
American Journal of Applied Sciences 9 (8): 1294-1299, 2012
ISSN 1546-9239
© 2012 Science Publications

Corresponding Author: Kamalam, G.K., Department of CSE, Kongu Engineering College, Perundurai, Erode, India
1294

Novel Adaptive Job Scheduling Algorithm on Heterogeneous Grid Resources

1G.K. Kamalam and 2V. Murali Bhaskaran

1Department of CSE, Kongu Engineering College, Perundurai, Erode, India
2Pavaai College of Engineering, Pachal, Namakkal, India

Abstract: Grid provides an infrastructure for sharing geographically distributed heterogeneous resources to
process many applications and mainly used for solving scientific problems that requires more computation time.
Problem statement: Grid is a dynamic environment, where the resources may join or leave the environment at
any time and the jobs also arrives at different intervals of time. To meet the demands and requirements of the
dynamic environment, to maximize the resource utilization and to minimize the makespan an effective grid
scheduling technique is needed. Approach: We propose grid architecture as a collection of clusters with
multiple worker nodes in each cluster. We propose a new scheduling algorithm Novel Adaptive Decentralized
Job Scheduling Algorithm (NADJSA) that applies both Divisible Load Theory (DLT) and Least Cost Method
(LCM) and also considers the user demands. Results: The proposed Novel Adaptive Decentralized Job
Scheduling Algorithm is compared with the Decentralized Hybrid Job Scheduling Algorithm. Conclusion: The
proposed Novel Adaptive Decentralized Job Scheduling Algorithm minimizes the makespan, improves the
resource utilization and satisfies the user demands and well suits for the grid environment.

Key words: Grid scheduling, cluster, coordinator node, worker node, heterogeneous resources

INTRODUCTION

 Grid system consists of geographically
distributed heterogeneous resources that belong to
various administrative domains. The dynamics and
heterogeneity nature of the grid environment makes
the scheduling problem a challenging one. In general,
job scheduling in heterogeneous grid environment is
an NP-hard problem (Manavalasundaram and
Duraiswamy, 2012).
 Divisible loads are classified as arbitrarily
divisible loads and modularly divisible loads.
Modularly divisible loads are divided into pre-
defined modules. Between the modules, precedence
relations may exist. Arbitrarily divisible loads are
divided into partitions of arbitrary lengths. No
precedence relations exist between the loads and
these arbitrarily divisible independent processing
loads can be processed on more than one processor
(Shokripour and Othman, 2009a).
 Divisible Load Theory (DLT) provides time-
optimal processing of jobs. The ten importance of
DLT are: (1) A tractable model (2) Interconnection
topologies (3) Equivalent networks (4) Installments
and sequencing (5) Scalability (6) Metacomputing
accounting (7) Time-varying modelling (8) Unknown
system parameters (9) Extending realism (10)
Experimental results (Robertazzi, 2003).

 Least Cost Method (LCM) allocates the job to
the available resources in the grid with minimum
processing cost.
 The aim of the scheduling algorithm is to
minimize the processing time of the job. Optimizing
processing time of the job is done by dividing the
jobs into sub jobs and allocating the sub jobs to the
worker node of different clusters in a decentralized
grid environment.
 The proposed Novel Adaptive Decentralized Job
Scheduling Algorithm employs the DLT and LCM
and allocates the job efficiently to the available
resources in the decentralized grid with minimum
makespan and minimum processing cost.

MATERIALS AND METHODS

Related research: The powerful tool for efficient
scheduling of computing loads is the divisible load
theory. It is especially emerged for scheduling of
parallel loads that are divisible among the processors
and links. Divisible load theory is a linear mathematical
model, the computing loads can be partitioned
arbitrarily and can be executed in any order and it
provides optimal processing of the computational loads
(Shokripour and Othman, 2009b).
 In LCM, the arbitrary divisible independent
processing loads are allocated to the resource with the
least allocation cost.

Am. J. Applied Sci., 9 (8): 1294-1299, 2012

1295

 Shah et al. (2010a), the job is divided into tasks
of equal size and the task is allocated to the processor
with the least allocation cost. If more than one
processor has the same least allocation cost, then the
processor with the maximum available processing
unit is selected. The task to be scheduled on this
processor is selected based on the processing time of
the task. The task which has the maximum processing
time is selected and scheduled on the processor.
 Shah et al. (2010b), the processor and the job
with the least allocation cost are selected. If more
than one processor has the same least allocation cost,
then select the next least allocation cost for both the
processor and the job. Among the processor that has
the least cost allocation select the more processing
unit available processor and select the job with
maximum workload and allocate to that processor.
Select the next least allocation cost for the minimum
job workload.

