American Journal of Applied Sciences 8 (1): 9-14, 2011 ISSN 1546-9239 © 2010 Science Publications

Combined Partial Oxidation and Carbon Dioxide Reforming Process: A Thermodynamic Study

Sompop Jarungthammachote Department of Mechanical Engineering, Kasetsart University Si Racha Campus, Sukhumvit Road, Si Racha, Chonburi, 20230, Thailand

Abstract: Problem statement: CO_2 reforming is one of the methods to utilize a greenhouse gas to produce syngas, an important feed for methanol and Fischer-Tropsch synthesis. However, CO₂ reforming is strong endothermic reaction requiring large amount of supplied energy. Partial oxidation, an exothermic reaction, is combined with CO_2 reforming to serve the energy requirement. Thus, the optimum ranges of O_2 and CO_2 fed to the process corresponding to feedstock are needed to find. Moreover, one of the most important problems found in this process is solid carbon formation. Therefore, the operating range in which the carbon formation can be avoided is also required to study. Approach: In this study CH₄ was used as feedstock. The optimum rage of O₂ and CO₂ fed to the process was found by using thermodynamic equilibrium method based on minimization of Gibbs free energy. The Lagrange multiplier method was conducted to form the equations and they were solved by the Newton-Raphson method. The solid carbon formation zone was also simulated. Results: The simulation showed that higher reaction temperature caused higher CH_4 and CO_2 conversions. Syngas production increased with increasing temperature. Operating the process with high temperature or high O₂/CH₄ and CO₂/CH₄ rations could eliminate solid carbon formation. Increase of O₂/CH₄ ration higher than 0.1 led decreasing syngas while increase of CO_2/CH_4 ration caused increasing H₂ and CO. However, when CO_2/CH_4 ration was higher than 0.85, increasing CO_2/CH_4 ration showed insignificant change of syngas concentration. Conclusion: The combined partial oxidation and CO₂ reforming of method should be operated with reaction temperature of 1050 K. The optimum range of CH₄:CO₂:O₂ for this process is 1: 0.85-1.0:0.1-0.2.

Key words: Partial oxidation, carbon dioxide reforming, syngas production, solid carbon formation, greenhouse gases, increasing temperature, Fischer-Tropsch, thermodynamic study

INTRODUCTION

 CO_2 is one of the most important greenhouse gases produced from combustion process (Al-Mutairi and Koushki, 2009; Bundela and Chawla, 2010; Khademi et al., 2009). It can be utilized as reactant for hydrocarbon reforming to produce synthesis gas (also called syngas). The syngas, which consists of H₂ and CO, is a feedstock for the methanol and Fischer-Tropsch syntheses (Tsang et al., 1995; Froment, 2000). CO₂ reforming process is sometime called dry reforming, which is strong endothermic reaction. Thus, it requires large amount of heat supplied to the process. CO₂ reforming has been widely investigated (Edwards, 1995; Wurzel et al., 2000; Nagaoka et al., 200; Li et al., 2004). Both equilibrium model simulation and experiment were conducted by Haghighi et al. (2007) to study CO₂ reforming of CH₄. The result has been presented that equilibrium H₂/CO ratio at high temperature was about 1.0. However, at a specific temperature, higher pressure caused lower H_2/CO ratio.

Moreover, the authors indicated that a deposited carbon was also one of the major products obtained from CO_2 reforming. For coke (carbon) formation, it has been mentioned by many researchers that it is an important problem of the dry reforming reaction, because it leads to catalyst deactivation (Wurzel *et al.*, 2000; Nagaoka *et al.*, 200; Shamsi and Johnson, 2003).

