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Abstract: Problem statement: Many regression estimators have been used to remedy 
multicollinearity problem.  The ridge estimator has been the most popular one. However, the obtained 
estimate is biased. Approach: In this stuyd, we introduce an alternative shrinkage estimator, called 
modified unbiased ridge (MUR) estimator for coping with multicollinearity problem. This estimator is 
obtained from Unbiased Ridge Regression (URR) in the same way that Ordinary Ridge Regression 
(ORR) is obtained from Ordinary Least Squares (OLS). Properties of MUR estimator are derived. 
Results: The empirical study indicated that the MUR estimator is more efficient and more reliable than 
other estimators based on Matrix Mean Squared Error (MMSE).Conclusion: In order to solve the 
multicollinearity problem, the MUR estimator was recommended.  
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INTRODUCTION 

 
 Consider the following linear regression model:  
 
Y X= β + Є  (1) 
 
with the usual notation. The Ordinary Least Squares 
(OLS) estimator: 
 

1
LS

ˆ (X 'X) X'Y−β =  (2) 
 
follows 2 1N( , (X 'X) )−β σ . If X’X is singular or near 
singular, we say that there is multicollinearity in the 
data. As a consequence, the variances of elements of 

LSβ̂  are inflated. Hence, alternative estimation methods 
have been proposed to eliminate inflation in the 
variances of LSβ̂ . Hoerl and Kennard (1970) proposed 
Ordinary Ridge Regression (ORR) as: 
 

1
p LS

1
p

ˆ ˆ(k) [I K(X'X KI ) ]

(X 'X KI ) X'Y, K 0

−

−

β = − + β

= + ≥
 (3) 

 
 Usually 0 < K < 1. This estimator is biased but 
reduces the variances of the regression coefficients. 
Subsequently, several other biased estimators of β have 
been proposed (Swindel, 1976; Sarkar, 1996; Batah and 
Gore, 2008; Batah et al., 2009; Arayesh and Hosseini, 
2010; Asekunowo et al., 2010; Hirun and Sirisoponsilp, 

2010; Rana et al., 2009). Swinded (1976) defined 
Modified Ridge Regression (MRR) estimator as follows: 
  

1
p

ˆ(k,b) (X 'X KI ) (X 'Y Kb), K 0−β = + + ≥  (4) 
 
where, b is a prior estimate of β. As K increases 
indefinitely, the MRR estimator approaches b. Crouse 
et al. (1995) defined the Unbiased Ridge Regression 
(URR) estimator as follows:  
 

1
p

ˆ(k, j) (X 'X KI ) (X 'Y Kj), K 0−β = + + ≥  (5) 
 

where, J ~ N 
2

p, I
K

⎛ ⎞σ
β⎜ ⎟
⎝ ⎠

 for K>0. They also proposed 

the following estimator of the ridge parameter K: 
 

2
LS LS

2 1 2 1
LS LS

CJH 2

LS LS

ˆ ˆif ( J) '( J)ˆP
ˆ ˆ ˆ( J)( J) tr(X 'X) ˆ tr(X 'X)K̂

ˆP Otherwiseˆ ˆ( J) '( J)

− −

⎡ β − β − >σ
⎢
β − β − − σ σ⎢= ⎢ σ⎢

⎢ β − β −⎣

  

 

where, 2 LS LS
ˆ ˆ(Y X ) '(Y X )ˆ
(n P)

− β − β
σ =

−
 is an unbiased 

estimator of 2σ̂ . They further noted that CJHK̂  is a 

generalization of 
2

HKB
LS LS

ˆPK̂ ˆ ˆ
σ

=
β β

 of Hoerl et al. (1981). 

