
American Journal of Applied Sciences 8 (12): 1272-1281, 2011
ISSN 1546-9239
© 2011 Science Publications

Corresponding Author: Md. Syedul Amin, Department of Electrical, Electronic and Systems Engineering,
 University Kebangsaan Malaysia, 43600, UKM, Bangi, Selangor, Malaysia
 Tel: +603-89216316 Fax: +603-89216146

1272

Hardware Approach of a Multipurpose Finite Impulse
Response Filter for Real-Time Filtering Applications

1Md. Syedul Amin, 2Md. Mamun and 1Labonnah F. Rahman

1Department of Electrical, Electronic and Systems Engineering,
2Institute of Visual Informatics,

University Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia

Abstract: Problem statement: Finite Impulse Response (FIR) filters are widely used in various DSP
applications. The design of digital FIR filters is a very basic problem in digital signal processing. A
FIR filter with multiple operation capability is certainly very useful for any real-time filtering
applications. This article presents a multipurpose FIR filter design modeled by the hardware
description language VHDL for real-time filtering application. Approach: The VHDL has its concept
of concurrency to cope with the parallelism of digital hardware. The novel feature is the capability of
the design to accomplish up to 127variable filter order and an arbitrary filter frequency response. The
coefficients are calculated by Hamming windowing technique. Basing on selection embedded in the
design, the model is able to execute highpass, lowpass, bandstop and bandpass filtering operations. It
is set at 8-bit signed data processing. To filter the input data in time domain, Linear Constant
Coefficient Difference Equation (LCCDE) is used by the filter. Results: The design outputs are
validated through simulation and compilation. The output results are also compared with the
MATLAB implemented calculated output results to test the correctness that proves the effectiveness of
the design. Conclusion: With the capability of filtering signal in real time mode utilizing arbitrary
filter shape, the multipurpose filter proves to be versatile.

Key words: Finite Impulse response (FIR) Filter, hamming window, VHDL, Linear Constant

Coefficient Difference Equation (LCCDE), infinite impulse response, filter coefficients,
multipurpose digital, execution instruction

INTRODUCTION

 Frequency-sensitive linear filters can be divided
into two categories: Finite Impulse Response filters
(FIR) and Infinite Impulse Response filters (IIR). The
design of FIR digital filters is a very basic problem in
digital signal processing. As such, a lot of attention for
the last 30 years has been received in this field. It is
widely used in various DSP applications. Few examples
are signal preconditioning, video convolution functions
and communications. The FIR filter is chosen for
applications which require linear phase or where not
producing noise inside the filter is vital. True linear
phase can be achieved only in an FIR filter where the
impulse response is symmetric. Filters without noise
can be achieved only with FIR filters. Because FIR
filters can always be designed with a sufficient number
of bits in the multipliers where truncation or rounding is

not required after the multiplication. In the arena of
digital FIR filters designing with the constant fixed-
point binary coefficients, significant work has been
done (Ma and Taylor, 1990; Lim and Liu, 1988; Dey
and Oppenheim, 2008).
 Ascertaining filter coefficients is the main task for
designing a FIR filter. Usually window method and
iterative method is applied for the determination of the
coefficient. Iterative method, Ramez-Algorithm permits
designing of optimal filters (Kumar et al., 2010;
Mogaki et al., 2007; Parks and McClellan, 1972).
Difficulty in implementation by HDL is the drawback
of this method. On the contrary, it is easier to
implement by the window method (Oppenhaim and
Schafer, 1975).
 For implementing the digital filtering algorithms,
the most common approaches are special purpose
digital filtering chips and Application-Specific

