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Abstract: Problem statement: The aim of this study is to use the bond graph technique and the wave-
scattering formalism, jointly, to determine the scattering matrix of a high frequency filter with cut-off 
frequency 10 GHz. Approach: The first step consist to model the high frequency filter by bond graph 
approach, afterward, we decomposed the obtained causal bond graph model under an elementary 
structures of a cascaded sub-model, where, each one containing only 0-junction (parallel admittance) 
and 1-junction (series impedance). The causal ways and algebraic loops present in each causal bond 
graph sub-model, allows us to derive the elementary wave matrix W(i) of each sub-model. Results: The 
total or global wave matrix W(T) of the high frequency filter is given by the product of all elementary 
wave matrixes W(i). Conclusion: The scattering matrix S of the studied filter can be inferred by use of 
the founded wave matrix W(T) which relates the incident and reflected waves at one port directly to the 
incident and reflected waves at the adjacent port and the relations linking the S coefficients to the W 
coefficients. Finally, the scattering parameters, founded from the wave matrix, will be checked by 
comparison of the simulation results. 
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INTRODUCTION 

 
 The wave-scattering formalism (Paynter and 
Busch-Vishniac, 1988) has received great attention in 
microwave domain (Vendelin et al., 2005) and its 
application to low or high frequency circuits. The use of 
this scattering formalism, which intrinsically deals with 
causal relations and can explicitly include conservation 
laws, was advocated by Paynter (1992) as an alternative 
method for physical systems modeling. The major 
advantage of the wave-scattering approach is that 
unlike the conventional circuit approach, it affords a 
uniform treatment of dynamic elements and their 
interconnections, whatever their structure is. 
 Moreover, bond graph (Di Filippo et al., 2002) 
appears now as a powerful tool for modeling and 
analysis of dynamical system, traditionally used to 
describe continuous-time physical processes with a 
fixed structure (Cellier, 1995).  
 The propose of this study is to present and apply a 
new method to derive the scattering parameters of a 
high frequency filter from its causal and reduced bond 
graph model (Taghouti and Mami, 2009). 

 We propose to use the causal bond graph model of 
a high frequency filter based on localized elements 
(Trabelsi et al., 2003) to find the integro-differentials 
operators (Khachatryan and Khachatryan, 2008) which 
based on the causal ways and algebraic loops present in 
the causal bond graph model and, on the other side, to 
extract the wave matrix (Magnusson et al., 2001) from 
these operators. Then, we extract directly the scattering 
parameters (Newton, 2002) from the found wave matrix 
(Magnusson et al., 2001) by basing on the relations 
linking the S coefficients to the W coefficients. 
 Finally, at the aim to validate the found results; we 
make a comparison by the simulation of these scattering 
parameters under a simple program and under the 
classic techniques of conception and simulation of the 
microwave circuits by using the HP-ADS software 
(Vendelin et al., 2005). 
 

Presentation of the new derivation method: The 
new derivation method of the scattering parameters 
(Paynter, 1992) is an analytical method which makes 
it possible to establish, for any linear complex system, 
the scattering relations between a fixed entry and exit. 
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Fig. 1: Physical system representation 
 

 
 
Fig. 2: Quadrupled decomposition and wave scattering 

representation 
 
 However, this method implies the succession of 
the following stages:  
 
• Decomposition of the causal bond graph model to 

sub-models put in cascades, containing each one 
only   0-junction   and   1-junction   and   which are 

 characterized by their respective wave matrix 
(Magnusson et al., 2001) 

• Calculating the total wave matrix of the whole 
system by carrying out the product of the 
elementary wave matrixes  

• Finally, the application of a linear transformation 
to this total matrix give us the scattering 
parameters (scattering matrix) (Paynter, 1992) 
characterizing the complex system 

 
 The step that we propose was thought in this 
objective and consists in establishing a systematic 
method which binds the bond graph technique (Di 
Filippo et al., 2002) to the wave-scattering formalism 
(Paynter and Busch-Vishniac, 1988).  
 This method is based on an algebro-graphic 
procedure (Maher and Scavarda, 1991) which uses the 
causal ways notions and the Mason’s rule applied to a 
causal bond graph transformed and reduced (Taghouti 
and Mami, 2009). 
 