Consider spectral decomposition of X’X, namely X’X 
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= TAT’, where TT’ = T’T = 1. In this case, Eq. 1 can be 
written as: 
 
Y XTT' ZL= β+∈= +∈  (6) 
 
with Z = XT, L = T'β where Z’Z = T’X’XT = A= diag 
(λ1 , λ2 , ….., λP). The diagonal elements of A are the 
eigenvalues of X’X and T consists of corresponding the 
eigenvalues of X’X. Hence OLS, ORR and URR of L 
are written as 1

OLS (K) p 1
ˆ ˆL A Z'Y,L (A KI ) Z'Y−

−= = +  and 
1

(K,J) pL̂ (A KI ) (Z'Y KJ)−= + + , respectively. 
 In this study, we introduce an alternative shrinkage 
estimator , called Modified Unbiased Ridge (MUR) 
estimator. This estimator is obtained from URR in the 
same way that ORR is obtained from OLS. It is 
observed that OLS is unbiased but has inflated 
variances under multicollnearity. Similarly, URR 
suffers from inflated variances while eliminating the 
bias. The construction of MUR is based on the logic 
that just as ORR avoids inflating the variances at the 
cost of bias, MUR would have similar properties. With 
pre-multiple the matrix [I – K (X'X + KIp)−1] to reduce 
the inflated variances in OLS, so that we expect the 
same effect with URR. so that we expect the same 
effect with URR. This is our motivating the alternative 
modified estimator. In this respect, the main object of 
this paper is that the MUR estimator performs well 
under the conditions of multicollinearity. The properties 
of this alternative modified estimator are studied , and  
some conditions for this estimator to have smaller 
MMSE than ORR and URR are derived also. In 
addition, as  the value of K must be specified for K in 
MUR in the same way as in ORR and URR, so three 
different ways for determining K are compared using 
simulated data.  
 

MATERIALS AND METHODS 
 
The proposed estimator: We propose the following 
estimator of β:  
 

1
J p

1 1
p p

ˆ ˆ(k) [I k(X 'X KI ) ] (k,J)

[I k(X 'X KI ) ](X 'X KI ) (X 'Y KJ)

−

− −

β = − + β

= − + + +
 (7) 

 

where, J~ N(
2

p
ˆ,( I )

k
σ

β ) and k>0. This estimator is called 

Modified Unbiased Ridge Regression (MUR) because it 
is developed from URR. The MUR in model (6) 
becomes: 
 

1
J p

ˆ ˆL (k) [I k(A KI ) ]L(k,J)−= − +  (8) 

 The MUR estimator has the following properties. 
 
Bias:  
 

1
J J k

ˆ ˆBias ( (k)) E( (k)) kS−β = β −β = − β  (9) 
 
where, S = X’X  and Sk = (S + KI). 
 
Variance: 
 

J J J J

2 1
k

ˆ ˆ ˆ ˆVar ( (k)) E[( (k) E( (k)))( (k))]

WS W '−

β = β − β β

= σ
 (10) 

 
where, 1

kW [I KS ].−= =  
 
 Matrix Mean Squared Error (MMSE):  
 

J J J

2 1 2 1 1
J k k k

ˆ ˆ ˆMMSE( (k)) Var( (k)) [bias( (k))]
ˆ[bias( (k))] WS W ' k S 'S− − −

β = β + β

β = σ + ββ
 (11) 

 
Scalar Mean squared Error (SMSE): 
 

J J J

J

ˆ ˆ ˆSMSE( (k)) E[( (k) ) '( (k) )]
ˆtr(MMSE( (k)))

β = β −β β −β

= β
  

 
where, tr denotes the trace. Then:  
 

2 2p p
2 2i i i

J 3 3
i 1 i 1i i

( k)LˆSMSE(L (k)) k
( k) ( k)= =

λ λ +
= σ +

λ + λ +∑ ∑  (12) 

 
where, {λi} are eigenvalues of X’X. 
 

1
J LS

ˆ ˆ(k 0) (X 'X) X 'Y−β = = β =  is the OLS estimator: 
 

k 0 J LS
ˆ ˆlim (k)→ β = β  

 
Comparison with other estimators: MUR is biased 
and it is therefore compared with other estimators in 
terms of MMSE. We obtain conditions for MUR to 
have smaller MMSE than another estimator. 
 
