
American Journal of Applied Sciences 9 (9): 1407-1414, 2012
ISSN 1546-9239
© 2012 Science Publication

Corresponding Author: Subashini S., Department of Computer Science and Engineering, Anna University Tirunelveli,
 Tamilnadu, 627007, India

1407

A Metadata Based Storage Model for Securing Data in Cloud Environment

Subashini, S. and V. Kavitha

Department of Computer Science and Engineering,
Anna University Tirunelveli, Tamilnadu, 627007, India

Abstract: Problem statement: Enterprises are migrating to the cloud environment at a faster pace.
Security of information that is being processed by the applications and ultimately getting stored in the
data centers are of big concerns of this newly evolving environment. The security of the data is a
concern not only during transferring of data through the wires but also during its storage phase where
data stays most of the time. Approach: In order to keep the data secure during its storage phase, a
preventive, robust security model is required. Instead of developing a robust security module to
prevent hackers from intruding into data centers, a model which will prevent intruders from getting the
required information even at the event of intrusion, will be of utmost use. Conventional security
models secure data by encryption or by fragmentation. A security model developed using a
fragmentation technique that is based on the sensitivity, criticality and value of the data provides better
security by means of disintegration of value of the data and also a good technique for prevention of
information leaks. The proposed method also provides solutions to access the fragmented data.
Results: The proposed model provides a efficient security solution for data stored in cloud. When
compared to conventional methods, the speed of data queries are less for small databases, but prove to
be very efficient for huge databases. Conclusion: This model provides an efficient solution for data
storage security in cloud environment. This technique coupled with standard encryption techniques
will make this model more robust.

Key words: Cloud computing, data privacy, data protection, data storage, data security

INTRODUCTION

 Even as an increasing number of firms look at
embracing cloud computing, the security of data
predominantly remains as a primary concern. Cloud
requires security which depends and varies with respect
to the deployment model that is used, the way by which
it is delivered and the character it exhibits. Some of the
fundamental security challenges are data storage
security, data transmission security, application security
and security related to third party resources (Subashini
and Kavitha, 2011). As this new generation
infrastructure gains momentum, more and more
applications and data are moved to this untested
environment. Though the underlying infrastructure of
the system paves way for elasticity and easy
deployment of the services by vendors, this mounting
opportunity has a trailing risk which poses a major risk
and concern over the system’s security. Cloud
computing moves the application software and
databases to the large data centers, where the
management of the data and services are not
trustworthy. This unique attribute, however, poses

many new security challenges (Wang et al., 2009).
These security concerns should be curtailed at its root
instead of deploying much effort at the later stages
when the system is scaled beyond imagination and
solutions are outside implementable limits. To realize
this tremendous potential, business must address the
privacy questions raised by this new computing model
(BNA, 2009).
 This study proposes a methodology for securing
data that is being stored at data centers and other
locations of the cloud. The data under consideration is
inclusive of data that is residing in a database and as
well as in the file system. The life time of the data at the
storage location is obviously more than the time it is
over transmission. Though data transmission security is
of importance, the security of the data at the stored
location is of utmost importance. Hence we propose a
methodology to secure data during its time it is being
residing in the storage location. This inherently triggers
the need for designing ways to store and retrieve data.
The rest of the study unfolds this methodology and is
organized as follows: In this study firstly we discuss
about related works in this area. Next this study

Am. J. Applied Sci., 9 (9): 1407-1414, 2012

1408

describes the overall functionality of this methodology.
Later we explain ways to design data storage and access
methods to maintain integrity of data. Finally we provide
a sample implementation algorithm and also different
elements that should be considered for storing data in
database. It also lists out generic concerns that have to be
taken into account to adhere to the proposed model.

