
American Journal of Applied Sciences 8 (8): 833-838, 2011 
ISSN 1546-9239 
© 2011 Science Publications 

Corresponding Author: C. Agees Kumar, Department of Electronics and Instrumentation Engineering,  
 Noorul Islam College of Engineering, Kumaracoil, Tamil Nadu, India 

833 

 
Tuning of a Proportional-Integral-Derivative Controller using Multi-Objective 

Non Dominated Sorting Particle Swarm Optimization Applied 
to pH Control in Continuous Stirred Tank Reactor 

 
1C. Agees Kumar and 2N. Kesavan Nair 

1Department of Electronics and Instrumentation Engineering, 
2Department of Electrical and Electronics Engineering, 

Noorul Islam College of Engineering, Kumaracoil, Tamil Nadu, India 
 

Abstract: Problem statement: Most of the control engineering problems are characterized by several, 
contradicting, conflicting objectives, which have to be satisfied simultaneously. Two widely used 
methods for finding the optimal solution to such problems are aggregating to a single criterion and 
using Pareto-optimal solutions. Approach: Non-Dominated Sorting Particle Swarm Optimization 
algorithm (NSPSO) based approach is used in the design of multiobjective PID controller to find the 
constant proportional-integral-derivative gains for a chemical neutralization plant. The plant 
considered in this study is highly non-linear and with varying time delay, provides a challenging test 
bed for nonlinear control problems. Results: Experimental results confirm that a multi-objective, 
Paretobased GA search gives a better performance than a single objective GA. Conclusion: Finally, 
the results for single objective and multiobjective optimization using NSPSO for the neutralization 
plant are compared. Gain scheduled PID controllers are designed from Pareto front obtained with 
NSPSO which exhibit good disturbance rejection capability.  
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INTRODUCTION 
 
 Significant Research interests exists in the pH 
control problem because of the fact that pH processes 
are very difficult to control. The task of regulating the 
pH value in an acid-base titration process is a 
challenging problem. Variations in the titration curve 
with changes in feed conditions further complicate the 
dynamics of the control problem. Due to these reasons, 
pH control is viewed as an important benchmark for 
control of highly non linear processes. At an earlier 
stage, pH Control was done using linear conventional 
controllers (Nagammai et al., 2006) by employing 
cascade and feed forward controllers as proposed by 
Mcmillan. They suffer from the problems of robustness 
and load disturbances. To overcome the shortcomings, 
nonlinear adaptive controllers were applied to pH 
control problems .Later in 1990s, fuzzy logic and neural 
network (Loh et al., 1995) based modeling and control 
techniques were developed for the acid- base titration 
process(Bharathi et al., 2006). A fuzzy self-tuning PI 
controller (Jain et al., 2011) for a non linear process is 
used to tune the controller PI gains on-line by means of 
a parameter that results from a fuzzy inference 

