
American Journal of Applied Sciences 9 (8): 1166-1181, 2012
ISSN 1546-9239
© 2012 Science Publications

Corresponding Author: Ahmed Ben Achballah, Department of Electrical Engineering, National Institute of Applied Sciences and Technology,
Polytechnic School of Tunisia, Advanced Systems Laboratory, B.P. 676, 1080 Tunis Cedex, Tunisia

1166

Design of Field Programmable Gate Array

Based Emulators for Motor Control Applications

Ahmed Ben Achballah, Slim Ben Othman and Slim Ben Saoud
 Department of Electrical Engineering,

National Institute of Applied Sciences and Technology,
Polytechnic School of Tunisia, Advanced Systems Laboratory,

B.P. 676, 1080 Tunis Cedex, Tunisia

Abstract: Problem statement: Field Programmable Gate Array (FPGA) circuits play a significant
role in major recent embedded process control designs. However, exploiting these platforms requires
deep hardware conception skills and remains an important time consuming stage in a design flow.
High Level Synthesis technique avoids this bottleneck and increases design productivity as witnessed
by industry specialists. Approach: This study proposes to apply this technique for the conception and
implementation of a Real Time Direct Current Machine (RTDCM) emulator for an embedded control
application. Results: Several FPGA-based configuration scenarios are studied. A series of tests
including design and timing-precision analysis were conducted to discuss and validate the obtained
hardware architectures. Conclusion/Recommendations: The proposed methodology has accelerated
the design time besides it has provided an extra time to refine the hardware core of the DCM emulator.
The high level synthesis technique can be applied to the control field especially to test with low cost
and short delays newest algorithms and motor models.

 Key words: Embedded control system, FPGA-based simulation, high level synthesis, real time

emulator, DCM emulator, newest algorithms, direct current machine, Field
Programmable Gate Array (FPGA)

INTRODUCTION

 The high integration scale of FPGAs and their high-
speed processing time with the reconfigurability option
make this type of circuits an attractive solution for
many types of applications (Rodriguez-Andina et al.,
2007). FPGA based systems and simulators are found
in various domains like defense (Gonzalez et al., 2008),
medical (Monmasson and Cirstea, 2007), renewable
energy (Ouhrouche, 2009), physics and the control of
industrial process (Salem et al., 2010; Idkhajine et al.,
2008; Naouar et al., 2007). However, implementing
complex algorithms in FPGA-based systems can be a
laborious work. This study is still realized by circuit-
vendor specific tools in many cases and requires deep
design skills, so it remains the most time consuming
operation in a design flow (Gupta et al., 2004; Paiz et
al., 2008).
 Modern design tools give the possibility to
designers to overcome reconfigurable circuit limits and
to shorten the product availability in the markets. Some
of these tools are called high level compilers,
frameworks and also synthesizers, derived from the
word “High Level Synthesis”. This technique consists

of the translation of an algorithm from a high level
language like C to an equivalent hardware language like
VHDL or Verilog that represents a circuit description
(Coussy and Morawiec, 2008; Pellerin and Thibault,
2005). The resulting hardware descriptions can be
implemented directly into circuits like FPGAs.
Hardware engineers may not modify them and so
economize in the design process time (Martin and
Smith, 2009). Such time gain can be used in the test and
the on-chip verification steps. A recent study in the
industrial field demonstrates that HLS technique is
necessary to increase productivity and diminish the gap
between the increasing integration of chips and the
number of designers needed to work on them (Coussy
and Morawiec, 2008). The same study shows that
hardware engineers who tried the HLS technique
wouldn’t leave it because of its performance and
practical obtained results. By this way, the industry of
electrical process control, which is yet beneficiary from
FPGAs advanced platforms, is now benefiting from
advancements of EDA tools and techniques including
HLS. The application of such advantages (circuitry
and tools) in the process control field is generally
concentrated on implementing more efficient

Am. J. Applied Sci., 9 (8): 1166-1181, 2012

1167

complex algorithms and on testing them in real
conditions with an association with a motor model.
This technique is often called Hardware in the Loop
simulation (HiL) (Dufour et al., 2007). The proposed
FPGA-based simulators are various and depend on
parameters like (1) The degree of algorithms‟
complexity (controller and motor model) (2)
Computing accuracy (3) Timing constraints.
 These parameters oblige designers to follow
different design flows (Martin and Smith, 2009) and to
find alternative solutions especially against timing
constraints like Real-Time Operating System (RTOS),
Multi-Processors System On Chip (MPSoC) or the
hardware implementation of several parts of the electrical
process (e.g., controller unit). Still also, some design
methodologies which are dedicated to the hardware
design field, are more and more adopted and applied to
the process control one like hardware-software CoDesign
using languages like SystemC or SpecC (Salewski and
Kowalewski, 2008).
 In this study, we explore HLS technique because,
as we know, it was not already applied to the embedded
control domain. In fact, we investigate the efficiency of
using the benefits of this technique to automatically
generate a hardware module of the RT DCM emulator
circuit. The purposes behind this case study are (1) to
evaluate this technique with a basic electrical motor
model design (2) to extract the advantages and the
disadvantages of applying HLS techniques to the
control domain.