Physical system modeling with wave-scattering 
variables: We note that any physical complex system 
can be model like three subsystems (source, Quadripole 
(Q) and load) inter-connected and communicate 
between them by the means of a power transfer which 
is done in a continuous way from the source to the load 
as Fig. 1 indicates it. 
 It is considered that the quadripole is in complex 
form and can be decomposed to subsystems which are 

connected by the intermediary of the wave-scattering 
variables (Paynter and Busch-Vishniac, 1988) as Fig. 2 
indicates it. 
 Let us consider the two processes A and B with 
share where the signal entering B is directed in the 
same direction as the outgoing signal of process A, a 
similar way, the outgoing signal of B is in the same 
direction as the signal entering A as Fig. 2 indicates it.  
 If these two processes are coupled, the assumption 
of the power continuity (Paynter and Busch-Vishniac, 
1988) will imply: 
 

2A 1Ba b=  (1) 
 

2A 1Bb a=  (2) 
 
 The aiA and aiB quantities entering the A and B 
processes are called incident waves in the same way, 
the quantities biA and biB associated with the signals 
leaving the A and B processes are called reflected 
waves (Duclos and Clement, 2003). 
 Classically, we express the power circulating in a 
bond and connecting two systems in the shape of a 
product of the two variables effort (noted:ε) and flow 
(noted : ϕ) in reduced form (Maher and Scavarda, 1991). 
 

2

i i
i i

a bP ,
2 2

⎛ ⎞ ⎛ ⎞
= − = ε ϕ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 (3)   

 
i i i i

i i
a b a b ,

2 2
⎛ ⎞⎛ ⎞+ +

= ε ϕ⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

 (4) 

 
 So we can introduce the following linear 
transformation: 
 

  i i i

i i i

1 1 a a1 H
1 1 b b2

⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎡ ⎤ε
= =⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥−ϕ ⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 (5) 

 
 The linear opposite transformation of the H 
transformation allows the passage of the intrinsic 
variables effort and flows (ε,ϕ) with the wave variables 
(ai, bi) as the following relation indicates it: 
 

i i i

i i i

1 1a 1 H
1 1b 2

⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎡ ⎤ ε ε
= =⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥− ϕ ϕ⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 (6) 

 
 The processes A and B constitute two processes 
with 2-ports of entry and exit whose wave matrixes are:  
 

A A A A
1 11 12 2
A A A A
1 12 22 2

b w w a
a w w b
⎡ ⎤ ⎡ ⎤ ⎡ ⎤

=⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 (7) 
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B B B B
1 11 12 2
B B B B
1 12 22 2

b w w a
a w w b
⎡ ⎤ ⎡ ⎤ ⎡ ⎤

=⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 (8) 

 
 The chain of n processes with 2-ports of entry and 
exit constitutes a process with 2-ports of entry and exit 
where the global wave matrix W is:   
 

N(A) (B) (N) (i)
i 1

W W * W *.... ....* W W
=

= =∏  (9) 
 

1 11 12 2 2

1 12 22 21 2

b w w a a
[W]

a w w b b
⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 (10) 

 
 The scattering parameters are given by the 
following scattering matrix: 
 

1 11 12 1 2

2 21 22 2 2

b S S a a
[S]

b S S b a
⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 (11) 

 
 The relations between these matrixes are given by 
these following equations: 
 

  

1
11 21 22

1
12 21

1
21 12 11 22 21

1
22 11 21

w S *S

W S

W S S *S *S

W S *S

−

−

−

−

⎧ = −
⎪

=⎪
⎨

= −⎪
⎪ =⎩

 (12) 

 
And: 
 

  

1
11 22 12

1
21 22

1
12 11 21 12 22

1
22 21 22

S W * W

S W

S W W * W * W

S W * W

−

−

−

−

⎧ = −
⎪

=⎪
⎨

= −⎪
⎪ =⎩

 (13) 