Decentralized grid model: We have proposed a
decentralized grid model as a collection of clusters
where cluster servers are treated as Coordinator
Nodes (CN) denoted as CN = {CN1, CN2, ..., CNm}.
Each cluster consists of multiple Worker Nodes
(WN) denoted as WN = {WNi1, WNi2,, WNin}.
Each worker node has different processing powers.
The grid environment is dynamic; the worker nodes
can leave or join the grid at any time. Each worker
node has its own availability time, the time at which
the worker node is available in the grid. The worker
nodes within the cluster are interconnected through a
local area network. The clusters are connected
through a wide area network. Grid Information Centre
(GIC) maintains the CPU and memory utilization value
of all the nodes in the gird. Coordinator nodes of each
cluster provide this information to GIC periodically
(Suri and Singh, 2010).
 Each user Ui owns a cluster Ci. The set of users
U is denoted as U = {U1, U2, ..., Uo}. The set of all
jobs submitted by the user U of a cluster C is denoted
by J. The set of jobs is denoted as J = {J1, J2,, Jk}.
Each job is split into sub jobs as Ji = {SJi1, SJi2,,
SJil}.
 In a decentralized dynamic grid environment the
scheduling of jobs is a linear programming
transportation problem. An efficient novel approach
is essential for scheduling of jobs originating from
any cluster to any other cluster at minimum
transportation cost. Scheduling also considers the
various parameters like minimum makespan,
minimum processing cost, availability time of the
worker node, deadline of the job, transportation cost,
the communication time to transfer the job submitted
in one cluster to the other cluster for processing.

Existing research: A divisible job Ji is divided into
sub jobs to the maximum of five partitions. Let k be
the number of jobs and q be the number of partitions
of a job (Kamalam and Bhaskaran, 2011a, 2011b):

 J = {J1, J2,..., Jk}
 Ji = {SJi1, SJi2,..., SJiq}
 Where k >= 1 and q >= 1

The user submits the job to the coordinator node.
The coordinator node contacts GIC and gets the
information of memory and CPU utilization of each
worker node in the grid and allocates the sub job to
the node with the minimum processing time and
processing cost.

Decentralized Hybrid Job Scheduling Algorithm
(DHJSA):

Step1: If there is any completion time information

from CN or WN then update the information
at GIC or CN.

Step2: If J is empty then go to step 9.
Step 3: If a job Ji completes the execution of all its

sub jobs and was migrated to another cluster
then dispatch this job along with results to
the generated cluster and remove the job
from the job set J.

Step 4: If a new job arrives at CN of any cluster Ci
then partition the job into maximum of 5
equal partitions and then add it to the job set J.

Step 5: Among all the clusters find the worker node
with minimum processing time and
allocation cost. The processing time is:

 for i = 1 to m
 for j = 1 to n
 WN min = min {(CTij+
 (job length/job count/
 Cluster [i]. WN [j]. processing power))*
 Cluster [i]. WN [j]. allocation cost}

Step6: CN at cluster Ci then dispatches the sub job

to the worker node WNmin

Step7: Repeat step 5-6 until all sub jobs is
scheduled.

Step8: Repeat step 4-7 until the job set is empty.
Step9: Calculate the processing cost:

for i = 1 to m
 for j = 1 to n
 Total cost = Total cost +
 (Completion Time (WNij)*

Am. J. Applied Sci., 9 (8): 1294-1299, 2012

1296

 processing Cost (WNij))

Step10: END.

Novel Adaptive Decentralized Job Scheduling
Algorithm (NADJSA): When the user submits the
job, the job is arbitrarily partitioned into sub jobs to
the maximum of five partitions. The CN receives the
information from the GIC and selects the worker
node for scheduling among the entire cluster
considering the following parameters: Processing
cost, Processing time, Transportation cost,
Availability time of the worker node and Deadline of
the job.

Novel Adaptive Decentralized Job Scheduling
Algorithm (NADJSA) is as follows:

Step 1: If there is any completion time information

from CN or WN then update the information
at GIC or CN.

Step 2: If J is empty then go to step 12.
Step 3: If a job Ji completes the execution of all its

sub jobs and was migrated to another cluster
then dispatch this job along with results to
the generated cluster and remove the job
from the job set J.