mechanism.Combination of proportional plus integral 
controller (PI) controller and Fuzzy Logic Controller 
(FLC) is used for nonlinear control of pH neutralization 
process.Velocity based linearized models are proposed 
to modify the Internal Model Control and are applied to 
strongly nonlinear pH neutralization process to 
eliminate the steady state offsets.Genetic Algorithms 
(GA) are applied to pH process which searches for high 
performances membership and on the other hand, Fuzzy 
Logic Controller (FLC) manipulates the pH system.  
 Optimization in engineering design has always 
been of great importance and interest particularly in 
solving complex real-world design problems. Some 
basic difficulties in the gradient methods such as their 
strong dependence on the initial guess can cause them 
to find a local optimum rather than a global one. This 
has led to other heuristic optimization methods, 
particularly Genetic Algorithms (Mwembeshi et al., 
2004) being used extensively during the last decade. 
Such nature-inspired evolutionary algorithms proposed 
by (Deb, 2001) differ from other traditional calculus 
based techniques. The main difference is that GA’s 
work with a population of candidate solutions, not a 
single point in search space. This helps significantly to 
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avoid being trapped in local optima as long as the 
diversity of the population is well preserved. 
  In multi-objective optimization problems, (Andrey 
et al., 2005; Kumar and Nair, 2010a; 2010b) there are 
several objective or cost functions (a vector of 
objectives) to be optimized (minimized or maximized) 
simultaneously. These objectives often conflict with 
each other so that as one objective function improves, 
another deteriorates. Therefore, here is no single 
optimal solution that is best with respect to all the 
objective functions. Instead, there is a set of optimal 
solutions, well known as Pareto optimal solutions 
which distinguishes significantly the inherent natures 
between single-objective and multi-objective 
optimization problems. V. Pareto was the French-Italian 
economist who first developed the concept of multi-
objective optimization in economics. The concept of a 
Pareto front in the space of objective functions in 
Multi-Objective Optimization Problems (MOPs) stands 
for a set of solutions that are non-dominated to each 
other but are superior to the rest of solutions in the 
search space. 
 The early use of evolutionary search is first 
reported in 1960’s by Rosenberg. Since then, there has 
been a growing interest in devising different 
evolutionary algorithms for MOPs. Basically, most of 
them are Pareto-based approaches and use the well-
known non-dominated sorting procedure. In such 
Pareto-based approaches, the values of objective 
functions are used to distinguish the non-dominated 
solutions in the current population. Among these 
methods, the Vector Evaluated Genetic Algorithm 
(VEGA) proposed by Schaffer, Non-dominated Sorting 
Genetic Algorithm (NSGA) by Srinivas and Deb (1994) 
and Strength Pareto Evolutionary Algorithm (SPEA) by 
Zitzler and Thiele and the Pareto Archived Evolution 
Strategy (PAES) by Knowles and Corne are the most 
important ones. Basically, both NSGA and MOGA as 
Pareto-based approaches use the revolutionary non-
dominated sorting procedure originally proposed by 
Goldberg.Brief description of Elitist Non Dominated 
Sorting Particle Swarm Algorithm is proposed.  
 This study aims at using an acid-base 
neutralization process of a Continuously Stirred Tank 
Reactor (CSTR) as a challenging test bed for examining 
the feasibility of solutions obtained with NSPSO. First 
an brief overview of pH neutralization process is 
presented Table 1. Aggregation based single objective 
optimization is then performed. Multiobjective 
Optimization based on NSPSO and algorithm for 
NSPSO is presented. Finally Gain Scheduled PID 
control and Concluding Remarks are presented.  

MATERIALS AND METHODS 
 
pH Neutralization process: In Industries, the process 
of mixing acid with base usually takes place in a large 
tank. The capacity of mixing vessel serves to dampen 
the influence of disturbances, in the form of variations 
in concentration and flow rate,on the pH level.Titration 
between acetic acid and sodium hydroxide takes place 
in a Continuous Stirred Tank Reactor (CSTR). 
 Figure 1 shows the CSTR with two input streams 
and an output stream. 
 
 Assumptions made:  
 
• Volume of the Process Tank is constant  
• Solution is perfectly mixed  
• Chemical reactions attain chemical equilibrium 

instantaneously 
 
 Dynamics of the mixing process can be described 
by the following set of bilinear equations given by 
 

( )a
a a a b a

dx
v F C F F x

dt
= − +   (1) 

 

( )b
b b a b b

dx
v F C F F x

dt
= − +   (2)  

 
Where: 
Fa = the process stream (acid) flow rate in mL sec−1 

Ca = The concentration of the acetic acid in gmol L−1 

Fb = The titrating stream (base) flow rate in mL sec−1 

Cb = The concentration of the sodium hydroxide in 
gmol L−1  

V = The volume mixture in litres 
 
Table 1: Process parameters 

Process stream Inflow, Fa  26.6 mL sec
−1

 

Average titrating stream Inflow, Fb  3.3 mL sec
−1

 
Volume of Process tank (V)  2L 
Stream concentration, Ca  0.025 g mol L−1 
Titrating Stream concentration, Cb  0.2 g mol L−1 
 

 
 
Fig. 1: pH Control using CSTR  
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 The pH process considered is the titration reaction 
between a weak acid and a strong base. Acetic acid 
CH3COOH) and Sodium hydroxide (NaOH) were 
employed as the process and titrating streams 
respectively.The chemical reaction that occurs when 
acetic acid is mixed with sodium hydroxide is governed 
by the following equation: 
 
NaOH CH3 COOH= NaCH3 COO +H2O  (3) 
 
 Acetic acid will decompose into hydrogen ion and 
actate ion, according to ionic dissociation theory: 
  
CH3 COOH →CH3 COO-  (4) 
 
 
 Sodium hydroxide will decompose into sodium ion 
and hydroxyl ion: 
 
NaOH = Na+ + OH-  (5) 
 
 The titration equation is a static relationship that 
maps the unit of reagents added per unit of influent to 
the output pH value. It is derived from the electro 
neutrality condition, which states that the ionic equation 
must be balanced in terms of sum of the charges, 
equating the positively charged ions with negatively 
charged ions.  
 Ionic equation for reaction between acetic acid and 
sodium hydroxide is obtained as: 
 