 
Wave-scattering variables and bond graph modeling 
of physical system: It is considered that the process, in 
its quadruple form and which inserted between two 
particular ports P1 and P2 which represent respectively 
the entry (source) and the exit (load) of the complex 
system can be represented by the following bond graph 
model transformed and reduced such us: 
 
ε1 and ε2 = respectively the reduced variable (effort) 

at the entry and the exit of the system. 
ϕ1 and ϕ2 = respectively the reduced variable (flow) at 

the entry and the exit of the system: 
 

i

0

effert
R

ε =  (14) 

 
 

Fig. 3: The reduced bond graph representation 
 

 
 
Fig. 4: Reduced bond graph model with flow-effort 

causality 
 
      i 0flow * Rϕ =  (15) 
 
 These are the reduced effort (e) and flow (f) with 
respect to R0 (scaling resistance). 
 And to establish the output-input analytical 
relations, the bond graph model of the studied system 
must be transformed, reduced and especially be causal 
since these relations rest on the concepts of causal way 
and causal algebraic loops which can comprise the 
reduced bond graph model.  
 The causality assignment to the reduced bond 
graph model of Fig. 3 enables us to notice that they are 
four different cases of causality assignment in input-
output of the process (Maher and Scavarda, 1991). 
 For each type of reduced and causal bond graph 
model given below, we will have one matrix which 
connects the reduced wave-scattering variables to the 
integro-differentials operators Hij. 
 From each matrix, we can deduce the corresponding 
wave matrix by referring to the Eq. 5, 6 and 10. 
 These wave matrices can give us the corresponding 
scattering parameters by referring to the Eq. 13 and the 
following equations:  
 

1 1

1 1

1 1 a1
1 1 b2

⎡ ⎤ ⎡ ⎤⎡ ⎤ε
=⎢ ⎥ ⎢ ⎥⎢ ⎥−ϕ ⎣ ⎦⎣ ⎦ ⎣ ⎦

 (16) 

 
2 2

2 2

1 1 a1
1 1 b2

⎡ ⎤ ⎡ ⎤⎡ ⎤ε
=⎢ ⎥ ⎢ ⎥⎢ ⎥−−ϕ ⎣ ⎦⎣ ⎦ ⎣ ⎦

 (17) 

 
Case 1: (Flow-effort causality): From Fig. 4 and by 
referring to Eq. 13, 16 and 17, we can deduce the 
following integro-differential operators and the 
corresponding wave matrix:  
 

1 11 12 1

2 21 22 2

H H
H H

⎛ ⎞ ⎛ ⎞⎛ ⎞ε ϕ
=⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ϕ ε⎝ ⎠ ⎝ ⎠⎝ ⎠

                                              (18) 
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Fig. 5: Reduced bond graph model with effort-flow 
causality 

 

 
 
Fig. 6: Reduced bond graph model with flow-flow 

causality 
 

      

11 22 11 22

21 21

11 22 11 22

21 21

1 H H H 1 H H H
2H 2H

W
1 H H H 1 H H H

2H 2H

⎡ ⎤− + − Δ − − + − Δ
⎢ ⎥
⎢ ⎥= ⎢ ⎥− − + − Δ − + − Δ⎢ ⎥
⎢ ⎥⎣ ⎦

 (19) 

 
               11 22 12 21H H H H HΔ = + −  (20) 
 
Case 2: (Effort-flow causality): From Fig. 5 and by 
referring to Eq. 13, 16 and 17, we can deduce the 
following integro-differential operators and the 
corresponding wave matrix:  
 

1 11 12 1

2 21 22 2

H H
H H

⎛ ⎞ ⎛ ⎞⎛ ⎞ϕ ε
=⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ε ϕ⎝ ⎠ ⎝ ⎠⎝ ⎠

 (21)  

 

      

11 22 11 22

21 21

11 22 11 22

21 21

1 H H H 1 H H H
2H 2H

W
1 H H H 1 H H H

2H 2H

⎡ ⎤− + − Δ − − + Δ
⎢ ⎥
⎢ ⎥= ⎢ ⎥− + + − Δ + − − Δ⎢ ⎥
⎢ ⎥⎣ ⎦

 (22) 