Step 4: The initial processing time is calculated as:

minval = Cluster [0]. allocation cost* (job length/
Cluster [0]. WN [0]. processing power) +
(Cluster [0]. WN [0]. allocation cost*
Cluster [0]. WN [0]. processing time)

Step 5: If a new job arrives at CN of any cluster Ci

then partition the job into maximum of 5
equal partitions and then add it to the job set.

Step 6: Among the entire clusters find the worker
node with minimum processing time,
transfer time and allocation cost. Also check
the availability of the worker node for
allocating the sub job to the particular
worker node. The processing time is:

for i = 1 to m
 for j = 1 to n
 if (Cluster [i]. WN [J]. allocation cost*
 ((job length/job count)/
 Cluster [i]. WN [j]. processing power) +
 Cluster [i]. WN [j]. allocation cost*
 Cluster [i]. WN [j]. processing time))
 < minval
 if ((availability [i] [j]) >
 (Cluster [i] WN [j]. processing time +
 ((transfer time[Clusterorigin] [i]) +
 ((job length/job count)/

 Cluster [i] WN [j]. processing power)))
 Cluster [min C]. WN [min WN]. processing time + =
 ((job length/job count) /
 Cluster [min C]. WN [min WN]. processing
power)
 + transfer time [Cluster origin] [min C]

Step 7: The total processing time of a job is

calculated as:

Total processing time + =
((job length/job count)/
Cluster [min C]. WN [min WN]. processing power))
+ transfer time [Cluster origin] [min C]

Step 8: CN at cluster Ci then dispatches the sub job

to the worker node WNmin

Step 9: Repeat step 6-8 until all sub jobs is
scheduled.

Step 10: If total processing time of the job is less than
the deadline of the job

hit count = hit count + 1

else
miss count = miss count + 1

Step11: Repeat step 5 to 10 until the job set is empty.
Step12: Calculate the processing cost.

 for i = 1 to m
 for j = 1 to n
 Total cost = Total cost +
 (Completion Time (WNij)*
 processing Cost (WNij))

Step13: END.

RESULTS

 We compare the analysis of our proposed Novel
Adaptive Decentralized Job Scheduling Algorithm
with the existing Decentralized Hybrid Job
Scheduling Algorithm based on the simulation
parameters of (Suri and Singh, 2010) and are listed in
Table 1.

Table 1: Simulation parameters
Parameters Value
No. of clusters 10
No. of worker nodes per cluster 10
Processing power of worker node 500-5000 MIPS
Job length 2, 50, 000-6, 50, 000 MI
Cost 1-3 G$ unit
No. of users 5
No. of jobs 100-1000
Deadline of the job 600-650 sec
Bandwidth 1000-1500Mb/s
Available time of the worker nodes 400-500 sec

Am. J. Applied Sci., 9 (8): 1294-1299, 2012

1297

DISCUSSION

 The performance of the job scheduling algorithm
is based on the three parameters: Total processing
time, Total processing cost and Number of jobs. The
performance is compared by varying the number of
jobs.
 Table 2 and 3 show the processing time and
processing cost obtained by the Decentralized
Hybrid Job Scheduling Algorithm and the
proposed Novel Adaptive Decentralized Job
Scheduling Algorithm.
 Graphical representation of Table 2 in Fig. 1
shows that the proposed Novel Adaptive
Decentralized Job Scheduling Algorithm provides a
better makespan than the Decentralized Hybrid Job
Scheduling Algorithm.
 Graphical representation of Table 3 in Fig. 2
shows that the proposed Novel Adaptive
Decentralized Job Scheduling Algorithm provides a
minimum processing cost than the Decentralized
Hybrid Job Scheduling Algorithm.

Table 2: Processing time

No. of Jobs NADJSA DHJSA

100 9699 13864

200 56098 85853

300 125053 174217

400 170644 215192

500 257405 333918

600 323130 384343

700 427995 528067

800 518738 600584

900 655417 756436

1000 616090 695965

Table 3: Processing cost

No. of Jobs NADJSA DHJSA

100 39234 130577
200 161087 307107
300 194270 412466
400 425361 718130
500 622570 966938
600 435300 828803
700 965827 1436470
800 1153341 1786471
900 756884 1228351
1000 1341325 1960096

Table 4: Comparison based on miss count

No. of Jobs NADJSA DHJSA

100 16 57
200 47 81
300 103 134
400 143 213
500 206 262
600 273 330
700 293 359
800 394 459
900 415 499
1000 434 557