Related works: Ignoring fragmentation with respect to
providing security, data fragmentation is not a new
concept. Concepts like these are already in use for
providing optimization of data access in distributed
systems. But most of them do not take security as the
concern for fragmentation. One such work is regarding
fragmentation and allocation of data in distributed
database systems (Hose and Schenkel, 2010). Here they
propose a model to fragment data horizontally or
vertically with relation to the tuples so that data can be
accessed or updated in an optimized manner.
 Another work proposed by Fabre and Perennou
gives a model based on object fragmentation at design
time to reduce processing in confidential objects. They
give an idea that the more non confidential objects can
be produced at design time, the more application
objects can be processed on untrusted shared computers
(Fabre and Perennou, 1995). In another study Gibbs
describes about different problems created by the
fragmentation of information across a number of
different databases that are maintained and controlled
by different function units within an organization
(Gibbs et al., 2005).
 These algorithms provide optimal ways to re-
arrange and access data that are fragmented and stored
in different locations. The main concerns in these works
are to fragment data on the basis of easy retrieval but
not relating to providing security to the data under
consideration. Fragmentation of data based on
relevance to data value is not targeted in any of the
works. Fragmentation based on meta data is used in
some works but those considerations are truly based on
relevance to optimize data access rather than to the
security of the data itself.

Metadata based data storage model: This model is
based on the fact that any information is valuable only
as long as the fragments of the information are related
to each other. When related information are not
available in a mapped manner, it is of no use. For
example, information about a credit card number
without its corresponding information like card holder
name, validity date information and Card Verification

Value (CVV) is invaluable and so is it’s vice versa.
And a similar example is the mapping of username and
password. A username alone is not valuable and so is
the information about the password alone. The
information becomes valuable only when these
fragments of information are mapped. The mapped
information about elements is required only for
authenticated users and owners of the respective
information. A well known instance of intrusion of user
information is the one recorded by Sony PS Network in
recent times (Goodin, 2011).
 In such a scenario, there is no necessity that data
should be stored in a mapped manner. But mapping is
needed at the point of usage. Juels and Kaliski
described a formal “Proof of Retrievability” (POR)
model for ensuring the remote data integrity. Their
scheme combines spot-checking and error-correcting
code to ensure both possession and retrievability of files
on archive service systems (Juels and Kaliski, 2007).
The time of usage of the information is apparently very
less in comparison to the time that data is present at the
storage location. Thus two types of security concerns
arise. One concern is during data usage, i.e. during
transmission and secondly, static phase of the data, i.e.
during residing at storage centers. With respect to the
data security during transmission in the cloud we have
proposed a layered framework to deliver security as a
service in cloud environment (Subashini and Kavitha,
2011). This framework consists of a security service
which provides a multi-tier security based on the need
of the transaction. The framework provides dynamic
security to users based on their security requirements,
thus enabling localized level of security and thereby
reducing the cost of security for applications requiring
less security and providing robust security to
applications really in need of them.
 The model described in this study only deals with
the data security at the storage centers. This in turn has
two concerns: One issue is about the actual physical
unit where the data is stored and the other one is the
intrusion into the information. Our model is mainly
focused in providing security in avoiding intrusion.
This model does not prevent hackers from getting hold
of the data. Rather it makes the data invaluable even if
it is accessed by an intruder.
 To adhere to this model, care has to be taken right
from the design phase of the information storage. Data
has to be segregated into Public Data Segment (PDS)
and Sensitive Data Segment (SDS). The SDS has to be
further fragmented into smaller units until each
fragment does not have any value individually.

Am. J. Applied Sci., 9 (9): 1407-1414, 2012

1409

Fig. 1: Data fragmentation

The fragmentation need not be of multiple levels.
Instead, effort has to be put in to identify the key
element that makes the data sensitive and should be
fragmented separately. Figure 1, explains this
fragmentation.
 The value of the information is actually destroyed
in this process. But as and when fragmentation is done,
the mapping data required to re-assemble the
information should also be generated parallely. This can
be done for database that is being designed from
scratch. But, this is not effective for enterprises who
want to move their existing data to the cloud. As a
measure of migration of data from existing environment
to cloud, the migration should be done appropriately.
This can be made feasible by this model. For achieving
this, we need a Data Migration Environment (DME)
which does this job. The input to DME should be the
existing schema of the database and additionally
information about the sensitive part of the schema
should be given as Metadata to the DME. The DME
can fragment the data into pieces based on the level of
security needed. Along side it will prepare a mapping
table to re-assemble the data. The functionality of this
environment and considerations for data integrity are
discussed next..