Am. J. Applied Sci., 8 (12): 1272-1281, 2011

1273

Integrated Circuits (ASICs) for higher rates (Khoo et
al., 1993; Laskowski and Samueli, 1992; Evans, 1993)
or general purpose digital signal processing chips for
audio applications.
 The Field-Programmable Gate Arrays (FPGA)
offers a potential substitute to accelerate the hardware
implementation (Coussy et al., 2009; Marufuzzaman et
al., 2010; Reaz et al., 2007b; Verma et al., 2009).
FPGA has the merits of shorter design, higher density
and lower cost cycle from the point of computer-aided
design (Choong et al., 2005; Akter et al., 2008;
ElGizawy et al., 2010). It comprises of a wide variety
of building blocks. Each block consists of
programmable look-up table and storage registers,
where interconnections among these blocks are
programmed through the hardware description language
(Reaz et al., 2004b; 2005b; Iskandarani, 2010). This
programmability and simplicity of FPGA made it
favorable for prototyping digital system. FPGA allows
the users to easily and inexpensively realize their own
logic networks in hardware. FPGA also allows
modifying the algorithm easily and the design time
frame for the hardware becomes shorter by using FPGA
(Choong et al., 2006; Ibrahimy et al., 2006).
 In this study we present a model of multipurpose
FIR filter by hardware description language VHDL.
The aim of the work is to get a proficient structure to
ease hardware implementation to attain multi-purpose
filtering with variable filter order and arbitrary
frequency response and to assess the feasibility of using
VHDL for prototyping and quick design. The utilization
of Hardware Description Languages (HDL) is steadily
increasing, as digital designs become more complex
and larger (Pang et al., 2006). Previous methods like
schematic capture have not been as well suited for
reusing design and quick prototyping of large chip
designs. Utilizing VHDL for modeling is attractive.
Because, a formal description of the system is offered
by VHDL. It also permits using definite description
styles for covering up various abstraction levels (logic,
register transfer and architectural level) used in the
design (Reaz et al., 2006; 2007a). At first the problem
is separated into small pieces in the computation of
method. In VHDL, each can be considered as
submodule. Synthesis is activated after the software
verification of each submodule. It does the translations
of HDL code into an equal digital cells’ netlist. The
synthesis facilitates to integrate the design work. It also
gives a higher probability to explore far wider range of

architectural substitute (Reaz et al., 2004a). This
method offers a systematic approach for realization of
hardware which allows quick prototyping of the
multipurpose FIR filter.

MATERIALS AND METHODS

 In this project, a multipurpose digital (FIR) filter is
realized using VHDL. It can be modeled by utilizing
LCCDE as given by Eq. 1:

N M

k k
k 0 m 0

a y[n k] b y[n m]
= =

− = −∑ ∑ (1)

 The FIR filter involves no feedback. As such, the
LCCDE can be described by Eq. 2 as follows (Kumar et
al., 2010; Mogaki et al., 2007; Parks and McClellan,
1972):

M

k
m 0

y[n] b y[n m]
=

= −∑ (2)

 The FIR filter is a generalization of a running
average function as we can find from the above
equation. Whenever data fluctuates, averaging is
usually done and then smoothed before interpretation.
An M-point averaging model method is where each
value of the output sequence is the sum of M
consecutive input sequence multiplied by its
coefficient, bk (usually less than 1).
 By using windowing technique, the multipurpose
FIR filter is designed. It is the most suitable algorithm
because it is the easiest way for FIR filter realization.
By defining the piecewise function with discontinuities
at the boundaries between bands, the frequency
response can be achieved. By choosing predefine
windows, the specifications of the filter can be easily
found which matches filter specification. Then, the
coefficients can be calculated by mathematical models.
 The window selection is based on the stability and
causality of all filter types, high pass, low pass, band
stop and band pass for windowing algorithm. The
specifications which are considered for the windows are
the transition width, peak stop band attenuation and
peak side lobe amplitude. A tradeoff between transition
width and peak stop band attenuation remains. The
transition width gets bigger as soon as the window gets
higher stop band attenuation. As such, Hamming
window which has a tradeoff between peak stop band
and transition width attenuation is chosen.

Am. J. Applied Sci., 8 (12): 1272-1281, 2011

1274

 MATLAB’s fir2 function is utilized to determine
the coefficient number. The interpolation point is set to
128 points and maximum order is limited upto 127 (7
bits) for VHDL realization. The frequency breakpoints
and magnitude are divided into 101 sections. With the
resolution of 0.01, each of them ranges from 0-1.
Values are scaled up with a factor of 100 which is
represented with 7 bits as VHDL is unable to function
with floating point. To produce corresponding filter
coefficients in real time, the filter specifications are
supplied into filter model. To filter the signal, LCCDE
is employed in time domain. A 256 points FFT
generator is utilized to assist generation of the code to
automate the design. The algorithm flow is illustrated in
Fig. 1 for the filter.
 The complication of multipurpose VHDL coding is
in the filter coefficient calculation part. All codes are
written in one file. Some codes are used again for the
similar operation. The codes arrangements are
illustrated in Fig. 2.
 Process block is the main component for the
architecture in the multipurpose FIR filter model. It
handles the instruction execution flow as well as
external and internal signal porting and filtering
process. Like LCCDE concept used in the specific 15-
order filter, the coefficients in multipurpose filter are
initialized by computation of the filter coefficients
basing on MATLAB’s fir2 function. Figure 3 shows
major part of the architecture.
 In the process_block, the main execution
instruction flow is dependent on enable_in port. The
filter stays in the idle mode when it is “00”,
specifications are sent to the filter when “01”, filter
coefficients are calculated at “10” and input data are fed
for the purpose of filtering at “11”. In the code below,
the IF/Else condition for main process is illustrated.