Table 5: Comparison based on hit count

No. of Jobs NADJSA DHJSA

100 84 43
200 153 119
300 197 166
400 257 187
500 294 238
600 327 270
700 407 341
800 406 341
900 485 401
1000 566 443

Fig. 1: Impact of NADJSA and DHJSA on Processing Time

Am. J. Applied Sci., 9 (8): 1294-1299, 2012

1298

Fig. 2: Impact of NADJSA and DHJSA on Processing Cost

Fig. 3: Impact of NADJSA and DHJSA on Miss Count

Fig. 4: Impact of NADJSA and DHJSA on Hit Count

 The proposed Novel Adaptive Decentralized Job
Scheduling Algorithm allocates the job to the worker
node based on the deadline of the job. Table 4 and
Table 5 shows the comparison based on the miss and
hit count. Miss represents the number of jobs that are
completed after the user deadline. Hit represents the

successful completion of jobs within the user
deadline demand.
 Graphical representation of miss and hit count is
presented in Fig. 3 and 4. The simulation result
shows that the proposed Novel Adaptive
Decentralized Job Scheduling Algorithm shows a

Am. J. Applied Sci., 9 (8): 1294-1299, 2012

1299

high hit rate and less miss rate than the Decentralized
Hybrid Job Scheduling Algorithm.

CONCLUSION

 In this study, we presented an efficient Novel
Adaptive Decentralized Job Scheduling Algorithm for a
decentralized grid environment. The proposed Novel
Adaptive Decentralized Job Scheduling Algorithm
aims at minimum cost (Processing time, Processing
cost, Transfer cost). The Novel Adaptive
Decentralized Job Scheduling Algorithm achieves
minimum makespan and minimum processing cost
than the Decentralized Hybrid Job Scheduling
Algorithm. The result shows that the proposed Novel
Adaptive Decentralized Job Scheduling Algorithm
reduces the makespan and processing cost, satisfies
the user demand, improves the resource utilization and
balances the load across the grid environment.

REFERENCES

Shokripour, A. and M. Othman, 2009a. Survey on

divisible load theory. Proceedings of the Spring
Conference International Association of Computer
Science and Information Technology, Apr. 17-20,
IEEE Xplore Press, Singapore, pp: 9-13. DOI:
10.1109/IACSIT-SC.2009.55

Shokripour, A. and M. Othman, 2009b. Survey on
divisible load theory and its applications.
Proceedings of the International Conference on
Information Management and Engineering, Apr. 3-
5, IEEE Xplore Press, Kuala Lumpur, pp: 300-304.
DOI: 10.1109/ICIME.2009.59

Kamalam, G.K. and V.M. Bhaskaran, 2011a. An
effective approach to job scheduling in
decentralized grid environment. Int. J. Comput.
Appli., 24: 26-30. DOI: 10.5120/2914-3838

Kamalam, G.K. and V.M. Bhaskaran 2011b. An
efficient hybrid job scheduling algorithm for
computational grids. Int. J. Comput. Appli.

Manavalasundaram, V.K. and K. Duraiswamy, 2012.
Integrated resource and cost management scheme
for computational grids. J. Comput. Sci., 8: 538-
544. DOI: 10.3844/jcssp.2012.538.544

Suri, P.K. and M. Singh, 2010. An efficient
decentralized load balancing algorithm for grid.
Proceedings of the IEEE 2nd International
Advance Computing Conference, Feb. 19-20, IEEE
Xplore Press, Patiala, pp: 10-13. DOI:
10.1109/IADCC.2010.5423048

Shah, S.N.M., A.K.B. Mahmood and A. Oxley, 2010a.
Modified least cost method for grid resource
allocation. Proceedings of the 2010 International
Conference on Cyber-Enabled Distributed
Computing and Knowledge Discovery, Oct. 10-12,
IEEE Xplore Press, Huangshan, pp: 218-225. DOI:
10.1109/CyberC.2010.47

Shah, S.N.M., A.K.B. Mahmood and A. Oxley, 2010b.
Hybrid resource allocation method for grid
computing. Proceedings of the 2nd International
Conference on Computer Research and
Development, May 7-10, IEEE Xplore Press,
Kuala Lumpur, pp: 426-431. DOI:
10.1109/ICCRD.2010.86

Robertazzi, T.G., 2003. Ten reasons to use divisible
load theory. Computer, 36: 63-68. DOI:
10.1109/MC.2003.1198238

