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Abstract: Problem statement: Most of the control engineering problems are ctigrized by several,
contradicting, conflicting objectives, which have Ibe satisfied simultaneously. Two widely used
methods for finding the optimal solution to suclolgems are aggregating to a single criterion and
using Pareto-optimal solutiong\pproach: Non-Dominated Sorting Particle Swarm Optimization
algorithm (NSPSO) based approach is used in thigrde$ multiobjective PID controller to find the
constant proportional-integral-derivative gains far chemical neutralization plant. The plant
considered in this study is highly non-linear anthwarying time delay, provides a challenging test
bed for nonlinear control problemResults: Experimental results confirm that a multi-objective
Paretobased GA search gives a better performamaceatsingle objective GAConclusion: Finally,
the results for single objective and multiobjectimgtimization using NSPSO for the neutralization
plant are compared. Gain scheduled PID controbees designed from Pareto front obtained with
NSPSO which exhibit good disturbance rejection biiha
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INTRODUCTION mechanism.Combination of proportional plus integral
o ) . ) controller (P1) controller and Fuzzy Logic Contsgll
Significant Research interests exists in the pHFLC) is used for nonlinear control of pH neutratinn
control problem because of the fact that pH praeess process.Velocity based linearized models are pepos
are very difficult to control. The task of regufaithe {5 modify the Internal Model Control and are apglie
pH value in an acid-base ftitration process is a&srongly nonlinear pH neutralization process to
challenging problem. Variations in the titrationre@  gliminate the steady state offsets.Genetic Algorith
with changes in feed conditions further complictite (GA) are applied to pH process which searchesifgt h
dynamics of the control problem. Due to these ne8S0 performances membership and on the other handyFuzz
pH control is viewed as an important benchmark for_ qgic Controller (FLC) manipulates the pH system.
control of highly non linear processes. At an earli Optimization in engineering design has always
stage, pH Control was done using linear conventionapeen of great importance and interest particulamly
controllers (Nagammakt al., 2006) by employing solving complex real-world design problems. Some
cascade and feed forward controllers as proposed Wyasic difficulties in the gradient methods suchtheeir
Mcmillan. They suffer from the problems of robustse strong dependence on the initial guess can caese th
and load disturbances. To overcome the shortcoming$o find a local optimum rather than a global ongisT
nonlinear adaptive controllers were applied to pHhas led to other heuristic optimization methods,
control problems .Later in 1990s, fuzzy logic amdiral  particularly Genetic Algorithms (Mwembeslat al.,
network (Lohet al., 1995) based modeling and control 2004) being used extensively during the last decade
techniques were developed for the acid- baseititrat Such nature-inspired evolutionary algorithms pregbs
process(Bharathét al., 2006). A fuzzy self-tuning Pl by (Deb, 2001) differ from other traditional calasl
controller (Jairet al., 2011) for a non linear process is based techniques. The main difference is that GA’s
used to tune the controller Pl gains on-line by mseaf  work with a population of candidate solutions, ot
a parameter that results from a fuzzy inferencesingle pointin search space. This helps signifilyato
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avoid being trapped in local optima as long as the MATERIALSAND METHODS
diversity of the population is well preserved.

In multi-objective optimization problems, (Andrey pH Neutralization process: In Industries, the process
et al., 2005; Kumar and Nair, 2010a; 2010b) there areof mixing acid with base usually takes place iraaé
several objective or cost functions (a vector oftank. The capacity of mixing vessel serves to dampe
objectives) to be optimized (minimized or maximixed the influence of disturbances, in the form of viias
simultaneously. These objectives often conflicthwit in concentration and flow rate,on the pH level &titin
each other so that as one objective function imgspv between acetic acid and sodium hydroxide takeseplac
another deteriorates. Therefore, here is no singlén a Continuous Stirred Tank Reactor (CSTR).
optimal solution that is best with respect to diet Figure 1 shows the CSTR with two input streams
objective functions. Instead, there is a set ofropt  and an output stream.
solutions, well known as Pareto optimal solutions .
which distinguishes significantly the inherent mats ASsumptions made:

betyve_en . single-objective and mUIt"ObJ_eCt'Ve ¢ Volume of the Process Tank is constant
optimization problems. V. Pareto was the Frenchaita , g\ tion is perfectly mixed

economist who first developed the concept of multi-,  chemical reactions attain chemical equilibrium
objective optimization in economics. The conceptof instantaneously
Pareto front in the space of objective functions in
Multi-Objective Optimization Problems (MOPs) stands Dynamics of the mixing process can be described
for a set of solutions that are non-dominated tchea by the following set of bilinear equations given by
other but are superior to the rest of solutionghe
search space. v e _ FaCa—( F+ ;:b) X, (1)