Comparison with ORR: The MMSE of ORR is 
(Ozkale and Kaçiranlar, 2007): 
 

2 1 2 1 1
J k k k

ˆMMSE( (k)) WS W ' k S 'S− − −β = σ + ββ  (13) 
 
so that: 
 

2p p
2 2i i

2 2
i 1 i 1i i

LˆSMSE(L(k)) k
( k) ( k)= =

λ
= σ +

λ + λ +∑ ∑  (14) 
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Consider: 
 

J
2 1 1 2

k

ˆ ˆMMSE( (k)) MMSE( (k))

W(S S )W ' H− −

Δ = β − β

= σ − = σ
 (15) 

 
 Since Sk – S = KIp is positive definite (p.d.), it is 
easy to show that 1 1

kS S− −=  is p.d. whenever k > 0. 
Hence we have the following result.  
 
Result 1: MUR has smaller MMSE than ORR when k 
> 0. 
 
Comparison with URR: The MMSE of the URR 
estimator is (Ozkale and Kaçiranlar, 2007): 
 

2 1
k

ˆMMSE( (k,J)) S−β = σ  (16) 
 
and hence: 
 

ˆ ˆSMSE( (k,J)) tr (MMSE( (k,J)))β = β  (17) 
 
Then: 
 

p2
i 1

i

1ˆSMSE(L(k,J))
( k)=

= σ
λ +∑  (18) 

 
From (11): 
 

J
2 1 1 2 1 1

k k k

1 2 2 1 2 1
k p k k

ˆ ˆMMSE( (k,J)) MMSE( (k))

[S WS W '] k S 'S
2S [k ( I S ) k ']S
k

− − − −

− − −

Δ = β − β

= σ − − ββ

= σ − = ββ

  

 
 Now, Δ is non-negative definite (n.n.d.) (assuming 

k > 0) if and only if k k2

1 S S
k

Φ = Δ  is n.n.d. Further: 

 
2 1

p k
2( I S ) '
k

−Φ = σ − ββ  (19) 

 

 Since the matrix 1
p k

2 I S
k

−−  is positive definite 

(Farebrother, 1976), Φ is n.n.d. if and only if: 
 

1 1 2
p k

2'[ I S ]
k

− −β − β ≤ σ  (20) 

 
 Hence we have the following result. 
 
Result 2: MUR has smaller MMSE than URR if: 

1 1 2
p k

2'[ I S ]
k

− −β − β ≤ σ   

 
 The condition of result (2) is verified by testing: 
 

1 1 2
0 p k

2H : '[ I S ]
k

− −β − β ≤ σ  

  
Against: 
 

1 1 2
1 p k

2H : '[ I S ]
k

− −β − β > σ   

 
 Since Λ-Λ* (k) is positive semi definite, the 
condition in Result (2) becomes * 1 2'T (k) T '−β Λ β ≤ σ  if 

1 2'T T '−β Λ β ≤ σ . Under the assumption of normality: 

 
1 1

1 * 1 *2 2
J

1 * 1 1 2
k k

ˆ(k) T ' (k) N( (k)
ˆ(I k )T ' , (k) (I k ) )

− −− −

− − −

σ Λ β σ Λ

− Λ β Λ − Λ

∼  

 
and the test statistics: 
 

1 1
J J

2

ˆ ˆ(k) 'T T ' (k) / p 'T T 'F F p,n p,
ˆ ˆ' /n p 2

− −⎛ ⎞β Λ β β Λ β
= −⎜ ⎟∈ ∈ − σ⎝ ⎠

∼  

 
under H0. The conclusion is that MUR has a smaller 
MMSE than URR if H0 is accepted and hence Result 
(2) holds. 
 