 
Case 3: (Flow-flow causality): From Fig. 6 and by 
referring to Eq. 13, 16 and 17, we can deduce the 
following integro-differential operators and the 
corresponding wave matrix:  
 

1 11 12 1

2 21 22 2

H H
H H

⎛ ⎞ ⎛ ⎞⎛ ⎞ε ϕ
=⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ε ϕ⎝ ⎠ ⎝ ⎠⎝ ⎠

 (23) 

 
11 22 11 22

21 21

11 22 11 22

21 21

1 H H H 1 H H H
2H 2H

W
1 H H H 1 H H H

2H 2H

⎡ ⎤− + − + Δ − + + − Δ
⎢ ⎥
⎢ ⎥= ⎢ ⎥+ + + Δ + − − Δ⎢ ⎥
⎢ ⎥⎣ ⎦

 (24) 

 
 
Fig. 7: Reduced bond graph model with effort-effort 

causality 
 
Case 4: (Effort-effort causality): From Fig. 7 and by 
referring to Eq. 13, 16 and 17, we can deduce the 
following integro-differential operators and the 
corresponding wave matrix:  
 

1 11 12 1

2 21 22 2

H H
H H

⎛ ⎞ ⎛ ⎞⎛ ⎞ϕ ε
=⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ϕ ε⎝ ⎠ ⎝ ⎠⎝ ⎠

 (25)  

 

      

11 22 11 22

21 21

11 22 11 22

21 21

1 H H H 1 H H H
2H 2H

W
1 H H H 1 H H H

2H 2H

⎡ ⎤− + − + Δ − − + Δ
⎢ ⎥
⎢ ⎥= ⎢ ⎥− − − − Δ + − − Δ⎢ ⎥
⎢ ⎥⎣ ⎦

 (26) 

 
 Now, if we like to find the scattering matrix we 
need to use the Eq. 13. 
 We note that Hij are the integro-differentials 
operators which are based, in their determination, on the 
causal ways and algebraic loops present in the associated 
bond graph model (Maher and Scavarda, 1991). 
 

N k k
ij k 1

GH
=

Δ
=

Δ∑  (27) 

 
m

i i j i j k1 L L L L L L ... ( 1) ... ...Δ = − + − + + − +∑ ∑ ∑ ∑  (28) 
 
Where: 
Δ = the determinant of the causal bond graph 
Hij = Complete gain between Pj and Pi 
Pi = Input port 
Pj = Output port 
N = Total number of forward paths between Pi 

and Pj 
Gk = Gain of the kth forward path between Pi and 

Pj 
L = Loop gain of each causal algebraic loop in 

the bond graph model 
LiLj = Product of the loop gains of any two non-

touching loops (no common causal bond) 
LiLjLk = product of the loop gains of any three 

pairwise nontouching loops 
Δk = The cofactor value of Δ for the kth forward 

path, with the loops touching the kth forward 
path removed; i.e., Remove those parts of 
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the causal bond graph which form the loop, 
while retaining the parts needed for the 
forward path 

 
MATERIALS AND METHODS 

 
Application to high frequency filter: In this 
paragraph, we will try to apply the new derivation or 
extraction method described previously to a high 
frequency filter with cut-off frequency 10 GHz, based 
on localized elements and connected between two ports 
noted Term1 and Term2 like Fig. 8 indicates it.  
 The causal bond graph model of this studied filter 
is given in Fig. 9. 
 
 Derivation of the scattering parameters from its 
bond graph model: To extract the scattering 
parameters from the bond graph representation and by 
using   the new method   this is described   previously; 
we must transform the bond graph model into a causal 
bond graph model often named reduced bond graph 
model (Taghouti and Mami, 2009; Maher and 
Scavarda, 1991) only containing the decomposition 
junction (1-jonction or 0-jonction) and the reduced 
variables with respect to a scaling resistance R0 
(internal source resistance). 
 We noted that: 
  
• zi: The reduced equivalent impedance of the i 

element put in series 
• yi: The reduced equivalent admittance of the i 

element put in parallel  
 
So we have: 
 

1 L1z * P= τ  (29) 
 

2 L2z * P= τ  (30) 
 

1 c1y * P= τ  (31) 
 

2 c2y * P= τ  (32) 
 
p: The Laplace operator. 
 