If (clock = ‘1’ and enable_in = “00” and clock’ event)
then
 (idle mode)
ElsIf (clock = ‘1’ and enable_in = “01” and clock’
event) then
 (Obtain filter specifications)
Elsif(clock = ‘1’ and enable_in = “10” and clock’
event) then
 (computation of filter coefficients)
Elsif(clock = ‘1’ and enable_in = “11” and clock’
event) then
 (Filtering process)
End if;

Fig. 1: The multipurpose filter algorithm flow

Fig. 2: VHDL code arrangement sequence

 Since the filter is supposed to operate in the real
time, a buffer is created for receiving the input data
even though the filtering process has not started. The
size of the buffer is 700 elements of integer type. When
the enable_in is set to “01”, the filter order is pumped
into the filter serially once the clock is triggered from
low to high. The maximum of filter order is set to 127
or 27 orders. After 7 cycles, when 7 bits are gathered by
the buff3, the order is converted into integer as
described in the code below.

Am. J. Applied Sci., 8 (12): 1272-1281, 2011

1275

Fig. 3: The architecture inside the multipurpose FIR

filter model

If counter_in2<=7 then
 buff3 (counter_in2):=order;
 Counter_in2:=counter_in2+1;
Elsif counter_in2=8then
 buff3 (0):=’0’;
 nn:= conv_integer (buff3(0-7));
End if;

 At the same time buff1 and buff2 gathered bits of
the magnitude and frequency breakpoints respectively.
When 7 bits are gathered, the buffer values are
converted to integer and assigned to the array aa and ff.
To avoid the wrong integer value conversion, the Most
Significant Bit (MSB) is set to 0. Hence, altogether first
8 bits are used during the conversion with the value
obtained is always positive. The magnitude and
frequency breakpoints received by the VHDL model is
represented in the code below.

buff1 (counter_in1):=amp;
buff2 (counter_in1):=amp;
Counter_in1:=counter_in1+1;
If counter_in1>=8then
 aa(counter_array): conv_integer (buff1(0 to7));
 ff(counter_array): conv_integer (buff2(0 to7));
 buff1(1 to (700-8):= buff1((9) to700);
 buff2(1 to (700-8):= buff2((9) to700);
 counter_array:=counter_array+1;
 counter_in1:=1;
End if;

 When the enable_in turns “10”, values of the
Hamming windows are computed. Since the cosine
function cannot be synthesized, the cosine function is
replaced with an array of constant values. The
increment from 0-90° is stored in the constant. The
values are up scalded by a factor of 1000 as illustrated
in the code below.

Constant cosine: array91:=
Array91’(1000,1000,999,999,998,996,995,993,990,988,
985,982,978, 974, 970, 966, 961, 956, 951, 946, 940,
934, 927, 921, 914, 906, 899, 891, 883, 875, 866,
857,848, 839, 829, 819,809, 799, 788, 777, 766,755,

743, 731, 719, 707, 695, 682, 669, 656, 643, 629, 616,
602, 588, 574, 559, 545, 530, 515, 500, 485, 469, 454,
438, 423, 407,391, 375, 358, 342, 326, 309, 292, 276,
259, 242, 225, 208, 191, 174, 156, 139, 122, 105, 87,
70, 52, 35, 17, 0);

 The degree involves division of the filter order but
only power two denominator is synthesized. Since,
every fraction is divided by the filter order, the
nominator and denominator are both multiplied by 128,
which is of power of two. Using the Case statement, an
additional nominator is used for different order so every
order is divisible by 128 to emulate the division of filter
order as described below.