Partial oxidation of hydrocarbon can be explained as a sub-stoichiometric combustion process and it is an exothermic reaction. The thermodynamic equilibrium of ethanol partial oxidation has been studied by Wang and Wang (2008). At complete conversion, 86.28yield of hydrogen and 34.69-38.64% 94.98% concentration of CO could be achieved at 1070-1200 K. Partial oxidation of methane to hydrogen and carbon monoxide over a Ni/TiO₂ catalyst has been experimentally investigated (Wu et al., 2005). Use of fixed-bed reactors for the partial oxidation has shown a drawback of hot spot (Puwanto and Muharam, 2006). Hot spot formation is a common problem found in catalytic partial oxidation (Naito et al., 2008) and it can cause deactivation of catalysts.

From the above information, the idea to combine the partial oxidation and CO_2 reforming processes is presented to solve the high energy requirement problem of CO_2 reforming. Heat produced from partial oxidation process is supplied to CO_2 reforming process. Therefore, the combined process is a thermally selfsustaining and may not need to consume external thermal energy. The combination of exothermic and endothermic reactions is called autothermal reaction. The combined steam reforming and partial oxidation, which is the well known hydrogen production process, is an example of the autothermal reaction.

In this study, the partial oxidation process combined with CO_2 reforming process is investigated through thermodynamic equilibrium model. Methane is chosen as feedstock. The effect of reaction temperature on CH_4 and CO_2 conversions is focused. Moreover, the reaction temperature is varied to observe the change of concentration of products. The formation of coke (carbon) is an important issue examined in this study. The effects of CO_2/CH_4 and O_2/CH_4 ratios on syngas production are also presented. Finally, the optimum condition to syngas yield is suggested.

MATERIALS AND METHODS

Chemical reactions: The major gas species considered in this study are CH_4 , CO, CO_2 , H_2 and H_2O . Solid carbon is also observed. The partial oxidation combined with CO_2 reforming of methane is involved with the predominance chemical reactions, which are listed below:

$$CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O \tag{1}$$

$$CH_4 + \frac{1}{2}O_2 \rightarrow CO + 2H_2$$
⁽²⁾

$$CH_4 + H_2O \leftrightarrow CO + 3H_2$$
 (3)

$$CH_4 + 2H_2O \leftrightarrow CO_2 + 4H_2 \tag{4}$$

$$CH_4 + C_2 O \leftrightarrow 2CO + 2H_2 \tag{5}$$

$$CO + H_2O \leftrightarrow CO_2 + H_2$$
 (6)

$$2CO \leftrightarrow CO_2 + C \tag{7}$$

$$CH_4 \leftrightarrow 2H_2 + C$$
 (8)

The chemical equilibrium model: The chemical equilibrium model can be categorized into 2 types. The first one is equilibrium model based on equilibrium constants. It is known as the stoichiometric model. This method requires the information of chemical reactions occurring in the process. Another kind of equilibrium model is non-stoichiometric model, so called the minimization of Gibbs free energy method in which no chemical reactions are involved. The equilibrium model used in this study is developed following the method discussed in Ref (Jarungthammachote and Dutta, 2008; Jarungthammachote, 2009). At equilibrium state, the total Gibbs free energy of the system is minimized. The total Gibbs free energy of system is defined as:

$$G^{t} = \sum_{i=1}^{N} n_{i}G_{i} = \sum_{i=1}^{N} n_{i}\mu_{i}$$
(9)

Where:

- n_i and μ_i = The number of moles and the chemical potential of species i, respectively
- G_i = The partial molar Gibbs free energy of species i

If all gases are assumed as ideal gas and all reactions take place at one atmospheric pressure. The chemical potential of species i can be presented by:

$$\mu_{i} = \Delta \overline{G}_{f,i}^{o} + RT \ln(y_{i})$$
(10)

Where:

- R and T = The universal gas constant and temperature, respectively
- y_i = The mole fraction of gas species i and it is the ratio of n_i and the total number of moles in the reaction mixture
- $\Delta \overline{G}_{f,i}^{\circ}$ = The standard Gibbs free of formation of species i

