 
with two communicating parties; a sender and a 
receiver. In Initialization phase, the reciever first selects 
and computes all required parameters and modulus for 
the system. Then two pairs of public and private keys 
for the sender are calculated. The computed public keys 
will then be published in an open public key directory 
but the private keys are kept secret to the receiver. In 
Encryption phase, an encrypted original message is 
computed by the sender using the receiver’s public key 
and sender’s one-time secret number. The resulted 
encrypted message is then delivered to the receiver. In 
Decryption phase, the reciever decrypts the encrypted 
message to recover the original message using his own 
private keys. No one can learn the actual message 
without these private keys. Now we give the description 
for each phase. 
 
Initialization: The receiver obtains his or her public 
and private keys as below: 
 
• Select a 160-bits prime q and this prime determines 

the order of field Fq  
• Choose two numbers a and b in Fq. These 

coefficients define the elliptic curve y2 = x3 + ax + 
b (mod q) over Fq. Let E(Fq) represents a group of 
all points on this curve and #E(Fq) represents the 
group order     

• Pick a base elliptic curve point G with a large 
prime order m and this gives us mG = ∞ 

• Choose two strong and safe primes r and s 
(Gordon, 1984) and compute the modulus, n = rs. 
This modulus determines the multiplicative group 
Zn

*  = {z|gcd(z,n) = 1} 
• Calculate the phi-Euler function φ(n) = (r-1)(s-1).    
• Select two integers e < n with gcd(e, φ(n)) = 1 and 

f < m 
• Compute d = e−1 mod φ(n) and Z = fG = (f1,f1) 
 
 The public keys of the system are formed by 
(Z,n,e) and can be publicly accessed in the open 
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directory while the private keys of the system are given 
by (r,s,d,f) and kept secret by the receiver. One has to 
confirm that the group order, #E(Fq) must be divisible by 
a sufficiently large prime number to avoid the Pohlig-
Hellman attack and Pollard’s rho attack (Pohlig and 
Hellman, 1978). For maximum resistance to these attacks 
is by confirming that #E(Fq) is prime or almost prime.  
 
Encryption: To encrypt any message, m, the sender 
does the following: 
 
• Choose randomly the secret integer p < m 
• Calculate T = pZ = (r1,r2) and K = pG 
• Compute s1 = m-f1r1 (mod n) 
• Calculate c = (s1)

e mod n 
• Send (c, K) to the receiver 
 
Decryption: To decrypt the received ciphertext (c,K), 
the receiver needs to do the following: 
 
• Compute R = fK 
• Calculate L = (c)d mod n 
• Recover m = s1 + f1r1 (mod n) 
 
 The abovementioned three phases or algorithms 
complete the newly developed cryptosystem based on 
two hard problems. We now discuss our system 
according to the following criteria:  
 
• Exactness of the new cryptosystem 
• Security analysis 
• Efficiency performance 
 
 To validate the newly designed cryptosystem, we 
prove that the decrypting equation in Decryption is 
always true for any ciphertext (c,K) developed in 
Encryption. 
 
Exactness: We validate our new scheme by proving the 
following theorem. 
 
Theorem: If the first two algorithms; Initialization and 
Encryption run smoothly, then the decryption process 
of the encrypted message in Decryption is correct. 
 
Proof: The decrypting equation is true for all encrypted 
message (c,K) using the following steps: 
 
• Calculate R = fK = f(pG) = p(fG) = pZ = (r1,r2) 
• Compute L = (c)d = (s1)

ed = s1 mod n 

 
 Knowing r1 and s1 with the public key Z, the 
original message can be recovered as below: 

s1 + f1r1 = m mod n. 
 
Security analysis: We analyse our system by applying 
a technique from heuristic security. We do this by 
considering possible cryptographic attacks by an 
attacker for the system.  
 First, we define each attack and give the 
corresponding analysis of why this attack would fail.  
 
Attack 1: The attacker tries to obtain the private keys 
of the system and to manipulate the system parameters.  
 In this attack, the attacker needs to solve: 
 

ed = 1 mod φ(n) and 
Z = fG 

       
 For d and f respectively. However these are hard to 
solve due to the difficulty of solving factoring and 
elliptic curve discrete logarithm problems. Lenstra et al. 
(1993) developed the method to factorize the modulus n 
= pq but it is siza-dependent. Díaz and Masque (2005) 
said in their paper, to increase the security of the 
scheme and to avoid attacks using special-purpose 
factorization algorithms, one must select strong primes 
in the Initialization phase.  
 