Related works: FPGA based systems approaches on
the industrial control field were often based on similar
tools and environments. Among them, Xilinx System
Generator (XSG) from Xilinx Inc., DSP Builder from
Altera and SymplifyDSP from Synopsys were very
solicited from the research community.
 Monmasson and Cirstea (2007), the XSG tool was
used to implement an FPGA-based controller for AC
drives and where two case studies were presented.
Reference (Paiz et al., 2008) introduced an enhanced
simulation board dedicated to the rapid prototyping of
digital controllers and also used one of the cited tools
above to generate hardware descriptions from high
level descriptions.
 The literature also contains alternative approaches,
Opal-RT team proposed a Real-Time simulation
platform RT-XSG (including model’s libraries) to
perform Hardware-in-the-Loop (HiL) simulation of
electrical drives but it still depends on XSG tool to
complete the synthesis and the implementation of the
targeted FPGA circuit (Dufour et al., 2008). HiL testing
phase is essential in the validation process of control
units and motor drives. In addition, prior works are

focused on two major axes (1) FPGA implementation
of complex control algorithms for performance
purposes (2) Validation of electrical controllers and/or
motors at earlier stages of production for cost reasons
(Martin and Smith, 2009). These approaches don’t
consider the validation and the diagnosis of the electrical
process after the production stage.
 To resolve this problem, the emulation approach
can be a solution for testing control algorithms. This
concept is assured by the addition of a new validation
stage between simulation and experimentation. After
the validation of the control unit, commands can be
directly applied to the real motor avoiding its
destruction which could be expensive and factor of
delayed delivery of the product (Braham et al., 1997).
Once the emulation performed successfully, the
designed emulator can be used for diagnostic
applications. The development of such emulators is
essentially faced with the execution time problems
since its main function is to reproduce real systems
behavioral that are highly dynamic.
 Such approaches were already developed by
(Othman et al., 2008; Salem et al., 2008). The last two
studies have been applied to the Real-Time emulation
of an embedded controller for a DC Machine but they
have been conducted using a pure software solution or a
mixed one (software and hardware). Despite the fact that
the emulator execution time in last two approaches was
competitive, it doesn’t allow the recuperation of
instantaneous values (below 1 µs computing steps) and
so, not enough closer to a real motor functioning. This
limitation can induce more penalties due to the evolution
of control algorithms and the complexity of some electric
machine models.
 For this reason, our approach is to design a
hardware module which operates as a co-processor to
the on-chip processor. This will economize software
delays such as (1) The sequential execution of software
instructions inside the processor (2) Interruptions and
context switching latencies and as a result, accelerate
the emulator computing time to meet timing constraints.
Because the hardware computing is faster than the
software one, the purpose of the emulator hardware
implementation is to obtain less than 1 µs computing
steps (called hor). With this computing time, the
emulator can intimately reproduce the functioning of
a real motor. Also, recent digital motor controllers
can have a sampling rate below 10 µs, so it was
inevitable for us to maintain a competitive
computing time for the simulated Direct Current
Machine (DCM) (Dufour et al., 2007).
 Meanwhile, the design stage has to be quick,
flexible and reproducible in case of eventual

Am. J. Applied Sci., 9 (8): 1166-1181, 2012

1168

modifications on the emulator model. HLS technique
is a good candidate to ensure the last cited conditions.
In what remains, we will detail our approach by the
application of this technique to the emulation concept
of a DCM process, followed by the obtained results
and the discussion.

Emulation concept: Emulating electrical systems are
to reproduce their functionalities with the most accurate
model in a virtual manner. The goals behind such
approach is allowing designers to validate control units
and to diagnose them after in terms of precision and
efficiency (Achballah et al., 2010; Saoud et al., 1996).
These two stages are described in the following two
paragraphs.

Validation stage: In an emulation approach, the
validation stage came as the first step to elaborate. In
fact, the controller is associated to a motor emulator
that represents the real motor and controller commands
are validated against it. This maneuver is executed
before the association of the controller with the real
motor. The connection between these two elements has
to be similar to the real one and assure a realistic data
exchange. The controller sends command signals to the
emulator that, in his turn, reproduces information about
the motor state as they are issued from sensors. When
the control device is validated it can be switched for
application to the physical motor as (Fig. 1).

Diagnosis stage: Simultaneously, the same commands
applied to the real process are also applied to the
emulator. The output signals of the emulator constantly
compare to the real motor ones. Using the received data
from both terminals, we can analyze the behavior of the
real system and detect irregular functioning (Fig. 2).
Note that if the emulator’s output is speed; it has to be
limited because the emulator is not looped back.