Optimal ridge parameter: Since the MMSE of MUR 
depends on the ridge parameter k, the choice of k is 
crucial for the performance of MUR. Hence we find 
conditions on the values of k for MUR to be better than 
other estimators in terms of SMSE. 
 
Result 3: We have: 
 

i J i i i1
ˆ ˆSMSE (L (k)) SMSE (L(k,J)),for 0 k k< < <  

 
i J i i1 i

ˆ ˆSMSE (L (k)) SMSE (L(k,J)),for k k> < < ∞  
 
Where: 
 

1/ 22 2 2 2 2 2
i i i i i

i1 2 4 2
i i i

( L ) ( L ) 2k 0
2L 4L L

⎡ ⎤σ − λ σ − λ σ λ
= + + >⎢ ⎥

⎣ ⎦
 (21) 

 
Proof: Result (3) can be proved by showing that: 
 

3
i i i J i

2 2 2 2 2
i i i i i i i

ˆ ˆ( k ) [SMSE (L (k)) SMSE (L(k,J))]

k [L k ( L )k 2 ]

λ + − =

− σ − λ − λ σ
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which is obtained from (12) and (18). This completes 
the proof. 
 Next, we compare SMSE of J

ˆ(L (k))  with that of 
OLS component-wise. Notice that the MUR estimator 
reduced to OLS when k = 0. The i-th component for 
SMSE of L of OLS is given by:  
 

2

i LS
i

ˆSMSE (L ) , i  1,  2,  ,  pσ
= = ……
λ

 (22) 

 
 We state the following result. 
 
Result 4: We have: 
 
• If  2 2

i iL 0λ − σ ≤  , then the: 
 

i J i LS i
ˆ ˆSMSE (L (k)) SMSE (L ),for 0 k< < < ∞  

 
• If 2 2

i iL 0λ − σ >  , then there exists a positive ki2, 
such that: 
 

i J i LS i i2
ˆ ˆSMSE (L (k)) SMSE (L ),for 0 k k> < <  

 
and: 
 

i J i LS i2 i
ˆ ˆSMSE (L (k)) SMSE (L ),for k k< < < ∞  

 
Where:  
 

1
2 2 2 2 2 2 2 2 22
i i i i i

i2 2 2 2 2 2 2 2
i i i i i i

( L 3 ) 3 ( L 3 )k 0
4( L ) ( L ) 2( L )

⎡ ⎤λ − σ λ λ σ λ − σ λ
= + − >⎢ ⎥λ − σ λ − σ λ − σ⎣ ⎦

 (23) 

 
Proof: Result (4) can be proved by showing that: 
 

3
i i i i J i LS

2 2 2 2 2 2 2 2
i i i i i i i i i

ˆ ˆ( k ) [SMSE (L (k)) SMSE (L )]

k [ L )k ] L 3 )k 3 ]

λ λ + − =

λ − σ + λ − σ λ − λ σ
 

 
which is obtained from (12) and (22). This completes 
the proof. 
 Furthermore, differentiating i J

ˆSMSE (L (k))  with 
respect to ki and equating to zero, we have the 
following equation: 
 

2 2 2 2 2
i J i i i i i i i

4
i i

ˆSMSE (L (k)) 2 L k 2 L k 3 0
k ( k )

∂ λ + λ − σλ
=

∂ λ +
 

 
 Thus, the optimal value of the ridge parameter ki is: 

1
i 2

i(FG) 2
i

6k [(1 ( )) 1]
2 L
λ σ

= − −  (24) 

 
 From (21), (23) and (24), it can be easily verified 
that ki1<ki(FG)<ki2 if 2 2

i iL 0λ − σ > . In case k = k1 = k2… = 
kp, we can obtain k as the harmonic mean of ki(FG) in 
(24). It is given by: 
 

2

(FG) 14 2 2 2
p 2 i i i i i i2

i 4 2 2i 1

pk
L 6L L[L / [( ) ]]
4 2=

σ
=

λ λ λ
+ −

σ σ σ∑
 (25) 

 
 Using an argument from Hoerl et al. (1981), it is 
reasonable to adopt the harmonic mean of the 
regression coefficients. Note that k(FG) in (25) depends 
on unknown parameters L and σ2 and hence has to be 
estimated. 
 