hamm3: =intorder;
 For counter in 0-127 loop
 if counter<=hamm3 then
 Case hamm3 is
 When 1=>hamm1:= 360 * counter * 128/128;
 When 2=> hamm1:= 360 * counter * 64/128;
 When 3=> hamm1:= 360 * counter * 43/128;
 When 4=> hamm1:= 360 * counter * 32/128;
 … …
 When 128=>hamm1:= 360 * counter * 1/128;
 When others => NULL;
End case;

 After obtaining the degree, it might vary from 0-
360° but the cosine constant only ranges from 0-90°.
Hence, trigonometry theorem is used so that the cosine
value is obtained for the value of degree more than 90.
The code to obtain the value of the Hamming window
is given below.

hamm2: 1;
If hamm1>360 then
 Hamm1:=360;
End if;
 If (hamm1> 90 and (hamm1<180 or hamm1 =
180)) then
 hamm1:= 180-hamm1;
 hamm2:= -1;
Elsif (hamm1> 180 and (hamm1<270 or hamm1 =
270)) then
 hamm1:= hamm1-180;
 hamm2:= -1;
Elsif (hamm1> 270 and (hamm1<360 or hamm1 =
360)) then
 hamm1:= 360-hamm1;
 End if:
hamming1(counter):=(540000-(460*hamm2*
cosine(hamm1)))/1024

Am. J. Applied Sci., 8 (12): 1272-1281, 2011

1276

 The difference in the frequency breakpoints are
calculated through the codes below. If negative values
are obtained, the enable_error port is set high indicating
the occurrence of an error.

For counter in 0-127 loop
 If counter<= counter_array-2 then
 diff (counter):= ff (counter+1)-ff(counter);
 if diff(counter)<0 then
 enable_error <=’1’;
 End if:
 End if;
End loop;

 Next, the filter’s frequency response is interpolated
to 128 points using same algorithm obtained from fir2
function as described below. The interpolation points
are then assigned to the signals before they are ported to
the FOURIER_TIME_SHIFT component.

Input129 (counter2): = (11*inc *aa(counter 1+1)+11*
 (1000-inc)* aa(counter1))/1024;
Case counter2 is
 When 1=> temp1+0<= input129 (1);
 When 2=> temp1+1<= input129 (2);
 … … …..
 When 127=> temp1+126<= input129 (127);
 When 128=> temp1+127<= input129 (128);
End case;
temp1_128<=input 129 (129);

 In the FOURIER_TIME_SHIFT component,
interpolation points are transformed into complex
points by multiplying with a complex exponential value
similar to the algorithm in fir2 function. Hence, sine
and cosine are constant and are declared the same way
as declaration of the cosine function earlier. Since,
these values are inputted to the fast Fourier transform
operation, they are conjugated first so inverse FFT
operation is emulated through the codes below.

Case counter is
When 0=> temp_0R<=(temp1*IN_0*
cosine(angle))/1024;
 temp_0I<=((-1)*temp2*IN_0
sine(angle))/1024;
When 1=> temp_1R<=(temp1*IN_1*
cosine(angle))/1024;
 : temp_1I<=((-1)*temp2*
IN_1*sine(angle))/1024;
 : temp_255R<=(temp1*IN_1*
cosine(angle))/1024;

 : temp_255I<=(temp2*IN_1*
sine(angle))/1024;
 : ….. … ...
when 127 temp_127R<=(temp1*IN_127*
cosine(angle))/1024;
 temp_127I<=((-1)*temp2*IN_127*
sine(angle))/1024;
 temp_129R<=(temp1*IN_127*
cosine(angle))/1024;
 temp_129I<=(temp2*IN_127*
sine(angle))/1024;
when 128 temp_128R<=(temp1*IN_128*
sine(angle))/1024;
 temp_128I<=((-1)*temp2*IN_128*
cosine(angle))/1024;
 when others=> null;
End case;

 When a sequence of data is inputted to the FFT
computation, the order of the inputs reshuffled first.
Shuffling of input data is performed where the order
has to correspond to the bit-reversed indexing of the
original sequence. Hence, when the complex series is
fed to the 256-point FFT computation, the porting is
done according to the bit-reversed indexing as shown
below:

IN_0R=> temp_0R,
IN_0I=> temp_0I,
IN_1R=> temp_128R,
IN_1I=> temp_128I,
 … …
IN_254R=> temp_127R,
IN_254I=> temp_127I,
IN_255R=> temp_255,
IN_255I=> temp_255I,

 After computing the FFT, the results are
conjugated to obtain the IFFT series. Since the real part
of the results is needed to compute the filter
coefficients, conjugation of the results is redundant.
Then, the real output is multiplied with Hamming
window values to obtain the filter coefficients through
the codes below. The number of coefficients is equal to
the value filter order plus one.