Realization constraints: The realization of real time
emulators is closely related to the adopted design
methodology and the used technology. In fact, these
two factors have a direct impact on the performances of
the designed emulator. The first one, if not enough
specified, can induce to an inadequate architecture to
the technology that will encapsulate the emulator later.
Also, it can conduct to a complicated design flow that
can increase the conception time. The second factor, the
used technology, depends itself on many other
parameters. Among them we can cite hardware platforms
(microcontrollers, DSPs, FPGAs, ASICs) or CAD tools
(design, simulation, on-chip verification.

Fig. 1: Structure of the validation application

Fig. 2: Structure of the diagnostic application

The implementation process is faced to a one major
constraint which is the execution time of the emulator’s
algorithm. This factor will allow the evaluation of the
emulator’s performances including its capability to
reproduce the real process. In the following, we will
introduce the emulated process considered in this case
study.

MATERIALS AND METHODS

DCM Process: we have chosen to study a direct
current motor case because it is a simple electrical
machine model. The purpose behind this study is to test
the HLS approach in the control domain field
(Achballah et al., 2010).
 The model we propose is by two elements which
are the control unit and a DC motor emulator. In
addition, a chopper is utilized to aliment the emulator
with Vh voltage. Two parameters are furnished by the
emulator to the controller which are the motor current
(Im) and speed (Ωm). Another parameter is also
considered by the control unit which is reference speed
ΩRef entered by users to supply the adequate duty
cycle alpha to the chopper module. The system is
demonstrated in Fig. 3 while its parameters are resumed
in Table 1. To compute the system state, we use basic
mathematical models for a DC electric motor; the
chopper (Eq. 1), the current (Eq. 2) and the rotation
speed (Eq. 3). The equation parameters are
recapitalized in Table 2.

Am. J. Applied Sci., 9 (8): 1166-1181, 2012

1169

Fig. 3: General diagram of the DCM process

Fig. 4: DFG execution of the emulator

Vh (2.alpha 1).Vin= − (1)

dim 1

(Vh Em Rm.Im)
dt Lm

= − − (2)

d m 1

(Cem Cr)
dt J

Ω = −

(3)

Where:

Em=Km. Ωm
Cem=Km.Im

Cr=KI. ΩM2. Sign (Ωm)+K2. Ωm+K3. Sign (Ωm)

DCM emulator algorithm: The equivalent algorithm
of the studied process is performed using mathematical
models (Eq. 1-3) with second order Runge-Kutta
sampling method. It is given by (Eq. 4-6):

Vh(k) (2 alpha(k) 1) Vin= ∗ − ∗ (4)

Im(k 1) a Im(k) m(k) Vh(k)β γ+ = ∗ + ∗ Ω + ∗ (5)

Am. J. Applied Sci., 9 (8): 1166-1181, 2012

1170

Table 1: Control unit parameters
Parameter Nomenclature
Vin Supply voltage
Vh Chopper‟s output voltage
Em Back-electromotive force
Im Machine current
Ωm Machine rotation speed
Cem Electromagnetic torque
Cr Resistant torque
Lm Inductance
Rm Resistance
J Inertia
Km Electromagnetic torque coefficient
K1, K2, K3 Resistant torque coefficient

Table 2: Equations parameters nomenclature
Parameter Value
Current controller gains kp, kpi 1.1737, -1.0150
Speed controller gains kp, kpi 0.142, -0.1111
Iref Limits ± 13 A
Current sampling time 300 µs
Speed sampling time 20 ms
PWM frequency 16 kHz Design 2 (page 12)
Dead time not used

Table 3: DCM Algorithm parameters
Parameter Value
α 0.9995
β -9.1977e-005
γ 4.9987e-004
λ 1.4603e-004
µ 1
ν 0
Vin 60 Volts
hor 350 ns (page 7)

[]m(k 1) Im(k) m(k) v sign m(k)λ μΩ + = ∗ + ∗ Ω + ∗ Ω (6)

where α, β, γ, λ, µ and ν are calculated from system
parameters and the computing step hor. The equivalent
data flow graph (DFG) of the emulator’s algorithm is
shown in Fig. 4 (for ν = 0).
 Although the dependence between the algorithm
equations variables (D1-D2), parallelism can be
extracted from the execution flow (P1 and P2) to reduce
computing time. This concerns the multiplications in
Eq. 5 and 6 where the computation can be assured by
independent hardware multipliers for each one.
 The result is a faster execution time but this will
increase the area consumption in the targeted FPGA
circuit especially when the computing is realized with
floating point arithmetic. For this case study, we will
focus on generating parallelized architectures to gain in
speed because it is our primary concern. However, we
will evaluate the quality of the obtained circuits in term
of area consumption.
 The algorithm parameters used after for the
simulation and more lately in the hardware
implementation tests are provided in Table 3.