The early use of evolutionary search is first dt
reported in 1960’s by Rosenberg. Since then, thase
been a growing interest in devising different V%:Fbcb—(':ﬁ ;:b) X, 2)
evolutionary algorithms for MOPs. Basically, mogt o dt
them are Pareto-based approaches and use the w
known non-dominated sorting procedure. In suchgy
Pareto-based approaches, the values of objectiveg
functions are used to distinguish the non-dominategep The titrating stream (base) flow rate in mt5e
solutions in the current population. Among theseCb The concentration of the sodium hydroxide in
methods, the Vector Evaluated Genetic Algorithm gmol L*
(VEGA) proposed by Schaffer, Non-dominated SortingV = The volume mixture in litres
Genetic Algorithm (NSGA) py Srinivas a_lnd Deb (1994) Table 1: Process parameters
and Strength Pareto Evolutionary Algorithm (SPER) b

,
@

the process stream (acid) flow rate in ml-’sec
The concentration of the acetic acid in gmbl L

-1
Zitzler and Thiele and the Pareto Archived Evolntio Process S.trea_m Inflow, Fa 26.6 m':gec
Strategy (PAES) by Knowles and Corne are the mo%‘(’)fﬁgee;tg‘g';g e 2{‘/';'0""' Fb g’f mL sec
important ones. Basically, both NSGA and MOGA aSgyeam concentration, Ca 0.025 g mdi L
Pareto-based approaches use the revolutionary nomitrating Stream concentration, Cb 0.2gmdiL
dominated sorting procedure originally proposed by
Goldberg.Brief description of Elitist Non Dominated  process  F,.C, F,.C, Titrating
Sorting Particle Swarm Algorithm is proposed. stream stream

This study aims at wusing an acid-base
neutralization process of a Continuously Stirrechka
Reactor (CSTR) as a challenging test bed for exiagnin ‘
the feasibility of solutions obtained with NSPSGrsE v
an brief overview of pH neutralization process is ,

. . . . Effluent
presented Table 1. Aggregation based single obgecti stream
optimization is then performed. Multiobjective .
Optimization based on NSPSO and algorithm for Fot+ Fy %, %,
NSPSO is presented. Finally Gain Scheduled PID
control and Concluding Remarks are presented. Fig. 1: pH Control using CSTR
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The pH process considered is the titration reactio Single objective optimization: The Objective
between a weak acid and a strong base. Acetic aciinctions employed are:
CH;COOH) and Sodium hydroxide (NaOH) were
employed as the process and titrating streams
respectively.The chemical reaction that occurs when’: = [ fe(tjdt (8)
acetic acid is mixed with sodium hydroxide is gowest °
by the following equation:

t
3, = [Ju(tdt ©)
NaOH CH, COOH= NaCH COO +HO (3) 0
Acetic acid will decompose into hydrogen ion and  Two design objectives are considered (1) minimal
actate ion, according to ionic dissociation theory: error (e) between reference signal and the outpdt a
i (2) minimal control effort (u). Minimization of ft
CH; COOH—CH; COO (4) objective provides good reference tracking andebett

disturbance rejection whereas minimization of secon

objective reduces the quantity of acid and basetlaunsl

the cost of control. (Jis integral of time multiplied

NaOH = N& + OH (5) absolute error, so errors that exists for largmes are

heavily penalized.,Js a good measure of total acid and

The titration equation is a static relationshiatth base quantities required for control.

maps the unit of reagents added per unit of influen Objective Aggregation method is used to combine

the output pH value. It is derived from the electrothe two objectives into a single one:

neutrality condition, which states that the ionigiation

must be balanced in terms of sum of the charges], =1 +WJ, (10)

equating the positively charged ions with negayivel Sampling time Ts is chosen to be 0.5 seg. K

charged ions. _ . and K; are the design parameters of PID controller.
lonic equation for reaction between acetic acid an Transfer function of PID controller is given by:
sodium hydroxide is obtained as:

Sodium hydroxide will decompose into sodium ion
and hydroxyl ion:

K,Ts z-1
[Na*]+ [H] = [CH; + COO] + [OH] 6) MOt e e,

Defining %, = [CH; + COO -] + [CH + COOH] as
weak acid ionic concentration ang x [Na '] b base
ionic concentration, the neutralization equation tfoe
titration process is:

where, Tc = 0.5 ms is the time constant for the
derivative.