[Na +] + [H-] = [CH3 + COO-] + [OH-]  (6) 
 
 Defining xa = [CH3 + COO -] + [CH3 + COOH] as 
weak acid ionic concentration and xb = [Na +] b base 
ionic concentration, the neutralization equation for the 
titration process is: 
 
[H +]3 +[H +]2 ( Ka+Kb ) +[ H + ]{ K a(xb-xa)- Kw} 
-Kw Ka = pH=- log 10[H +]  (7) 
 

3 4.75
a

3

CH COO H
K 10

CH COOH

− +
−

      = =
  

  

 
Where: 
Ka = Acid dissociation constant 

for acetic acid at 25°C 

14
w

2

OH H
K 10

H O

− +
−

      = =
  

 = Ionic product of water at 

25°C 
 
 The output of weak-acid strong base titration 
process is be derived by solving Eq. 6 and based on the 
solutions and Eq. 5, pH value is calculated. 

Single objective optimization: The Objective 
functions employed are: 
 

t

1

0

J t e(t)dt= ∫  (8) 

 
t

2

0

J u(t)dt= ∫   (9) 

  
 Two design objectives are considered (1) minimal 
error (e) between reference signal and the output and 
(2) minimal control effort (u). Minimization of first 
objective provides good reference tracking and better 
disturbance rejection whereas minimization of second 
objective reduces the quantity of acid and base and thus 
the cost of control. J1 is integral of time multiplied 
absolute error, so errors that exists for larger times are 
heavily penalized. J2 is a good measure of total acid and 
base quantities required for control.  
 Objective Aggregation method is used to combine 
the two objectives into a single one: 
 
J =J1 +WJ2  (10) 
 
 Sampling time Ts is chosen to be 0.5 sec. Kp, Ki 
and Kd are the design parameters of PID controller. 
 Transfer function of PID controller is given by: 
 

( )
I S

p D
S S c S c

K T z 1
K(Z)K 2K

z 1 T 2T z T 2T

−+ +
− − + −

 

 
where, Tc = 0.5 ms is the time constant for the 
derivative. 
 Raw values of the objective functions and their 
importance could be considered while choosing the 
appropriate weight. When such information is not 
available, different values of W are used. 
 The parameters used in GA for single objective 
optimization are: 
 
Population size :  20 
No. of generations  :  200 
Selection  :  Roulette wheel selection 
Mutation Probability  :  0.05 
Crossover Probability  :  0.87 
 
 Simulation results have shown that better 
convergence is achieved within 200 generations. 52 
weights are selected for simulation and different PID 
values are obtained. J1 and J2 are computed and Fig. 2 
shows the implementation results.The main reason for 
the gap existing in Fig. 2 is the high sensitivity of 
aggregated objective functions at some regions of the 
Pareto front. 
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Fig. 2: Objective aggregation based optimization 
 
Multi-objective non dominated soting particle 
swarm optimization: The goal of our multi-objective 
hybrid algorithm is to combine single-objective PSO 
with NSGA-II operations without loosing performance 
on establishing the Paretofront. The NSPSO combines 
the strengths of the these advanced operations (A fast 
non-dominated sorting approach, crowding distance 
ranking, elitist strategy, mutation and selection 
operations) with single-objective PSO search (Fig. 4). 
The hybrid algorithm is presented below: 
 
Step 1: Generate an initial population P (Population 

size = N) and velocity for each individual 
(agent or particle) in a feasible space; Set the 
maximum speed vi max (vi max = its upper 
bound minus lower bound) for a variable. 

Step 2: Sort the population based on the non-
domination and crowding distance ranking. 

Step 3: Do rank-based selection operator (Carlos and 
Peter, Fleming, 1993). 

Step 4: Assign each individual a fitness (or rank) equal 
to its non-domination level (minimization of 
fitness is assumed). 

Step 5: Randomly choose one individual as gbest for N 
times from the nondominated solutions and 
modify each searching point using previous 
PSO formula and the gbest: 

 
vi (k+1)=k [vi

k+ci x rand ( ) x (pbesti-si
k) 

           +c2 x rand ( ) x (g)] 
 

1 2
2

2
K where / c c , 4

2 4
= ϕ = + ϕ >

− ϕ − ϕ − ϕ
  (11) 

 

Si
-k+1=si

k+vi
-k+1 (12) 

 
where, rand ( ) is a random number between (0, 1). The 
constriction factor approach can generate higher quality 
solutions   than     the     conventional    PSO   approach.  