HLS Approach an overview: To face the increasing
integration capacity of chips and the customer’s
insatiable demand of complex applications,
development of Electronic Design Automation (EDA)
tools and methodologies have to find innovative
solutions (Pellerin and Thibault, 2005). HLS technique
is one of among available solutions which were kept by
both academicians and industrials.
 As a proof, we can invoke some recent experiments
conducted by three leading industrial companies and
explaining that HLS tools have to be considered in the
future for cost and productivity reasons (Coussy and
Morawiec, 2008). However, this success is the result of
many critiques that followed HLS tools since their
arrival on the market (Martin and Smith, 2009).
 In fact, the efficiency of such environments in
terms of area consumption, the control of hardware
generation flow and the quality of the final design was
enormously discussed. By this way, several studies
were conducted to evaluate different HLS environments
against diverse criteria. As an example we cite the
BDTI program.
 Nowadays, HLS tools are more and more mature to
be considered by industrial society. We just cite a few of
them, CoDeveloper from ImpulseC, DK Suite,
CatapultC... The field of application varies depending on
the purpose behind the use of such technique. One of the
scientific fields which benefitted from HLS tools is the
signal processing domain, where parallelism is
massively extracted and then allows the computing
acceleration, sometimes hundreds of times.
 Unfortunately, control algorithms and machine
models have the characteristics to be variable-
dependent and so, could be difficult to automatically
extract parallelism from them. In our case study, we
will investigate the use of CoDeveloper as HLS
environment to generate a hardware module of a DCM
emulator. In the following paragraphs, we will
introduce this tool and expose obtained preliminary
simulation results.

CoDeveloper high level synthesis tool and flow:
CoDeveloper is an HLS tool developed by Impulse
Accelerated Technology. It is based on ImpulseC language
which is its input language based itself on Stream-C
environment developed in the Los Alamos labs.
 To utilize CoDeveloper, developers have to follow
its programming approach which is based on
Communication Sequential Processes (CSP). In other
terms, a set of C functions that represent software or
hardware modules connected with data channels
(Fig. 5). Data channels are composed of data
streams, signals or registers.

Am. J. Applied Sci., 9 (8): 1166-1181, 2012

1171

Fig. 5: CSP programming model of ImpulseC

Fig. 6: Processes partition of the DCM emulator

 Software processes are used as generators to furnish
simulation scenarios or as consumers to collect
resulting data from the simulation. They can also play
the role of drivers if the hardware module is associated
with a processor. In the other side, hardware modules
are converted to a hardware description in an xHDL
language. CoDeveloper includes three internal tools
which are:

• Application Monitor simulates the design.
• CoValidator generates xHDL testbench files.
• StageMaster explores the design for a step by step

verification.

CSP programming model of the DCM emulator: To
generate VHDL description from C codes, designers
have to follow the CSP programming model and to
convert their C application to ImpulseC syntax. In this
case, the emulator application was divided into 3
processes as explained in Fig. 6. The linking between
them is assured by 32 bits width data streams. This
choice is based on two parameters (1) All data are in
floating point format (2) The emulator module will be
implemented as a co-processor to the MB processor
with FSL connections (Achballah et al., 2010).

Fig. 7: Hardware module of the DCM emulator

(a)

(b)

Fig. 8: PC-based Speed (a) and Current (b) responses of
the DCM emulator

Table 4: CoDeveloper report of the emulator hardware process
Hardware resources Timing analysis
------------------------------------ --
Operators Used Total stages Max. Delay
 (In clock cycles)
Floating-point 55 32
Adders/Subs tractors 4
(32 bits)
Floating-point
Multipliers (32 bits) 5
Estimated DSPs
 (18×18 Multipliers) 20

Am. J. Applied Sci., 9 (8): 1166-1181, 2012

1172

Fig. 9: Simulation measures of the computing time for the DCM emulator circuit

 The software processes (Producer and Consumer)
are necessary to simulate the hardware process
(Emulator) with the Application Monitor tool. The
hardware generation is realized according to this
configuration (1) Xilinx MicroBlaze FSL (VHDL) (2)
Double-precision types and operators. The obtained
circuit after the HLS of the hardware process from
ImpulseC code is shown in Fig. 7.
 CoDeveloper generates also an estimation report of
hardware resources consumption and timing analysis.
This report is summarized in Table 4.

Simulation results: We proceed to the simulation of
the DCM emulator circuit. This simulation concerns:

• The accuracy of computed values (Im and Ωm

represented respectively by “im-data” and “wm-
data”) and which is verified by Application
Monitor tool.

• Timing analysis to measure the execution time of
the DCM emulator circuit and which is verified
by ModelSim tool.

Computing results: the alpha level used in this
simulation is 0.5- 0.7 at zero. Theoretically, it induces a
stationary rotation speed of 130.1308 rad/s. In this stage
of simulation, the current and the speed curves are
expressed in terms of iteration points and all calculations

are realized in floating point format. The emulator
responses are plotted in Fig. 8.

Execution time results: the execution time of the DCM
emulator was measured using “ready flags” among other
useful signals which are automatically generated by
CoDeveloper (Fig. 7 for port details). We just name two
of them:

• xxx_rdy: indicates that input or output data

xxx_data are ready in the corresponding streams
• xxx_en: can be used to control the data transferring

in the streams

 In this measure, we obtained 350 ns computing
steps for the DCM emulator. By applying a system
clock of 100 MHz, this time corresponds to which was
provided in the estimation report in Table 4
(Approximately 32 clock cycles). This time will also
allow the high fidelity reproducing of a real motor
functioning. The simulation measurement results are
illustrated in Fig. 9.