Attack 2: Suppose that the attacker manages to solve 
factoring problem. Thus he knows the secret d and 
(c,K). He then computes s1 = ce mod n and learns the 
original message, m, if he knows r1 via m = s1 + f1r1 
(mod n).  
 Unfortunately the integer r1 is calculated via R = 
fK where f is a secret number from Z = fG. Finding f is 
hard due to nonexistence of polynomial algorithm to 
solve elliptic curve discrete logarithm problem for 
public Z and G.  
 
Attack 3: Suppose that the attacker can solve elliptic 
curve discrete logarithm problem. He thus manages to 
get the secret value, f. He also knows (c,K) and obtains 
r1 via R = fK = (r1,r2). He can obtain the original 
message, m, if he knows s1 via: 
 

m = s1 + f1r1 (mod n) 
 
 Unfortunately the integer s1 is computed via L = cd 
= s1 mod n. Finding s1 is hard due to nonexistence of 
polynomial algorithm to solve ed = 1 mod φ(n) for d 
due to the hardness of solving factoring problem.   
 
Attack 4: Assume that the attacker collects two 
ciphertext (c1,K1) and (c2,K2). These ciphertext 
corresponds to the following equations: 
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s11 + f11r11 = m11 mod n, and 
s12 + f11r12 = m12 mod n 

 
where, f11 is a public key.  These two equations have six 
unknowns and the attacker fails to obtains m11 and m12. 
However let us assume that Attack 2 is solvable then the 
attacker knows s11 and s12. This make the above system 
of equations now has four unkowns. Still, it will give us 
infinitely many solutions for m11 and m12. The case 
where we assume Attack 3 is solvable goes similarly.  
 
Efficiency performance: We measure and describe the 
efficiency performance of our system in terms of number 
of keys used, computational complexity overhead and the 
communication costs for each algorithm; encryption and 
decryption. We use the following notations to analyse the 
performance of the system: 
 
• SK and PK denote the number of private and 

public keys respectively 
• Texp is the time complexity taken for a modular 

exponentiation 
• Tmul is the time complexity taken for a modular 

multiplication 
• Tec-mul    is the time complexity for executing the 

multiplication on elliptic curve points 
• Tec-add is the time complexity for executing the 

addition of two elliptic curve points 
• Thash is the time complexity taken for performing a 

hash function 
• |x| denotes the bit length of x 
 
 We assume that the time complexity for modular 
addition or subtraction is negligible. We also assume 
that the probability of the bit being chosen as 0 or 1 is 
0.5. Note that, the time complexity for Encryption is 
given by 2Tec-mul + Tmul + Texp and the time complexity 
for Decryption is Tec-mul + Texp + Tmul. The 
communication costs of the system is only 4|n|. We use 
the conversions Texp = 240Tmul, Tec-mul = 29Tmul  and Tec-

add = 0.12Tmul given by Koblitz et al. (2000) to measure 
the performace in terms of Tmul time complexity. The 
summary of efficiency performance is given in Table 1.  
 
Table 1: The performance of our new public key encryption scheme 
Our new public key encryption scheme 
The number of keys SK 2 
PK 2 
Computational complexity Encryption 299Tmul + Thash  
Decryption 270Tmul 
Communication cost Encryption 2|n| 
Decryption 2|n| 

DISCUSSION 
 
 So far, the security of most of the developed 
cryptosystems was based on a single hard problem like 
discrete logarithm, residuosity, factoring, and elliptic 
curve discrete logarithm and knapsack problems. These 
existing systems are no longer secure if one finds a 
solution to these hard problems and thus, designing a 
cryptosystem based on two hard problems is a good 
alternative. The only way the attacker can break the 
system is by solving the two problems simultaneously 
and this is very unlikely to happen and with negligible 
probability. If the attacker manages to find a solution to 
one of the hard problem, the system remains secure as the 
other problem is still hard to solve. The new system is 
shown secure against the common cryptographic attacks. 
 

CONCLUSION 
 
 We designed a new cryptosystem based on 
multiple hard problems; elliptic curve discrete 
logarithm and factoring. The developed system requires 
only 299Tmul and 270Tmul for each Encryption and 
Decryption. Some possible algebraic attacks have also 
been analysed and scheme is heuristically secure from 
those attacks.  
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