For counter in 0-127 loop
 If counter <=hamm3
 Case counter is
 When 0=> hamming2(0):=temp2_0*
hamming1(0)/262144;
 When 1=>hamming2(1):=temp2_1*
hamming1(1)/262144;

Am. J. Applied Sci., 8 (12): 1272-1281, 2011

1277

 … …
 When 126=> hamming2(126):=temp2_126*
hamming1(126)/262144;
 When 127=> hamming2(127):=temp2_127*
hamming1(127)/262144;
End case;
 End if;
End loop;

 The computation of the filter coefficients take
about 20 cycles. After the 20 cycles, the enable_in is set
to “11”. Then, the inputs that are stored in the buffer are
recalled and the filtering process begins. The concept
filtering is similar to the specific 15-order filter except
that the filter coefficients are variables. The LCCDE
equation used for the filtering purpose through the
codes are given below. After computing the filtered
data, they are sent to the multipurpose FIR filter output
port to be received by other devices.

If (enable_in=”11”) then
 Input1(0):=(arraydata(0)-128);
 Qoutput:=
 ((hamming2(0)) * (input1(0)))/1024+
 ((hamming2(1)) * (input1(1)))/1024+
 ((hamming2(2)) * (input1(2)))/1024+
 … ….
 ((hamming2(125)) * (input1(125)))/1024+
 ((hamming2(126)) * (input1(126)))/1024+
 ((hamming2(127)) * (input1(127)))/1024+
End if;

RESULTS AND DISCUSSION

 To verify the performance and functionality, the
multipurpose FIR filter is simulated utilizing VHDL
testbench. As the stimuli to the VHDL model consists
of a huge data, it is extracted from a text file. For file
manipulation, the std.textio.all library is utilized. As
such, the data is read line by line from the text file.
Then it is fed into the model. The output of the filter is
written in another text file after filtering. Together with
the signal, the location of the output and input files are
declared. Signals from testbench which ported to
VHDL model under the test described by VHDL code
are shown below:

UUT: FIRFilter
 port map
 (order =>order,
 freq=>freq,
 amp=>amp,

 enable_in=>enable_in,
 clock=>clock,
 input=>input,
 output=>output
);

 To find out the VHDL model’s performance, the
output frequency response using MATLAB and VHDL
simulations are analyzed and compared. The
specification of an order 20, 16, 18 and 20 for
Hamming window band stop, high pass, low pass and
band pass filter respectively is inserted in the VHDL
model for generating filter coefficients. Then the
coefficients are further compared with the results
generated from the MATLAB for verification. In
Table 1, the specifications are given.
 The mulitpurpose filter model operating frequency
is 1MHz with a period of 1µ sec. Using an external
clock, the frequency is pumped in the model.
Effectively the square wave duty cycle is 0.5 with a
0.51µ sec period. The output results also operate with
the clock at the same frequency. Changes in both input
and output occur on the waveform during the transition
as only the clock transition from low to high triggers
the filter executions.
 With 1 µ sec period, each bit of input signal is fed
in the model. To get rid of misreading from the
previous bit value, a delay of 0.05 µ sec in the bit
stream is used. As given in Fig. 4, at the beginning of
simulation, the enable_in is pumped with “01”. The
frequency break points and magnitude are fed to the
corresponding ports for the duration of state “01”.
Thereafter the enable_in is changed to state “10”. The
calculation time for the filter coefficients at the state
“10” is approximately 20 cycles as given in Fig. 5.
Hence, the delay is introduced to the enable_in port
before the state “11” is introduced to prompt the start of
filtering process shown in Fig. 6. The coefficients
generated by the multipurpose filter for band stop, high
pass, low pass and band pass in the MATLAB and
VHDL model are shown in Table 2. It is to be noted
that the VHDL coefficients model are scaled up by
1000.
 The scaled up filters’ coefficients can be clearly
viewed from Table 2. These are fairly close to the
coefficients generated by the MATLAB. The computed
values differ slightly for the approximation and
truncation errors. As such, it affects the accuracy of the
filter slightly when these coefficients are utilized.
 The analytical comparison of the filtering is
calculated by examining the signal’s frequency
response of VHDL and MATLAB model which is
given in Fig. 7 and 8.