RESULTS

 We present experimental results and analysis
obtained from the implementation of the RT DCM
emulator in the FPGA circuit. To evaluate the system
two tests are considered. The first is on-chip
verifications of execution time and computing results.

Am. J. Applied Sci., 9 (8): 1166-1181, 2012

1173

Fig. 10: System architecture (Design 1)

For the second test, the DCM controller is added to
the system to complete the HiL platform and where
the speed and current responses are studied. Finally, an
extra validation test is also realized and where a
controller failure is inserted into the emulating system.

FPGA platform characteristics: The FPGA platform
utilized in the following tests is based on Xilinx Virtex
II Pro XC2VP30 chip. It's a multitude of feature among
them the ability to host software processes such as
MicroBlaze (MB) or also the possibility to exploit
hardware processors already available such as the
PowerPC processor. It contains up to 30000 logic
blocks offering the possibility to incorporate in the
design many custom IPs. There are a miscellaneous set
of predefined IPs in the Xilinx library such as GPIOs,
timers, memory blocks and many others. On the
communication side, designers have the choice between
different communication buses like On Chip Peripheral
Bus (OPB) or the Processor Local Bus (PLB). It is also
possible to utilize point to point links via Fast Simplex
Links (FSL). It is a 32 bits width connection and the
data time access consumes between 1-2 clock cycles.
In the tests conducted later, FSL point to point links
are used for performance reasons to connect the
hardware module of the DCM emulator as a
coprocessor to the MB processor.

Design 1: Open loop system test:
System architecture: When the HLS methodology is
used in a design flow, designers may use the resulting
hardware modules without any modification. However,
this doesn’t exclude the possibility to refine the final
circuit. In this case study, we added to the hardware
module of the emulator some ports supported by GPIO
external pins. In fact, they are linking internal debug
signals which are automatically generated by
CoDeveloper to the logic analyzer. These new
connections were very helpful; they allow us the real
time to watch data transfer, to elaborate timing
measurement and eventually to detect emulator
abnormal functioning.
 After this port modification, the emulator hardware
module is associated with the MB processor via FSL
links and the complete system is implemented in the
FPGA card. The hardware architecture is summarized in
Fig. 10. On the software side, the drivers used for
read/write operations from/to the emulator circuit consist
of simple Put/Get FSL instructions as shown below:

• Putfsl (alpha, 0): alpha_data is sent to the emulator

via FSL_0
• Getfsl(Im,1): im_data and wm_data are

getfsl(Wm,2) received by the processor via FSL_1
and FSL_2

Am. J. Applied Sci., 9 (8): 1166-1181, 2012

1174

(a)

(b)

Fig. 11: FPGA-based Speed (a) and Current (b) responses of the DCM emulator (open loop)

Fig. 12: FPGA-based emulator execution time

FPGA-based DCM emulator execution time and
computing results: The communication between the
FPGA board and the computer is assured by a serial
connection via a UART module. It allows us to obtain
data from the emulator and to analyze them. Im and
Ωm data were, first saved in a local memory and just
after the end of the saving operation, sent to the
console PC and stored in an output file to be analyzed
(Fig. 10). Internally, the alpha level used is 0.5-0.7 at
zero and sent to the emulator via the FSL-0 link. We
have recuperated a 4k values issued from an
incremental iteration of the DCM emulator

algorithm. This results in the evolution curves
illustrated in Fig. 11.
 An important characteristic of an emulator is the
capability to reproduce the motor model. We can
recognize the perfect coherence between curves in Fig. 8
and 11. The FPGA-based simulation matches closely the
PC-based simulation (realized by Application Monitor).
The execution time is measured with the logic analyzer
from GPIO pins. Figure 12 shows a screenshot of the
measure operation.
 We can see in the figure above the execution time
corresponds to which was measured in the simulation
stage (page 7).

Am. J. Applied Sci., 9 (8): 1166-1181, 2012

1175

Fig. 13: DCM process diagram with PWM module

Design 2:
Hardware-in-the-Loop test System architecture: In
this design, we have evaluated a digital controller for
DC motor. For more accuracy and to be closer to a real
DC machine process, we have added a PWM module
which controls the chopper by two opposite and logic
signals (C0 and C1). Figure 13 shows the system
architecture after this modification.
 As it is shown in Fig. 13, the inputs of the emulator
have changed because it will no longer be connected
directly to a data bus that furnishes the duty cycle
alpha. In this design, the emulator will acquire C0 and
C1 signals (1 bit width each one). In the algorithm side,
Eq. 4 is replaced by this equivalent code developed
inside the emulator for the chopper where the new input
ports are considered:

() ()()