The methodology: Let us consider our previous
example of credit card information and roll out our
methodology using this example.
 Consider a database in a bank consisting of user
information along side with the credit card information.
The schema for storing such information will be in the
form of tables with some tables containing personal
information of the user and some tables containing
information regarding to credit cards and will be
mapped using their ids.
 This particular information can be stored in a
database (say bankDb) this way:

bankDB:
• A Customer table containing

• CustomerId (Primary Key (PK)),
• CustomerName,
• CustomerAddress,
• CustomerPhone,
• CustomerDOB

• A Membership table containing
• CustomerId (Primary & Foreign Key (FK))
• Password,
• PasswordQuestion,
• PasswordAnswer

Am. J. Applied Sci., 9 (9): 1407-1414, 2012

1410

• A Creditcard table containing
• CardId, (Primary Key)
• CreditcardNo,
• CardExpiryDate,
• CVVNo

• A Customer_Creditcard table containing
• CustomerId (Primary Key)
• CardId (Primary Key)

 An intruder who gets access to this particular
database can exploit this information because all related
information are stored at the same location.
 In this example, the Customer table contains data
which is not of much importance. The Membership
table taken individually does not have any value but
along with the Customer table data, it is juicy
information for an intruder. The Creditcard table is a
sensitive data with high value because though there is
no mapping done with the Customer table, it
individually is a high potential target. For example, an
online transaction can be done successfully with this
data alone. And together with the information of
Customer table and Customer_Creditcard table, the
bank can become bankrupt overnight. Usually, the
entire data is stored in a single database and most
probably on the same hardware resource.
 Our model enforces that the related data should be
stored at different locations and should be mapped
runtime either during update or query. Consider that
this entire model is migrated to our proposed model
through the DME. The user has to supply the schema
information of these tables to the DME and along side
its metadata. Let us consider only three categories of
metadata for this example. The data which is having
low value is considered as ‘Normal’. The data which is
having high value is considered as ‘Critical’ and the
data which has value when mapped with other data is
considered as sensitive. And the data which maps
‘Sensitive’ or ‘Critical’ data to ‘Normal’ data is also
considered ‘Sensitive’. The metadata for our example
are shown in Table 1.
 The DME now has to fragment this data. The DME
should be able to be configured or customized with
respect to the level of security required. Considering
our example, if we want the DME to provide medium
level security, it should fragment only data which are of
‘Critical’ criteria. And if high level security is required,
it should fragment data present in both ‘Critical’ and
‘Sensitive’ criteria. The DME is not aware of the
actual data residing within these tables. Hence along
with the metadata of the tables, the primary key
column name should be provided in addition to it.

Table 1: Metadata information
Table Metadata
Customer Normal
Membership Sensitive
Creditcard Critical
Customer_Creditcard Sensitive

Table 2: Metadata information after fragmentation
Table Metadata
Customer Normal
Membership Sensitive
DME_Creditcard Sensitive_DME
Customer_Creditcard Sensitive
DME_Creditcard_Senstive Sensitive_DME
DME_Creditcard_Mapper Sensitive_DME

Table 3: Segregated schema
Normal Originally sensitive Sensitive DME
Customer Membership DME_Creditcard
 Customer_Creditcard DME_Creditcard_Senstive
 DME_Creditcard_Mapper

This is easily available with the schema information of
the database tables. The different levels of security
needed and their corresponding metadata should be
configured with the DME.
 Let us consider that we need medium security for
our database. Then the DME can fragment only the data
that is ‘Critical’. In our example, we have one ‘Critical’
data set. The corresponding table is Creditcard table
and the primary key of this table is CreditcardId. As a
first step the DME fragments this table as below:

• DME_Creditcard table
• SensitiveId (PK, Created by DME)
• CreditcardNo
• CardExpiryDate

• DME_Creditcard_Senstive table (Created by
DME)
• SensitiveId (PK, FK, Created by DME)
• CVVNo

• DME_Creditcard_Mapper table (Created by
DME)
• CreditcardId (PK)
• SensitiveId (PK, Created by DME)

 Now when we look into the data of the above three
tables all of them will fall under the ‘Sensitive’
category of metadata. Table 2 lists the metadata of the
database at this current situation.
 After fragmentation is completed, the DME
segregates the schema, separating out the data modified
by DME, ‘Originally Sensitive’ data and ‘Normal’ data
as shown in Table 3.