Am. J. Applied Sci., 8 (12): 1272-1281, 2011

1278

Table 1: The specifications for low pass, high pass, band pass and band stop
 Low pass filter High pass filter Band pass filter Band stop filter
Order of filter 20 18 16 20
Frequency break 0, 0.348, 0.352, 1.0 0, 0.33, 0.34, 1.0 0, 0.44, 0.45, 0, 0.44, 0.45,
Points 0.50, 0.51, 1.0 0.50, 0.51, 1.0
Magnitude of the break points 1, 1, 0, 0 1, 1, 0, 0 0, 0, 1, 1, 0, 0 1, 1, 0, 0, 1, 1
Magnitude of the break points 0, 0, 1, 1

Table 2: Coefficients generated by VHDL and MATLAB
Low pass filter High pass filter Band pass filter Band stop filter
--------------------------------------- -- --------------------------------- -----------------------------
VHDL MATLAB VHDL MATLAB VHDL MATLAB VHDL MATLAB
-3 -0.0030 0 0.0001 6 0.0032 -3 -0.0028
-3 -0.0031 -4 -0.0037 1 0.0005 4 0.0037
0 0.0003 -6 -0.0074 38 0.0209 10 0.0127
15 0.0156 0 -0.0002 -7 -0.0041 -7 -0.0083
52 0.0489 27 0.0252 -26 -0.0223 -33 -0.0381
102 0.0969 39 0.0429 -7 -0.0050 15 0.0200
152 0.1456 2 0.0005 -287 -0.2728 49 0.0541
180 0.1765 -128 -0.1227 15 0.0092 2 0.0028
174 0.1765 -259 -0.2683 538 0.5420 933 0.9395
137 0.1456 662 0.6660 7 0.0092 -4 -0.0049
84 0.0969 -267 -0.2683 -288 -0.2728 49 0.0541
38 0.0489 -124 -0.1227 -6 -0.0050 12 0.0179
10 0.0156 1 0.0005 -26 -0.0223 -33 -0.0381
0 0.0003 40 0.0429 -6 -0.0041 -7 -0.0083
-2 -0.0031 26 0.0252 38 0.0209 10 0.0127
-3 -0.0030 0 -0.0002 1 0.0005 4 0.0037
 -6 -0.0074 6 0.0032 -3 -0.0028
 -4 -0.0037
 0 0.0001

Fig. 4: The simulation waveform of the initialization of VHDL model multipurpose FIR filter

Fig. 5: The simulation waveform of the coefficient computation of VHDL model multipurpose FIR filter

Am. J. Applied Sci., 8 (12): 1272-1281, 2011

1279

Fig. 6: The simulation waveform of the filtering process of VHDL model multipurpose FIR filter

Fig. 7: The frequency response of the VHDL model

filtered signal

Fig. 8: The frequency response of the filtered signal

using MATLAB

Table 3: MSE and SNR Comparison between VHDL model and

MTALAB
Filter method Mean Square Error (MSE) SNR (dB)
Multipurpose VHDL 0.0291 2.8943
model filter
MATLAB 0.0268 3.0162

 The filtered signal’s Signal to Noise Ratio (SNR)
and Mean Square Error (MSE) for the MATLAB model
and the proposed multipurpose filter are compared as
given in Table 3. Although the same filter
specifications and algorithm are used, VHDL model has
lower SNR. This happens for truncation and rounding

errors in VHDL coding. Before arithmetic operations,
all floating points are scaled up as VHDL does not
allow floating point data type. The values are scaled up
by 1000 when the filter coefficients are entered to the
LCCDE. However, all the decimals places are not
represented. The decimal places which exceed range are
rounded to closest integer. Floating points are truncated
during divide operations by division function. As such,
it introduces truncation errors. Moreover,
approximation errors also occur while estimating sine
and cosine. This is the cause of magnitude attenuation
of the filtered signal using VHDL model.