For solid carbon, the partial molar Gibbs free energy is:

$$G_{C(S)} \cong \Delta \overline{G}_{f,C(S)}^{\circ} \tag{11}$$

To find the minimum point, the Lagrange multiplier method is conducted with constraint of mass balance, i.e.:

$$\sum_{i=1}^{N} a_{ij} n_i = A_j, j = 1, 2, 3, ..., k$$
(12)

Where:

- a_{ij} = The number of atom of the jth element in a mole of the ith species
- A_j = Defined as the total number of atom of jth element in the reaction mixture

From Eq. 9-12, Lagrangian function is formed and partial derivative is applied. The final simultaneous equations, therefore, can be developed as:

$$\frac{\Delta \overline{G}_{f,i}^{o}}{RT} + \ln \left(\frac{n_i}{n_{tot}}\right) + \sum_{j=1}^{k} \frac{\lambda_j}{RT} a_{i,j} = 0, \qquad i = 1, ..., N$$
(13)

where, λ_i , $\lambda = \lambda_1, \dots, \lambda_k$ are Lagrange multipliers.

The solutions n_i have to be real numbers in the boundary such that $0 \le n_i \le n_{tot}$. Equation 13 creates the set of non-linear equations and those are solved along with constraint equations by iteration technique, the Newton-Raphson method. The data from the NASA technical memorandum 4513 (McBride *et al.*, 1993) is employed to calculate all thermodynamic properties in this model.

RESULTS AND DISCUSSION

The effect of temperature on reactant conversions and gas yields: The simulation of combined partial oxidation and CO₂ reforming was conducted with CH₄:CO₂:O₂ feed ratio of 1.0:1.0:0.2. The conversion of reactants affected by reaction temperature is shown in Fig. 1. The conversions of CH₄ and CO₂ are defined in Eq. 14 and 15, respectively:

$$CH_{4} conversion(\%) = \frac{\left(CH_{4,in} - CH_{4,out}\right)}{CH_{4,in}} \times 100$$
(14)

$$CO_{2} conversion (\%) = \frac{\left(CO_{2,in} - CO_{2,out}\right)}{CO_{2,in}} \times 100$$
(15)

where subscripts in and out represent mole of substance at the inlet and outlet, respectively.

From Fig.1, it can be observed that the temperature strongly affects on CH_4 conversion. It increases when temperature increases. The conversion of 95% of CH_4 can be achieved at reaction temperature of 1050 K. For CO_2 conversion, it increases with increasing temperature. At higher temperature, CO_2 conversion dramatically increases because CO_2 reforming is endothermic reaction favoring high temperature. This reason is supported by increasing CO concentration when temperature increases, which is discussed in Fig. 2.

The equilibrium products from partial oxidation and CO_2 reforming are exhibited in Fig. 2. Increase of CO mole fraction shows similar trend as CO_2 conversion. As previously mentioned, high temperature favors CO_2 reforming and it produces CO. For H₂, its concentration increases with increasing temperature. However, at temperature higher than 1000 K, mole fraction of H₂ is quite constant. This is because CO_2 reforming and reverse water gas shift reactions are endothermic. High temperature not only supports CO_2 reforming reaction to product H₂ but also favors reverse water gas shift reaction to consume H₂. Decreasing H₂O is clearly observed at high temperature. That is the effect of reactions (3) and (4), which are strong endothermic reactions.

Figure 3 illustrates H_2/CO ratio and syngas (H_2+CO) production from combined partial oxidation and CO_2 reforming. The value of H_2/CO ratio is

higher at lower temperature. At 800 K, H_2/CO ratio is about 5, while H_2/CO ratio is 1.09 at 1000 K. It is clearly seen that H_2/CO ratio approaches to 1 at high temperature. This also confirms that CO_2 reforming is predominant (reaction (5)) at high temperature. However, at low temperature, the influence of partial oxidation of methane (reaction (2)) outstandingly

Fig. 1: Effect of temperature on CH₄ and CO₂ conversions

Fig. 2: Effect of temperature on reaction products

Fig. 3: Effect of temperature on H₂/CO ration and syngas production

Fig. 4: Effect of temperature on solid carbon formation

Fig. 5: Carbon formation affected by O₂/CH₄ ration

Fig. 6: Carbon formation affected by CO₂/CH₄ ration

presents. For syngas, it dramatically increases at low temperature and slightly changes after 1000 K. For Fig. 3, syngas production is about 5.5 mol for feeding 1 mol of CH_4 if the reactor is operated at temperature higher than 1000 K.