 
 
Fig. 3: Outline of optimization process 
 
If current position outside the boundaries, then it takes 
the upper bound or lower bound and its velocity is 
generated randomly (0 ≤ vi 

k +1 ≤ vi 
max) and multiplied 

by -1 so that it searches in the opposite direction. 
 
Step 6: Do mutation operator (David, 1985). 
Step 7: Combine the offspring and parent population to 

form extended population of size 2N. 
Step 8: Sort the extended population based on 

nondomination and fill the new population of size 
N with individuals from the sorting fronts starting 
to the best. 

Step 9: Modify the pbesti of each searching point: If 
current rank of the new individual (offspring) 
Pi

K +1 is smaller than or equal to the previous 
one (parent) in R, replace the pbesti with current 
individual; otherwise keep the previous pbesti. 

Step 10: Perform steps (2-9) until the stopping criterion 
is met. 

 
RESULTS AND DISCUSSION 

 
 Conventional methods of tuning of controllers are 
proposed by Zeigler and Nichol’s.This method can be 
employed only for lower order linear systems. Only a 
single value of Kp, Ki and Kd can be obtained. In case of 
Multiobjective Optimization, from the Pareto front, 
different values of Kp, Ki and Kd can be obtained for a 
particular process based on different objectives. 

 The parameters used in NSPSO for multiobjective 
optimization are: 
 
Maximum No. of Generations : 200 
 Population size : 50 
Cross Over probability : 0.85 
Mutation probability : 0.05 
Crossover : Simulated Binary 
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Fig. 4: Optimization results obtained with NSPSO 
 

 
 
Fig. 5: Optimization results obtained with aggregation 

method and NSPSO and Selected points 
 

  
 (a) 

 

 
(b) 

 
Fig. 6: Simulation Results for selected point (Output pH 

for point 1) 

 
 
Fig. 7: Simulation results for selected point 2 
 

 
 (a) 

 

 
           (b) 

 
Fig. 8: Optimization results obtained with aggregation 

method and NSPSO and Selected points 
 
 From the Pareto front shown in Fig. 5, Points 1, 2- 
3 shows the region where single objective and 
multiobjective optimization results match. 
 Figure 6 shows the output pH for the point 1. The 
following are the values obtained for point 1: Kp = 
2.77×10−2, Ki = 0 and Kd = 2.4×10−3. 
 Figure 7 shows the simulation Results for 
selected point 2.Values obtained are Kp = 1.57×10−2, 
K i = 9.97×10−6 and Kd = 0 
 Figure 8 shows the simulation Results for selected 
point 3.Values obtained are Kp= 5.77×10−2 , Ki = 0, Kd = 0. 
 From the Pareto front shown in Fig. 3, 
corresponding Kp, Ki and Kd values are obtained as per 
the requirements of the user.  
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Fig. 9: Comparison of fixed gain and gain scheduled 

controllers 
 
 Figure 9 to obtain 50 points with aggregation 
methods, a total number of 50×200×20 = 200,000 
closed loop simulations had to be performed. However 
for the same 50 points on multiobjective method only 
50×200 = 10,000 simulations were needed. 
 Therefore NSPSO is 20 times faster than aggregation 
technique. It is inferred that all points in the pareto optimal 
set cannot be obtained with aggregation based approach. 
 From the results, it is obvious that gain scheduled 
PID controller is employed for faster disturbance 
rejection than fixed gain PID controller. The better 
performance of gain scheduled controller in rejecting 
acid disturbances is caused by the larger control signal 
(Large amplitude for a short period of time). From the 
simulation results, it is inferred that NSPSO 
outperforms other algorithms in quick disturbance 
rejection capability of Gain scheduled PID Controllers. 
 

CONCLUSION 
 
 In this study designing of PID parameters with 
multiobjective Non Dominated Sorting Particle Swarm 
Optimization (NSPSO) for control of pH in a CSTR has 
been proposed. The main objective functions to be 
minimized are integral of time multiplied absolute error 
and control effort. Aggregation based approach and 
NSPSO have been used to design a fixed gain PID 
controller for non linear chemical pH process. The 
optimization solution results are a set of near optimal 
trade-off values which are called the Pareto front or 
optimality surfaces. Pareto front enables the operator to 
choose the best compromise or near optimal solution 
that reflects a trade-off between key objectives. In this 
study more values of PID controller parameters (Kp, Ki 
and Kd) can be obtained from a single Pareto Optimal 
front, so the designer has the flexibility to select a 
single solution based on the two objectives. The 

simulation results show that NSPSO is capable of 
regulating pH level over a wide range with minimal 
overshoot. Gain scheduled PID controller design offers 
faster disturbance rejection capability. 
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