Am. J. Applied Sci., 9 (9): 1407-1414, 2012

1411

Table 4: DME_MAPPER Table
OriginalTableName NewTableName
Creditcard DME_Creditcard
Creditcard DME_Creditcard_Senstive
Creditcard DME_Creditcard_Mapper

 Then the ‘Sensitive DME’ data is then split into
Actual Data (AD) and Mapper Data (MD):

• Sensitive DME
• Actual Data
• DME_Creditcard
• DME_Creditcard_Sensitive
• Mapper Data
• DME_Creditcard_Mapper

 The DME then moves the ‘Normal’ data to one
database and ‘Originally Sensitive’ data to another
database and AD of ‘Sensitive DME’ data to another
database at different location and MD of ‘Sensitive
DME’ to the database with ‘Normal’ data. With respect
to the AD, if DME creates its own table, then this table
will be the most sensitive data and will be stored in a
different location. Different location here means either
different server at the same geographical location or at
different geographical location. Additionally one more
mapping is required for mapping the original table with
the fragmented data set. This can be stored in a separate
table. Now the database looks like the following:

Server 1
bankDB:
• Customer table containing

• CustomerId (Primary Key (PK)),
• CustomerName,
• CustomerAddress,
• CustomerPhone,
• CustomerDOB

bankDB_DME
• Membership table containing

• CustomerId (Primary and Foreign
Key(FK))

• Password,
• PasswordQuestion,
• PasswordAnswer

• Customer_Creditcard table containing
• CustomerId (Primary Key)
• CardId (Primary Key)

• DME_Creditcard_Mapper table containing
• CreditcardId (PK)
• SensitiveId (PK, Created by DME)

• DME_Mapper table containing
• OriginalTableName (Combined PK)
• NewTable Name (Combined PK)

Server 2

• DME_Creditcard table
• SensitiveId (PK, Created by DME)
• CreditcardNo
• CardExpiryDate

Server 3
• DME_Creditcard_Senstive table (Created by

DME)
• SensitiveId (PK, FK, Created by DME)
• CVVNo

 The DME_Mapper table is shown in Table 4.
 Now each database contains data which does not
have value in itself. The entire mapping is done only
during runtime and the value is built up temporarily
during access and update and later its value is
destroyed. An intruder who gets access to the data
during the static phase of the life cycle of the data can
not use the data to exploit the information by any way.
The integrity between the original schema and the new
schema can be taken care by deploying a database
runtime migration environment which will deploy all
the logics required for the runtime generation of schema
and its corresponding drop after its lifecycle.

Implementation and cost: A typical algorithm that
will be used for fragmentation is as follows:

Assuming No. of Tables as ‘n’ and No. of Data Servers
(DS) as ‘s’

For k = 1 to s
 DS[k].used = false;
End For
For i=1 to n
 getMetaDataSensitivity(Table[i])
End For
For i=1 to n
If(Table(i).Sensitiity == Normal){
 DS ds = getUnusedDS()
 StoreTableInDS(ds,Table[i])
‘StoreTableinDS also stores the information of the
tables ‘stored in the DS in a hashtable which will be
used by the ‘runtime environment to re-create the table
dynamically ‘during runtime access
 continue;
}
else if(Table(i).Sensitivity==Sensitive){

If(requiredSecurity==High){
DME_Table[] dme_t_high = Split(Table[i])
DME_MapperTable dme_map_t = _
CreateDMEMapperTable(Table[i],dme_t_high

)
DS ds = getUnusedDS()

 StoreTableInDS(ds,dme_t_high)

Am. J. Applied Sci., 9 (9): 1407-1414, 2012

1412

ds = getUnusedDS()
 StoreTableInDS(ds,dme_map_t)