The solid carbon formed in this process is also investigated. It is an undesired component because it deactivates the catalyst and causes pressure drop in reactor. From Fig. 4, it elucidates that mole fraction of carbon formed in the process decreases with the increase in temperature. The solid carbon cannot be found when reaction temperature is higher than 1025 K.

Carbon formation: To study more about carbon formation in combined partial oxidation and CO_2 reforming process, the simulation is carried out at the reaction temperature of 1050K. Figure 5 presents that at CO_2/CH_4 ration of 1, higher fed O_2 leads to lower carbon formation because more O_2 introduced to the process can react more with carbon and forms CO and CO_2 . Supplying O_2 where O_2/CH_4 ratio is higher than 0.15, it causes no carbon formation in the process. Comparing with Fig. 4, it can be implied that carbon formation can be limited at lower O_2 supply if the process is operated at higher temperature. At O_2/CH_4 ratio of 0.2 and reaction temperature of 1050 K, carbon formation cannot be investigated at CO_2/CH_4 ratio higher than 0.8.

Effect of fed CO₂: The effect of CO₂ fed in to the process is investigated here. As shown in Fig. 1, at 1050 K, the CH₄ conversion is 95% and Syngas concentration nearly reaches the maximum.

From Fig. 5, H_2/CO ratio is also about 1 at this reaction temperature. Thus, the reaction temperature is fixed at 1050 K, while CO_2 supplied to the system is varied to study its effect on gas production. The other reactants, e.g., CH_4 and O_2 are also fixed at $CH_4:O_2$ of 1.0:0.2. Moreover, at 1050 K, solid carbon may not be observed. Even though the solid carbon is formed, its concentration is very low. Therefore, the equilibrium calculation omits to consider solid carbon.

Figure 7 exhibits the change of the mole fraction of some important products when CO₂/CH₄ ratio changes. The mole fraction of H₂ increases from 0.45-0.516 when CO_2/CH_4 increases from 0 to 0.45. Adding more CO_2 into the process, it causes dropping H_2 concentration. The similar behavior as H₂ is observed from the change of CO. The mole fraction of CO increases with increasing CO₂ fed to the process. However, as seen from Fig. 7, CO starts to decrease when CO_2/CH_4 is equal to 1.0. From the above discussion, it can be implied that feeding more CO₂ into the reactor, it may not provide good result. Excess CO2 cannot be converted and it leads to increase of CO2 in the product as exhibited in Fig. 7. The H₂O content increases with increasing CO2/CH4. That is the effect of reverse water gas shift reaction. Figure 8 presents the change of mole of syngas in the product compared with the change of CO₂/CH₄ ratio. The concentration of syngas sharply increases when CO_2/CH_4 ratio increases. Nevertheless, the increase of syngas is hardly observed after CO_2/CH_4 ratio is higher than 1. Finally, it can be concluded that at the reaction temperature of 1050 K, the optimum CO₂/CH₄ ratio range based on syngas yield is 0.85-1.0 and CH₄ conversion in this range of CO₂/CH₄ ratio is 95.3-96.5%.