Raw values of the objective functions and their
importance could be considered while choosing the
appropriate weight. When such information is not

+13 +2 +
[H1°+H T (KatKp ) +[ H 7K oXo7Xa)- Ku} available, different values of W are used.

“Kw Ka = pH=- log 10[H] ) The parameters used in GA for single objective
optimization are:
:M =10*" ) .
a [CH3 COOH] Population size : 20
No. of generations : 200
Where: Selection : Roulette wheel selection
K, = Acid dissociation constant Mutation Probability : 0.05
for acetic acid at 25°C Crossover Probability : 0.87
[oHH] L, , Simulation results have shown that better
Ku = [Hzo] =107 = lonic product of water at convergence is achieved within 200 generations. 52

weights are selected for simulation and differefid P
values are obtained; and J are computed and Fig. 2

) .. shows the implementation results.The main reason fo
The output Qf Weak-ac!d strong base titrationpe gap existing in Fig. 2 is the high sensitivia
process is be derived by solving Eq. 6 and baseti®n 5gqregated objective functions at some regionshef t
solutions and Eq. 5, pH value is calculated. Pareto front.
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Multi-objective non dominated soting particle
swarm optimization: The goal of our multi-objective
hybrid algorithm is to combine single-objective PS

with NSGA-II operations without loosing performance ¢ ¢, rent position outside the boundaries, thetakes

on establishing the Paretofront. The NSPSO combineg,q upper bound or lower bound and its velocity is

the strengths of the these advanced operation®$A f generated randomly @ v; “** < ; ™) and multiplied

non-dominated sorting approach, crowding distancey -1 so that it searches in the opposite direction

ranking, elitist strategy, mutation and selection

operations) with single-objective PSO search (Bjg. Step 6: Do mutation operator (David, 1985).

The hybrid algorithm is presented below: Step 7: Combine the offspring and parent populatiton
form extended population of size 2N.

Step 1: Generate an initial population P (Poputatio Step 8: Sort  the ~extended population based on

OFig. 3: Outline of optimization process

size = N) and velocity for each individual nondomination and fill the new population of size

(agent or particle) in a feasible space; Set the N with individuals from the sorting fronts starting

maximum speed vi max (vi max = its upper to the best. , _

bound minus lower bound) for a variable. Step 9: Modify the pbesti of each searching poifit:
Step 2: Sort the population based on the non- current rank of the new individual (offspring)

domination and crowding distance ranking. P ™ is smaller than or equal to the previous
Step 3: Do rank-based selection operator (Carlas an one (parent) in R, replace the phesth current

Peter, Fleming, 1993). individual; otherwise keep the previous phest
Step 4: Assign each individual a fitness (or raegal ~ Step 10: Perform steps (2-9) until the stoppingedon

to its non-domination level (minimization of IS met.

fitness is assumed). RESUL TS AND DISCUSSION

Step 5: Randomly choose one individual as gbeshfor

times from the nondominated solutions and  conventional methods of tuning of controllers are
modify each searching point using previousronosed by Zeigler and Nichol's. This method can be
PSO formula and the gbest: employed only for lower order linear systems. Oaly
vi (k+1)=k [v*+cx rand () x (pbess") single value of K, K; and k; can be obtained. In case of
+gx rand () x (g)] Multiobjective Optimization, from the Pareto front,
different values of K K; and Ky can be obtained for a

K = 2  Wherep /= G+ G §> 4 (11) particular process based on different objective§. o
‘2_¢_\/m ER The parameters used in NSPSO for multiobjective

optimization are:

Si KHl=gkyy, 1 (12)  Maximum No. of Generations : 200
Population size : 50

where, rand () is a random number between (0TH9. Cross Over probability :0.85

constriction factor approach can generate highalityu  Mutation probability :0.05

solutions than the conventional PSPproach. Crossover : Simulated Binary
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From the Pareto front shown in Fig. 5, Points-1, 2
3 shows the region where single objective and
multiobjective optimization results match.

Figure 6 shows the output pH for the point 1. The
following are the values obtained for point 1, K
2.77x10% K, = 0 and K = 2.4x10°.

Figure 7 shows the simulation Results for
selected point 2.Values obtained argK1.57x107,
Ki=9.97x10°and K;= 0

Figure 8 shows the simulation Results for selected
point 3.Values obtained arqjda(S.??xlO2 ,Ki=0,K;=0.

From the Pareto front shown in Fig. 3,
corresponding K K; and K, values are obtained as per
the requirements of the user.
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120 simulation results show that NSPSO is capable of
regulating pH level over a wide range with minimal
overshoot. Gain scheduled PID controller desigersff

80 b S—— faster disturbance rejection capability.
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