() ()()

if C0 1 and C1 0 Vh Vin ;

else

{ if C0 0 and C1 1 Vh Vin ;

else (Vh 0; }

== == =

== == = −

=

 The substitution of Eq. 4 of the last code induces
some ramifications in the hardware module of the
emulator. HLS technique makes these modifications
possible and quicker because it enables a faster switch
between configurations without any dependency on a
hardware design specialist. This point will be detailed
later in discussion.
 To complete the HiL test, a controller was added to
the system design. The controlling algorithm is
computed in a software manner. It is assured by two
interruptions, respectively for current and speed
controls and which are executed in the MicroBlaze
processor. The hardware architecture for design 2 is
globally similar to design 1 except for some

modifications which are caused by the addition of the
control unit. They are listed below:

• Suppression of FSL-0 data bus
• The addition of the PWM module as a slave OPB

(alpha is sent to this module via this connection)
• Connection of C0 and C1 ports to the PWM

through external pins
• The addition of 2 Timers to schedule the

interruption functions of current and speed
controllers

• Addition of an Interrupt Controller

HiL test results: The emulation system was executed
in 1.5 seconds on the FPGA card with a speed reference
ΩRef of 100 rad/s. The emulator rotation speed and
current responses are shown in Fig. 14.
 We can see in Fig. 14 that reference speed (100
rad/s) was correctly reached in stationary mode. For the
current curve, there are many fluctuations that are not
present in the speed curve. They are the result of these
factors:

• The current is more sensitive to the addition of the

PWM module in this design than the speed

 For the saving operation, we opted for a (MB +
emulator) architecture where the MB processor is
charged of gathering data from the emulator. We
scheduled an interruption which occurs each 15µ
(fastest time with the MB processor) to save values in
local memory. Due to the emulator’s execution time of
1µs, we were able to save one value from fifteen each
saving operation. This is why the obtained results will
only permit the validation of the shape of the current
curve in Fig. 14. A more complex and enhanced
solutions are conceivable in the future for better
saving operation.

Am. J. Applied Sci., 9 (8): 1166-1181, 2012

1176

(a)

(b)

Fig. 14: FPGA-based speed (a) and current (b) responses of the DCM emulator (closed loop)

 Note that execution time mentioned in the
preceding point 2) is 1 µs although we noticed in the
simulation (page 9) and on-chip measure (page 10) that
this time is about 350 ns. In fact, the execution time of
the emulator was slowed down to meet the objective of
1 µs fixed at the beginning of the study. Technically, it
consists of the addition of a timer with a logic output
signal with a period of 1 µs. This signal is connected to
the enable ports of the emulator (xxx_en, see Fig. 7)
to control its functioning. These results are exploited
in the following paragraph to demonstrate the
advantages behind the hardware implementation of
the DCM emulator.

Controller failures insertion and detection: in this
test, three controller failures (Fault1, 2, 3) were realized

and inserted into the controller unit. They correspond to
15, 30 and 60 µs of PWM module inactivation time
where C0 and C1 signals were held to zero logic value
as shown in Fig. 15. This operation is equivalent to a
typical controller fault that is the execution stopping
of the control algorithm. These faults are common in
the automotive domain where the lack of supply
voltages occurs frequently and in short delays. This
exercise was very useful because it permitted, at the
same time, the validation of all the system
components (Emulator, Controller, Interconnections,
Timers, PWM module) in real time functioning. The
resulting current curves for each fault were plotted
and compared to the normal one in Fig. 16.

Am. J. Applied Sci., 9 (8): 1166-1181, 2012

1177

(a)

(b)

(c)

Fig. 15: Occurrence and clearance of fault 1 (a), 2 (b) and 3 (c)

Results in Fig. 16 shows that each current curve has
adopted its proper trajectory when the faults were
cleared. This is because the faults were inserted into
closed loop mode so the emulator and its controller

were affected, but the most important resides in the
fact that this difference in current responses
demonstrates that these controller faults were
detected by the DCM emulator.

Am. J. Applied Sci., 9 (8): 1166-1181, 2012

1178

(a)

(b)

(c)

(d)

Fig. 16: Emulator currents responses after faults insertion -15 µs (a), 30 µs (b), 60 µs (c)

Am. J. Applied Sci., 9 (8): 1166-1181, 2012

1179

This test was sufficient to explain that the detection
of such rapid command faults (a few microseconds)
is a direct result of the RT DCM emulator high
computing speed.

DISCUSSION

 In this paragraph, we will discuss two major points
developed throughout this case study:

• Advantages and disadvantages behind the

application of HLS to the DC control domain
• The results obtained from the hardware

implementation of the DCM emulator

 Generally, HLS technique accelerates the design
flow by avoiding hardware conception bottlenecks in
two phases of the hardware conception stage:

• At the beginning of the design: If the application

is new, designers have to concept all the system
and cannot make benefits from older experiences
or using the previous available Intellectual
Property (IP) cores

 At the end of the design: If the final circuit has to
be modified it may induce the re-design of important
parts of the system.
 For the design of the emulator, we took advantage
from both of the phases cited above. Table 5 shows a
comparison between HLS based design and hand coded