Fig. 7: Effect of CO₂/CH₄ ratio on gas compositions

Fig. 8: Effect of CO₂/CH₄ ratio on syngas production

Fig. 9: Effect of O₂/CH₄ ratio on gas compositions

Effect of fed O_2 : To study the effect of added O_2 on the production of combined partial oxidation and CO_2 reforming, the ratio of CO_2/CH_4 is fixed at 1 and the reaction temperature is also maintained at 1050 K, while the ratio of O_2/CH_4 is varied from 0 to 0.8. The results of equilibrium calculation are shows in Fig. 9 and 10. Figure 9 presents the mole fraction of H_2O , H_2 , CO and CO₂. For CO, when more O_2 is added into the

Fig. 10: Effect of O₂/CH₄ ratio on syngas production

process, its concentration starts to drop. However, CO₂ concentration is observed that it increases when fed O_2 increases. For the changes of CO and CO₂ concentration, they can be explained that, more O_2 added into the reactor causes CH₄ conversion to CO₂ and H_2O , that is reaction (1). Moreover, it is also due to CO and H_2 oxidation with O_2 formed CO_2 and H_2O , respectively (Amin and Yaw, 2007). onsequently, H₂ and CO contents reduce because they are converted to be H₂O and CO₂, respectively. This explanation is confirmed by increasing H₂O and CO₂ illustrated in Fig. 9. As seen from Fig. 10, the mole of syngas starts to reduce when O_2/CH_4 ratio is about 0.1. If the maximum syngas yield is considered, the optimum O₂/CH₄ ratio should be 0.1. However, the CH₄ conversion matching with O₂/CH₄ ratio of 0.1 is about 94% and 97% of CH₄ conversion can be achieved at O_2/CH_4 ratio of 0.2. Therefore, the optimum rage of O₂/CH₄ ratio is 0.1-0.2.

CONCLUSION

The thermodynamic equilibrium method was used to study combined partial oxidation and CO₂ reforming process. Methane was employed as feedstock. The first part of this study was done based on CH₄:CO₂:O2 feed ratio of 1.0:1.0:0.2. The results showed that higher reaction temperature caused higher CH₄ and CO₂ conversions. CO and H₂ production increased with increasing temperature. H₂/CO ratio was about 1 when the reaction temperature was higher than 1000 K. For syngas, it sharply increased at low temperature and slightly changed after 1000 K. Solid carbon formation could not be observed after 1025 K. The next study was carried out to investigate solid carbon formation due to the variation of O_2/CH_4 and CO_2/CH_4 rations at 1050 K. It was found that solid carbon formation could be eliminated by increasing O₂/CH₄ and CO₂/CH₄ rations. The effect of fed CO_2 and O_2 on syngas production was observed at 1050 K. For O_2/CH_4 higher than 0.1, increase of O_2/CH_4 ration led decreasing H_2 and CO in product gas while increase of CO_2/CH_4 ration caused increasing H_2 and CO. However, when CO_2/CH_4 ration was higher than 0.85, increasing CO_2/CH_4 showed insignificantly change of syngas concentration. Finally, the results from this study presented that, at the reaction temperature of 1050 K, the optimum range of CH₄:CO₂:O₂ for combined partial oxidation and CO₂ reforming process was 1: 0.85-1.0:0.1-0.2.