Estimating the ridge parameter k: In this section, we 
propose to construct MUR by using the operational 
ridge parameter proposed by Hoerl et al. (1981) and 
Crouse et al. (1995). First, since the harmonic mean of 
optimal ridge parameter values, (see (24)) depends on 
the unknown parameters L and σ2, we use their OLS 
estimates. The operational ridge parameter in (25) is: 
 

2

(FG) 14 2 2 2
p 2 i i i i i i2

i 4 2 2i 1

pk ˆ ˆL 6L Lˆ[L / [( ) ]]
ˆ ˆ ˆ4 2=

σ
=

λ λ λ
+ −

σ σ σ∑
 (26) 

 
 This is called the (FG) ridge parameter. Second, 
the HKB ridge parameter (Hoerl et al., 1981) is: 
 

2

HKB
LS LS

ˆpk̂ ˆL' L
σ

=  (27) 

 
 Third, CJH ridge parameter (Crouse et al., 1995) is: 
 

2
LS

2 1 2 1
LS LS LS

CJH 2

LS LS

ˆif ( J) 'ˆp
ˆ ˆ ˆˆ( J) '( J) tr(X 'X) ˆ( J) tr(W 'X)k̂

ˆp Otherwiseˆ ˆ( J) '(( J))

− −

⎧ β −σ
⎪
β − β − − σ⎪ β − > σ= ⎨

σ⎪
⎪ β − β −⎩

 

 
 Using these three operational ridge parameters, we 
compare the following ten estimators: 
 
• OLS 
• ORR using the HKB ridge parameter (ORR 

(HKB)) 
• ORR using the CJH ridge parameter (ORR (CJH)) 
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Table 1: Values of estimates and SMSE for HKB CJH
ˆ ˆk 0.0133, k 0.436= =  and FGk̂ 0.0481=  where SMSE shows the SMSE for estimators 

 β1 β2 β3 β4 β5 SMSE 
Population 9.02690 8.3384 3.0903 3.3411 11.3258  
OLS 7.95670 16.6563 2.6446 -5.9090 12.3692 144.6341 

HKB
ˆˆ(k )β  7.49966 12.5610 1.4810 0.0517 11.8267 111.7236 

CJH
ˆˆ(k )β  6.94390 10.2121 1.4999 3.4230 11.0095 157.6149 

FG
ˆˆ(k )β  6.89220 10.0442 1.5541 3.6480 10.9105 162.3889 

HKB
ˆˆ(k , J )β  7.50580 12.6224 1.5332 -0.0062 11.8634 88.1827 

CJH
ˆˆ(k , J )β  6.98120 10.3265 1.6252 3.3621 11.1187 52.3663 

FG
ˆˆ(k , J)β  6.93420 10.1645 1.6888 3.5901 11.0296 49.6882 

HKBJ
ˆˆ (k )β  7.14330 10.4899 1.1554 3.1145 11.4138 94.5319 

CJHJ
ˆˆ (k )β  6.93420 10.1645 1.6888 3.5901 11.0296 147.5083 

FGJ
ˆˆ (k )β  6.41870 8.4265 2.2479 5.9084 9.9834 152.8586 

 
• ORR using the FG ridge parameter (ORR (FG)) 
• URR using the HKB ridge parameter (URR 

(HKB)) 
• URR using the CJH ridge parameter (URR (CJH)) 
• URR using the FG ridge parameter (URR (FG)) 
• MUR using the HKB ridge parameter (MUR 

(HKB)) 
• MUR using the CJH ridge parameter (MUR (CJH)) 
• MUR using the FG ridge parameter (MUR (FG)) 
 