VHDL for the emulator module used in this case study
for the first design and after the modifications done in
Design 2 (page 9). The design acceleration obtained by
HLS is important and promising. However, when we
consult the hardware synthesis result in Table 6 we
can clearly conclude that area consumption for the
emulator core is excessive. Moreover, it may overload
the targeted FPGA circuit in case of more complex
models (e.g., AC motors). In this study, although the
area consumption was not a critical constraint like the
computing time, we propose some improvements which
can help to avoid this issue. These optimizations will
induce the design of a more refined hardware
description which considers hardware constraints and
keeps a competitive execution time:

• The optimization of the considered algorithm

(Algorithm dependent)
• The conversion of the algorithm computing from

floating representation to fixed point (Good)
• The use of tool-specific optimization commands

such as CO PIPELINE (Average)

Table 5: Design time comparison
 First attempts Modifications in
 (New design) the final design
Hand coded VHDL (Estimation) 4 days 2 days
HLS approach 2 hours 10 mn
Design acceleration 48 × 80 ×

Table 6: Hardware synthesis report
Components
--
Hw Resources Micro blaze DC Motor emulator PMW Timers Others FPGA
 (Design 2) resources utilization
Slices 1765 2366 198 552 373 38 %
Slice flip flops 1886 3377 225 490 128 22 %
4 inputs LUTs 2720 2884 235 398 403 24 %
Mult 18×18 7 16 - - - 17 %

Table 7: Classification of the previous results for the DCM emulator
 System architecture
 --- DC Motor emulator Acceleration versus
Reference Configuration Hw/Sw Partitioning Execution time 350 ns
 MPSoC (3 Micro 3 Interruptions (2
 (Othman et al., 2008) Blaze processors) controllers + emulator) 138 µs 394×
 each one running
 in its proper processor
 (Salem et al., 2008) Single PowerPC 3 tasks (2 controllers 22 µs 63×
 + µC/OS-II RTOS + emulator)
(Salem et al., 2010) Single MicroBlaze + 3 tasks (2 controllers 900 ns 2.5×
 µC/OS-II RTOS + FPU unit + emulator)

This work Single MicroBlaze + 2 Interruptions 350 ns -
 Co-processor + PWM (hw) (2 controllers) +
 hardware emulator

Am. J. Applied Sci., 9 (8): 1166-1181, 2012

1180

The computing time obtained from moving the
emulator software algorithm to a hardware
implementation is useful in the DC control domain. In
fact, it offered a more accurate model for the validation
and diagnosis of DC motor controllers by permitting
tests that were not realizable with software emulators.
To conclude, we expose a resume of our previous
results in this domain (Table 7).

CONCLUSION

 In this study, a hardware conception and
implementation of a Real Time Direct Current Machine
emulator was realized. Conception stage was conducted
using HLS technique benefits to avoid VHDL manual
work and to accelerate the design flow. As a result, a
high accurate emulating system with a very low sampling
rate that allows the high fidelity representation of a real
DC Motor. Timing analysis, hardware simulation and on-
chip verifications demonstrates that the use of this
emulating system as a practical validation stage for
recent DC digital controllers is possible.
 As mentioned throughout this case study, control
algorithms and electrical motor models become more
and more complex, so the application of HLS technique
in this domain can be limited in the future especially by
the size of generated hardware IPs. Paradoxically, the
area consumption may not be a limitation in the near
future thanks to the next-generation of FPGA platforms
which offers a multitude of advantages among them the
high integration capacity and the reduced power
consumption. As an example, we cite devices based on
40 nm and 28 nm technologies which are already
commercialized. Besides, a hardware implementation of
all the DCM process, including the controller is feasible
in the future.
 Moreover, the application of HLS technique to a
more complex electrical machine model like
Asynchronous Machine is also conceivable. However,
as it was shown in discussion paragraph, this technique
should be used carefully with control algorithms and
the compromise between accelerating the workflow
time and the quality of the final design (Area
consumption versus computing speed) has to be studied
in advanced stages of design to avoid unsuitable results.

REFERENCES

Achballah, A.B., S.B. Othman and S.B. Saoud, 2010.

High level synthesis of real time embedded
emulating system for motor controller. Proceedings
of the 5th International Conference on Design and
Technology of Integrated Systems in Nanoscale
Era, Mar. 23-25, IEEE Xplore Press, Tunisia, pp:
1-6. DOI: 10.1109/DTIS.2010.5487549

Braham, A., H. Schneider and M. Metz, 1997. Recent
developments in real-time analogue simulation of
high power electrotechnical systems. Proceedings
of the 23rd International Conference on Industrial
Electronics, Control and Instrumentation, Nov. 9-
14, IEEE Xplore Press, Toulouse, pp: 744-748.
DOI: 10.1109/IECON.1997.671918

Coussy, P. and A. Morawiec, 2008. High-Level
Synthesis: From Algorithm to Digital Circuit. 1st
Edn., Springer, New York, ISBN-10 1402085877,
pp: 297.