}
}
else if(Table(i).Sensitivity==Critical){

DME_Table[] dme_t = Split(Table[i])
If(requiredSecurity==High){

SplitFine(dme_t)
}
DME_MapperTable dme_map_t = _
CreateDMEMapperTable(Table[i],dme_t)
DS ds = getUnusedDS()
StoreTableInDS(ds,dme_map_t)

‘Assuming No. of DME Tables as ‘m’
DS ds_sensitive = getUnusedDS()
DS ds_critical = getUnusedDS()

For j=1 to m
If(dme_t[m].isDMESensitive == false){
StoreTableinDS(ds_sensitive,dme_t[m])
else
StoreTableinDS(ds_critical,dme_t[m])
}
End For
}
End For

 During querying of data, the runtime environment
uses the hash table containing information of the
fragmented tables to restructure the input query by
replacing and inserting a join query with the input
query and then executing it to form tables with original
relationships of the data and once the dynamically
created tables are destroyed after the access is over. The
fragmentation of data incurs a cost overhead which can
be calculated as follows:

C1 = Cost of Fragmentation of one Critical table * No

of Critical tables
C2 = Cost of Fragmentation of one Sensitive table *

No of Sensitive tables (this cost incurs only
when required security is high)

C3 = Cost of Creating a Mapper Table * (No of
Critcal tables + No. of Sensitive Tables)

C4 = Cost of regeneration of fragmented tables * ([No
of Critical table*No of DME tables created
newly] + [No. of Sensitive table*No of DME
tables created newly])

C5 = Cost of encrypting/decrypting total database
C6 = Cost of fragmenting data for data dispersal in

distributed systems

 Total Cost of Security without fragmentation T1 =
C5 + C6.

Where:

C6 <= C1+C2+C3+C4

C7 = Cost of encrypting / decrypting Senstive Tables.

Where:

C5 > C7

 Total cost of Security with fragmentation and
encryption when compared to security using only
encryption and fragmentation for data dispersal purpose
T = C1+C2+C3+C4+C7-T1 where T>T1.
 The cost of this method is more than traditional
methods but it provides a better security. Since this
model will be deployed in a cloud which is
conceptually an environment with high pocessing
power, the cost incured will provide proper justification
when compared to the security it provides. Data
dispersal and Data fragmentation are some of the
techniques that can be attempted with ease with the
cloud environment.

MATERIALS AND METHODS

 The entire technique can be reproduced both in a
simulated environment and real time environment. The
DME can be implemented in any of the programming
languages. This DME implementation can be
segregated into migration environment and data schema
acess layer. The migration environment should enable
the user to define the metadata of the schema and data
schema access layer should read the metadata of the
schema and should do the fragmentation. The database
schema can be designed either in Oracle or SQL Server.
The pseudo code described in this study can be used for
implementing the logic for fragmentation of data based
on meta data of the schema. The data storage should be
done in a distributed database and the mapper tables
should be encrypted and stored in a distributed
environment. The ultimate aim of the fragmentation is
that the data which can be coupled to form a significant
value should not be stored together.

RESULTS

 A concrete implementation was made to test this
methodology. A typical financial institution was taken
into consideration and its database schema was
designed. There were 17 Master tables and 41
Transaction tables. These tables were initially designed
using normal methodology and then the schema was
redesigned based on the model described in the study.
A simple data migration environment was implemented
as an application and the redesign of the database was
done using this environment. There were 34 critical
entities, 79 sensitive entities and the remaining were
normal entities.