CONCLUSION

 By simulating and comparing with multipurpose
FIR filter MATLAB algorithm, the proposed approach
of multipurpose FIR filter design using VHDL is
effectively designed, realized and tested. There is
significant magnitude attenuation of the filtered signal
using VHDL model, which is due to scaled up the
floating point. However, with the capability of filtering
signal in real time mode utilizing arbitrary filter shape,
the multipurpose filter proves to be versatile. For
compensating filter flexibility, the accuracy of filtering
is sacrificed.

REFERENCES

Akter, M., M.B.I. Reaz, F. Mohd-Yasin and F. Choong,

2008. Hardware implementations of an image
compressor for mobile communications. J.
Commun. Technol. Elect., 53: 899-910. DOI:
10.1134/S106422690808007X

Choong, F., M.B.I. Reaz and F. Mohd-Yasin, 2005.
Power quality disturbance detection using artificial
intelligence: A hardware approach. Proceedings of
the 19th IEEE International Parallel and
Distributed Processing Symposium, Apr. 4-8, IEEE
Xplore Press, Denver, USA., pp: 146a-146a. DOI:
10.1109/IPDPS.2005.348

Am. J. Applied Sci., 8 (12): 1272-1281, 2011

1280

Choong, F., M.B.I. Reaz, T.C. Chin and F. Mohd-
Yasin, 2006. Design and implementation of a data
compression scheme: A partial matching approach.
Proceedings of the International Conference on
Computer Graphics, Imaging and Visualisation,
Jul. 26-28, IEEE Xplore Press, Sydney, Australia,
pp: 150-155. DOI: 10.1109/CGIV.2006.94

Coussy, P., D.D. Gajski, M. Meredith and A. Takach,
2009. An introduction to high-level synthesis.
IEEE Design Test Comput., 26: 8-17. DOI:
10.1109/MDT.2009.69

Dey, S.R. and A.V. Oppenheim, 2008. Coefficient
dither in fixed-point FIR digital filters. Proceedings
of 42nd Asilomar Conference on Signals, Systems
and Computers, Oct. 26-29, IEEE Xplore Press,
Pacific Grove, CA, USA., pp: 556-560. DOI:
10.1109/ACSSC.2008.5074467

ElGizawy, M., A. Noureldin, J. Georgy, U. Iqbal and N.
El-Sheimy, 2010. Wellbore surveying while
drilling based on kalman filtering. Am. J. Eng.
Applied Sci., 3: 240-259. DOI:
10.3844/ajeassp.2010.240.259.

Evans, J.B., 1993. An efficient FIR filter architecture.
Proceedings of the IEEE International Symposium
Circuits and Systems, May 3-6, IEEE Xplore Press,
Chicago, IL, USA., pp: 627-630. DOI:
10.1109/ISCAS.1993.393799

Ibrahimy, M.I., M.B.I. Reaz, M.A.M. Ali and T.H.
Khoon et al., 2006. Hardware Realization of an
Efficient Fetal QRS Complex Detection Algorithm.
WSEAS Trans. Circuits Syst., 5: 575-581.

Iskandarani, M.Z., 2010. A novel approach to signal
detection of sensor array units using 5-3-1 rule
based matched filter algorithm with intelligent
identifiers. Am. J. Eng. Applied Sci., 3: 427-432.
DOI: 10.3844/ajeassp.2010.427.432

Khoo, K.Y., A. Kwentus and A.N.J. Willson, 1993. An
efficient 175 MHz programmable FIR digital filter.
Proceedings of the IEEE International Symposium
Circuits and Systems, May 3-6, IEEE Xplore Press,
Chicago, IL, USA., pp: 72-75. DOI:
10.1109/ISCAS.1993.393660

Kumar, S.T., A. Panda, S.K. Baghmar, S.K. Agrawal
and T. Usha, 2010. FIR filter implementation on A
FPGA allowing signed and fraction coefficients
with coefficients obtained using remez exchange
algorithm. Int. J. Adv. Technol., 1: 203-210.