Dufour, C., J. Belanger and V. Lapointe, 2008. FPGA-
based ultra-low latency HIL fault testing of a
permanent magnet motor drive using RT-LAB-
XSG. Proceedings of the Joint International
Conference on Power System Technology, Oct. 12-
15, IEEE Xplore Press, New Delhi, pp: 1-7. DOI:
10.1109/ICPST.2008.4745355

Dufour, C., J. Belanger, S. Abourida and V. Lapointe,
2007. FPGA-based real-time simulation of finite-
element analysis permanent magnet synchronous
machine drives. Proceedings of the IEEE Power
Electronics Specialists Conference, Jun. 17-21,
IEEE Xplore Press, Orlando, FL, pp: 909-915.
DOI: 10.1109/PESC.2007.4342109

Gonzalez, I., E. El-Araby, P. Saha, T. El-Ghazawi and
H. Simmler et al., 2008. Classification of
application development for fpga-based systems.
Proceedings of the IEEE National Aerospace and
Electronics Conference, Jul. 16-18, IEEE Xplore
Press, Dayton, OH, pp: 203-208. DOI:
10.1109/NAECON.2008.4806547

Gupta, S., N. Dutt, R. Gupta, A. Nicolau, 2004. Loop
shifting and compaction for the high-level
synthesis of designs with complex control flow.
Proceedings of the Conference on Design,
Automation and Test in Europe, Feb. 16-20, ACM
Press, Washington, DC, USA., pp: 114-119.

Idkhajine, L., A. Prata, E. Monmasson, K. Bouallaga
and M.W. Naouar, 2008. System on chip controller
for electrical actuator. Proceedings of the IEEE
International Symposium on Industrial Electronics,
Jun. 30-Jul. 2, IEEE Xplore Press, Cambridge,
2481-2486. DOI: 10.1109/ISIE.2008.4677002

Martin, G. and G. Smith, 2009. High-level synthesis:
Past, present and future. IEEE Design Test
Comput., 26: 18-25. DOI: 10.1109/MDT.2009.83

Monmasson, E. and M.N. Cirstea, 2007. FPGA design
methodology for industrial control systems-A
review. IEEE Trans. Indus. Elect., 54: 1824-1842.
DOI: 10.1109/TIE.2007.898281

Am. J. Applied Sci., 9 (8): 1166-1181, 2012

1181

Naouar, M.W., E. Monmasson, A.A. Naassani, I.
Slama-Belkhodja and N. Patin, 2007. FPGA-based
current controllers for ac machine drives-A review.
IEEE Trans. Indus. Elect., 54: 1907-1925. DOI:
10.1109/TIE.2007.898302

Othman, S.B., A.K.B. Salem and S.B. Saoud, 2008.
MPSoC design of RT control applications based on
FPGA SoftCore processors. Proceedings of the
15th IEEE International Conference on Electronics,
Circuits and Systems, Aug. 31-Sept. 3, IEEE
Xplore Press, Tunis, pp: 404-09. DOI:
10.1109/ICECS.2008.4674876

Ouhrouche, M., 2009. Transient analysis of a grid
connected wind driven induction generator using a
real-time simulation platform. Renew. Energy, 34:
801-806. DOI: 10.1016/j.renene.2008.04.028

Paiz, C., C. Pohl and M. Porrmann, 2008. Hardware-in-
the-loop simulations for FPGA-based digital
control design. Inform. Control Automat. Robotics,
15: 355-3720. DOI: 10.1007/978-3-540-79142-3_27

Pellerin, D. and S. Thibault, 2005. Practical FPGA
Programming in C. 1st Edn., Prentice Hall
Professional Technical Reference, Upper Saddle
River, NJ., ISBN-10: 0131543180, pp: 428.

Rodriguez-Andina, J.J., M.J. Moure and M.D. Valdes,
2007. Features, design tools and application
domains of FPGAs. IEEE Trans. Indus. Elect., 54:
1810-1823. DOI: 10.1109/TIE.2007.898279

Salem, A.K.B., S.B. Othman and S.B. Saoud, 2010.
Field programmable gate array -based system-on-
chip for real-time power process control. Am. J.
Applied Sci., 127-39. DOI:
10.3844/ajassp.2010.127.139

Salem, A.K.B., S.B. Othman and S.B. Saoud, 2008.
RTOS for SoC embedded control applications.
Proceedings of the 3rd IEEE International
conference on Design and Technology of
Integrated Systems in Nanoscale Era, Mar. 25-27,
IEEE Xplore Press, Tunis, pp: 1-6, DOI:
10.1109/DTIS.2008.4540273

Salewski, F. and S. Kowalewski, 2008.
Hardware/software design considerations for
automotive embedded systems. IEEE Trans. Indus.
Inform., 4: 156-63. DOI:
10.1109/TII.2008.2002919

Saoud, S.B., B. Dagues, H. Schneider, M. Metz and
J.C. Hapiot, 1996. Real time emulator of static
converters/electrical machines application to the
test of control unit. Proceedings of the IEEE
International Symposium on Industrial Electronics,
Jun. 17-20, IEEE Xplore Press, Toulouse, pp: 856-
861. DOI: 10.1109/ISIE.1996.551055