RESULTS 
 
 We analyze the data generated by Hoerl and 
Kennard (1981). The data set is generated by taking a 
factor structure a real data set and choosing β1 = 
9.0269, β2 = 8.3384, β3 = 3.0903, β4 = 3.3411 and β5 = 
11.3258 at random with constraint β’β = 300 and a 
standard normal error ∈ is added to form the observed 
response variable β1, β2, β3, β4 and β5 are random with 
the constraint β' β = 300 and normal error e has zero 
mean and σ2 = 1. The resulting model is Y=Xβ+Є and 
Є is normally distributed as N(0,σ2I). 
 The data was then used by Course et al. (1995) to 
compare SMSE performance of URR, ORR and OLS. 
Recently, Batah et al. (2009) used the same data to 
illustrate the comparisons among OLS and various 
ridge type estimators. We now use this data to illustrate 
the performance of the MUR estimator to the OLS, 
ORR and URR estimators to compare the MMSE 
performance of these estimators. 
 

DISCUSSION 
 
 Table 1 shows the estimates and the SMSE values 
of these estimators. The eigenvalues of X'X matrix are 

4.5792, 0.1940, 0.1549, 0.0584, 0.0138. the ratio of the 
largest to the smallest eigenvalue is 331.1251 which 
implies the existence of multicollinearity in the data set. 
The comparison between SMSE ( LSβ̂ ) and SMSE 

HKB
ˆˆ( (k ))β  show that the magnitude of shrinkage is not 

enough.  
 When biased and unbiased estimators are available, 
we prefer unbiased estimator. Crouse et al. (1995) 
suggested 5

iLS 5 1i 1
ˆJ [ / 5]1 ×=

= β∑  as a realistic empirical 
prior information where 1 is the vector of ones. URR 
with FGk̂  leads to smaller SMSE than with CJHk̂  and 

HKBk̂  and correct the wrong sign. We thus find that FGk̂  
is  sufficient.  MUR has smaller SMSE than ORR. 
Table 1 summarizes the performance of estimators for 
special values of k. we observe that MUR estimator 
with J = (6.7437, 6.7437, 6.7437, 6.7437, 6.7437) is 
not always better than other estimators in terms of 
having smaller SMSE. Also we can see that MUR is 
better than ORR for all HKBk̂ , CJHk̂  and FGk̂  under the 
MMSE criterion, which is result (1). 
 The value of ' 1 1

LS p k LS
2ˆ ˆ[ I S ]
k

− −β − β  given in result (2) 
is obtained as 4.0791 for HKBk̂ , 14.9195 for CJHk̂  and 
16.6142 for FGk̂  which are not smaller than the OLS 
estimate of σ2 = 1.4281. Therefore, URR estimator is 
better than the MUR estimator for HKBk̂ , CJHk̂  and FGk̂  in 
terms of MMSE as in Table 1. The value of the F test in 
Result (2) is FCul=39.1003, the non-central F parameter 
value calculated is 392.888 with numerator degrees of 
freedom 5, denominator degrees of freedom 10 by using 
the Cumulative Density Function (CDF) Calculator for 
the Non-central-F Distribution (see website 
http://wwwdanielsoper.com/statcalc/calc06.aspx). Here, 
the non-central FCDF is equal to 0.03118. Then H0 is 
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accepted and the condition in Result (2) holds. That is, 
MUR has smaller MMSE than URR. 
 

CONCLUSION 
 
 In this study article we have introduced Modified 
Unbiased Ridge (MUR) estimator. Comparison of this 
estimator to that ORR and URR has been studied using 
the MMSE. Conditions for this estimator to have 
smaller MMSE than other estimators are established. 
The theortical results indicate that MUR is not always 
better than other estimators in terms of MMSE. MUR is 
best and depends on the unknown parameters β, σ2 and 
also using the ridge parameter k. for suitable estimates 
of these parameters, MUR estimator might be 
considered as one of the good estimators using MMSE.  
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