Laskowski, J. and H. Samueli, 1992. A 150-Mhz 43-tap
half-band FIR digital filter in 1.2 µ CMOS
generated by compiler. Proceedings of the IEEE
1992 on Custom Integrated Circuits Conference,
May 3-6, IEEE Xplore Press, pp: 11.4.1-11.4.4.
DOI: 10.1109/CICC.1992.591284

Lim, Y.C. and B. Liu, 1988. Design of cascade form
FIR filters with discrete valued coefficients. IEEE
Trans. Acoustics, Speech Signal Process., 36:
1735-1739. DOI: 10.1109/29.9010

Ma, G.K. and F.J. Taylor, 1990. Multiplier policies for
digital signal processing. IEEE ASSP Mag., 7: 6-
20. DOI: 10.1109/53.45968

Marufuzzaman, M., M.B.I. Reaz, M.S. Rahman,
M.A.M. Ali, 2010. Hardware prototyping of an
intelligent current dq PI controller for FOC PMSM
drive. Proceedings of the 6th International
Conference on Electrical and Computer
Engineering, Dec. 18-20, IEEE Xplore Press,
Dhaka, Bangladesh, pp: 86-88. DOI:
10.1109/ICELCE.2010.5700559

Mogaki, S., M. Kamada, T. Yonekura, S. Okamoto and
Y. Ohtaki et al., 2007. Time-stamp service makes
real-time gaming cheat-free. Proceedings of the 6th
ACM SIGCOMM Workshop on Network and
System Support for Games, Sep. 19-20, New York,
USA., pp: 135-138. DOI: 10.1145/1326257.1326281

Oppenhaim, A.V. and R.W. Schafer, 1975. Digital
Signal Processing. 1st Edn., Prentice Hall,
Englewood Cliffs, ISBN: 9780132146357, pp: 585.

Pang, W.L., M.B.I. Reaz, M.I. Ibrahimy, L.C. Low and
F. Mohd-Yasin et al., 2006. Handwritten character
recognition using fuzzy wavelet: A VHDL
approach. WSEAS Trans. Syst., 5: 1641-1647.

Parks, T.W. and J.H. McClellan, 1972. Chebyshev
approximation for nonrecursive digital filters with
linear phase. IEEE Trans. Circ. Theory, 19: 189-
194. DOI: 10.1109/TCT.1972.1083419

Reaz, M.B.I., F. Choong and F. Mohd-Yasin, 2006.
VHDL modeling for classification of power quality
disturbance employing wavelet transform, artificial
neural network and fuzzy logic. Simulation Trans.
Soc. Model. Simulation Int., 82: 867-881. DOI:
10.1177/0037549707077782

Reaz, M.B.I., F. Choong, M.S. Sulaiman and F. Mohd-
Yasin, 2007b. Prototyping of wavelet transform,
artificial neural network and fuzzy logic for power
quality disturbance classifier. J. Electric Power
Components Syst., 35: 1-17. DOI:
10.1080/15325000600815431

Reaz, M.B.I., F. Mohd-Yasin, M.S. Sulaiman, K.T. Tho
and K.H. Yeow, 2004b. Hardware prototyping of
boolean function classification schemes for lossless
data compression. Proceedings of the 2nd IEEE
International Conference on Computational
Cybernetics, Aug. 30-Sep. 01, IEEE Xplore Press,
Vienna, Austria, pp: 47-51. DOI:
10.1109/ICCCYB.2004.1437664

Am. J. Applied Sci., 8 (12): 1272-1281, 2011

1281

Reaz, M.B.I., F. Mohd-Yasin, S.L. Tan, H.Y. Tan and
M.I. Ibrahimy, 2005b. Partial encryption of
compressed images employing FPGA. Proceedings
of the IEEE International Symposium on Circuits
and Systems, May 23-26, IEEE Xplore Press,
Kobe, Japan, pp: 2385-2388. DOI:
10.1109/ISCAS.2005.1465105

Reaz, M.B.I., M.I. Ibrahimy, F. Mohd-Yasin, C.S. Wei
and M. Kamada, 2007a. Single core hardware
module to implement encryption in TECB mode.
Inform. MIDEM J. Microelect., Elect. Components
Mater., 37: 165-171.

Reaz, M.B.I., M.S. Sulaiman, F.M. Yasin, and T.A
Leng, 2004a. IRIS recognition using neural
network based on VHDL prototyping. Proceedings
of the 2004 International Conference on
Information and Communication Technologies:
From Theory to Applications, Apr. 19-23, IEEE
Xplore Press, Damascus, Syria, pp: 463-464. DOI:
10.1109/ICTTA.2004.1307832

Verma, S., K. Ramineni and I.G. Ian, 2009. A control-
oriented coverage metric and its evaluation for
hardware designs. J. Comput. Sci., 5: 302-310.
DOI: 10.3844/jcssp.2009.302.310