Am. J. Applied Sci., 9 (9): 1407-1414, 2012

1413

Fig 2: Performance between normal and fragmented environment

The DME created 22 new subtables to fragment the
sensitive and critical data and in the process created 9
mapper tables. The cloud environment was simulated
using Eucalyptus and 5 Sql Server databases were
deployed in different machines in the cloud
environment which totally contained 8 machines
running on Ubuntu.
 The resultant data from the DME is a set of queries
that has to be run on the 5 databases and also a set of
stored procedures which translates the original queries
to queries required to form data from the fragmented
data. The DME suggests the minimum number of
distributed databases that is required for storing the
fragmented data based on the original database schema.
For our scenario, the DME suggested 3 databases. But
the DME was asked to generated distribution based on
5 databases and hence the more number of subtables.
The scripts generated by the DME was subsequently
run on the database and the required database schema
was created in those databases.
 With this setup, the performance of the database
and the integrity of the queries were tested. For this
requirement, the normal database schema without
fragmentation was setup in a separate database.
Initially, only simple queries were made from both the
environments (like queries involving data from 2 or 3
master tables). The time difference between the two
environments were significant with the fragmented
environment consuming more time and it was expected.
Then as the complexity of the queries increased, the
time difference became less significant and this was
mostly attributed to the parralel querying of the sql
server in a single machine in the normal environment
with the parallel querying in multiple sql servers
residing in different machines in the fragmented
environment. The graph in Fig. 2 explains the time

taken for different type of queries in the normal and
fragmented environment.

DISCUSSION

 The limitations in this model are the initial effort
taken to configure the DME and then migration of the
existing data to the new model. Changes to the existing
conventional database engines are unavoidable, because
there will be an inherent need for plugging in the DME
and the database runtime migration environment to
these engines. There is a cost which is incured due to
fragmentation of data. This cost includes cost of
fragmentation of data while storage and also cost of
forming the data at runtime from the fragmented data.
But this cost is not newly introduced to the system
because data fragmentation is already a practical
methodology that is followed for distributed systems.
Here the fragmentation is provided to make the data
secure.In addition to fragmentation, a proper encryption
technique can be used to provide additional security.
This encryption can be done only to data that is
fragmented as ‘sensitive’ by the DME. This reduces the
cost of encryption of the entire database.

CONCLUSION

 In this study we investigated the issues in security
in data storage in cloud environment. To ensure that the
data is secure during the stored phase of the life cycle
of the data, we proposed a metadata based model using
which the data residing at data center are robbed of
their values and the values are temporarily built up
during runtime and then destroyed once its usage scope
is completed. This makes the data invaluable even if an
intruder gets access to this data. Though this model will

Am. J. Applied Sci., 9 (9): 1407-1414, 2012

1414

take some quantifiable effort to be implemented in real
time, it provides necessary solution for an environment
like the Cloud which is showing an adverse potential to
become the next generation enterprise environment.
Implementing such a model during the earlier phases of
the evolution of the system will be relatively easier with
respect to implementing it after lot of data take refugee in
the cloud. This model in combination with our multi-tier
security model for securing data over transmission will
provide proper cross bars in the wires of malicious users.

REFERENCES

Goodin, D., 2011. User data stolen in Sony PlayStation

Network hack attack. Ars Technica
Fabre, J.C. and T. Perennou, 1995. Fragmentation of

confidential objects for data processing security in
distributed systems. Proceedings of the 5th IEEE
Computer Society Workshop on Future Trends of
Distributed Computing Systems, Aug. 28-30, IEEE
Xplore Press, Cheju Island, pp: 395-403. DOI:

10.1109/FTDCS.1995.525009
Gibbs, M.R., G. Shanks and R. Lederman, 2005. Data

quality, database fragmentation and information
privacy. Surveillance Soc., 3: 45-58.

Hose, K. and R. Schenkel, 2010. Distributed Database
Systems Fragmentation and Allocation. Distributed
Database Systems.

Juels, A. and B.S. Kaliski Jr., 2007. Pors: Proofs of
retrievability for large files. Proceedings of the
14th ACM Conference on Computer and
Communications Security, Oct. 28-31, ACM Press,
USA, pp: 584-597. DOI:
10.1145/1315245.1315317

Subashini, S. and V. Kavitha, 2011. A survey on
security issues in service delivery models of cloud
computing. J. Netw. Comput. Appli., 34: 1-11.
DOI: 10.1016/j.jnca.2010.07.006

Wang, C., Q. Wang, K. Ren and W. Lou, 2009.
Ensuring data storage security in cloud computing.
Proceedings of the 17th International Workshop on
Quality of Service, Jul. 13-15, IEEE Xplore Press,

Charleston, SC., pp: 1-9. DOI:
10.1109/IWQoS.2009.5201385

BNA, 2009. Privacy and Security Law Report. The
Bureau of National Affairs, Inc.