REFERENCES

- Al-Mutairi, N. and P. Koushki, 2009. Potential contribution of traffic to air pollution in the state of Kuwait. Am. Environ. Sci., 5: 218-222. DOI: 10.3844/ajessp.2009.218.222
- Amin, N.A.S. and TC. Yaw, 2007. Thermodynamic equilibrium analysis of combined carbon dioxide reforming with partial oxidation of methane to syngas. Int. J. Hydrogen Energy, 32: 1789-1798. DOI: 10.1016/J.IJHYDENE.2006.12.004
- Bundela, P.S. and V. Chawla, 2010. Sustainable development through waste heat recovery. Am. J. Environ. Sci., 6: 83-89. DOI: 10.3844/ajessp.2010.83.89
- Edwards, J.H., 1995. Potential sources of CO₂ and the options for its large-scale utilisation now and in the future. Catalysis Today, 23: 59-66. DOI: 10.1016/0920-5861(94)00081-C
- Froment, G.F., 2000. Production of synthesis gas by steam- and CO₂-reforming of natural gas. J. Molecular Catalysis A., 163: 147-156. DOI: 10.1016/S1381-1169(00)00407-6
- Haghighi, M., Z. Sun, J. Wu, J. Bromly and H.L. Wee *et al.*, 2007. On the reaction mechanism of CO₂ reforming of methane over a bed of coal char. Proc. Combustion Inst., 31: 1983-1990. DOI: 10.1016/J.PROCI.2006.07.029
- Jarungthammachote, S. and A. Dutta, 2008. Equilibrium modeling of gasification: Gibbs free energy minimization approach and its application to spouted bed and spout-fluid bed gasifiers. Energy Conversion Manag., 49: 1345-1356. DOI: 10.1016/J.ENCONMAN.2008.01.006
- Jarungthammachote, S., 2009. Thermodynamic analysis and exergy efficiency of methane authothermal reforming. J. Res. Eng. Technol., 6: 89-112.
- Khademi, A., S. Babaei and A. Mataji, 2009. A study on potentiality of carbon storage and CO₂ uptake in the biomass and soil of coppice stand. Am. J. Environ. Sci., 5: 346-351. DOI: 10.3844/ajessp.2009.346.351

- Li, M.W., G.H. Xu, Y.L. Tian, L. Chen and H.F. Fu, 2004. Carbon dioxide reforming of methane using DC corona discharge plasma reaction. J. Physical Chem. A., 108: 1687-1693. DOI: 10.1021/jp037008q
- McBride, B.J., S. Gordon and M.A. Reno, 1993. Coefficients for calculating thermodynamic and transport properties of individual species. NASA Technical Memorandum 4513, NASA. http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/ 19940013151 1994013151.pdf
- Nagaoka, K., K. Seshan, K. Aika and J.A. Lercher, 2001. Carbon deposition during carbon dioxide reforming of methane-comparison between Pt/Al₂O₃ and Pt/ZrO₂. J. Catalysis, 197: 34-42. DOI: 10.1006/JCAT.2000.3062
- Naito, S., H. Tanaka, S. Kado, T. Miyao and S. Naito *et al.*, 2008. Promoting effect of Co addition on the catalytic partial oxidation of methane at short contact time over a Rh/MgO catalyst. J. Catalysis, 259: 138-146. DOI: 10.1016/J.JCAT.2008.08.002
- Puwanto, W.W. and Y. Muharam, 2006. Microreactor for the catalytic partial oxidation of methane. J. Natural Gas Chem., 15: 271-274. DOI: 10.1016/S1003-9953(07)60005-X
- Shamsi, A. and C.D. Johnson, 2003. Effect of pressure on the carbon deposition route in CO₂ reforming of ¹³CH₄. Catal Today, 84: 17-25. DOI: 10.1016/S0920-5861(03)00296-7
- Tsang, S.C., J.B. Claridge and M.L.H. Green, 1995. Recent advances in the conversion of methane to synthesis gas. Catalysis Today, 23: 3-15. DOI: 10.1016/0920-5861(94)00080-L
- Wang, W. and Y. Wang, 2008. Thermodynamic analysis of hydrogen production via partial oxidation of ethanol. Int. J. Hydrogen Energy, 33: 5035-5044. DOI: 10.1016/J.IJHYDENE.2008.07.086

 Wu, T., Q. Yan and H. Wan, 2005. Partial oxidation of methane to hydrogen and carbon monoxide over a Ni/TiO₂ catalyst. J. Molecular Catalysis A., 226: 41-48. DOI: 10.1016/J.MOLCATA.2004.09.016

Wurzel, T., S. Malcus and L. Mleczko, 2000. Reaction engineering investigations of CO₂ reforming in a fluidized-bed reactor. Chem. Eng. Sci., 55: 3955-3966. DOI: 10.1016/S0009-2509(99)00444-3