With:  
 
 ci 0 iR * Cτ =  (33) 
 

i
Li

0

L
R

τ =  (34) 

 
 
Fig. 8: High frequency filter representation and its ends 

term1 and term2 
 

 
 
Fig. 9: Causal bond graph representation 

 

 
 (a) 
 

 
 (b) 
 
Fig. 10: (a): The reduced and transformed bond graph 

model (b): The tow bond graph sub-model 
 
 The tow sub-models given by Fig. 10a and 11b are 
in conformity with case 1 described previously. So we 
have the integro-differentials operators by taking 
account to the previously equations: 
 

1
1 1

1L
z y
−

=  = Loop gain of the algebraic loop given 

by the first sub-model 
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2
2 2

1L
z y
−

=  = Loop gain of the algebraic loop given 

by the second sub-model 

1 1

11
z y

Δ = +  = Determinant of causal bond graph of the 

first sub-model 

2 2

11
z y

Δ = +  = Determinant of causal bond graph of 

the second sub-model 
 

1
11

1 1

12
1 1

21
1 1

1
22

1 1

1 1

zH
z y 1

1H
z y 1

1H
z y 1

yH
z y 1

1H
z y 1

⎧
=⎪

+⎪
⎪
⎪ =

+⎪
⎪⎪ =⎨

+⎪
⎪ −⎪ =

+⎪
⎪ −⎪Δ =
⎪ +⎩

   

 
 The all integro-differentials operators of the first 
sub-model: 
 

2
11

2 2

12
2 2

21
2 2

2
22

2 2

2 2

zH
z y 1

1H
z y 1

1H
z y 1

yH
z y 1

1H
z y 1

⎧
=⎪

+⎪
⎪
⎪ =

+⎪
⎪⎪ =⎨

+⎪
⎪ −⎪ =

+⎪
⎪ −⎪Δ =
⎪ +⎩

  

 
 The all integro-differentials operators the second 
sub-model. 
 From these operators, we can deduce directly the 
wave matrix of the first and second sub-model by 
taking account to equations of case 1: 
 

(1) 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

z y z y 2 z y z y1W
2 z y z y z y z y
⎡ ⎤− − + − + +

= ⎢ ⎥
− − + + +⎣ ⎦

 

 
(2) 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2

z y z y 2 z y z y1W
2 z y z y z y z y
⎡ ⎤− − + − + +

= ⎢ ⎥
− − + + +⎣ ⎦

 

 
 The total wave matrix is given by the product of 
the first and the second wave matrix such us: 

            (T) (1) (2) 11 12

21 22

W W
W W * W

W W
⎡ ⎤

= = ⎢ ⎥
⎣ ⎦

 (35) 

 
 So the corresponding scattering matrix is given 
below: 
 

1 1
(T) 22 12 11 21 12 22

1 1
22 21 22

W * W W W * W * W
S

W W * W

− −

− −

⎡ ⎤−
= ⎢ ⎥

−⎣ ⎦
 (36) 

 
 From this matrix we can deduce these following 
scattering parameters: 
 

1 2 1 2 1 2 1 2 1 1 2

2 1 2 1 2
11

z z y y z y (y z ) z (y y 1)

z (y y 1) y yS
d(p)

+ − + − − +

+ − + +  (37) 

 

12 21
2S S

d(p)
= =  (38) 

 
1 2 1 2 1 2 1 2 1 2 1

2 1 2 1 2
22

z z y y z y (y z ) z (y y 1)

z (y y 1) y yS
d(p)

− + − + − −

− + − + +   (39) 

 
1 2 1 2 1 2 1 2 2 1 1 2

1 2 1 2

d(p) z z y y z y (y z ) (y y )(z z )

(z z ) (y y ) 2

= + + + + +

+ + + + +
 (40) 

 
RESULTS 

 
 Thus, the validation is carried out by simulate the 
scattering parameters of equation 37, 38 and 39. 
 A simple programming of the following scattering 
parameters equations, give the Fig. 11-14 which 
represent respectively the reflexion and transmission 
coefficients of the studied filter. 
 

4 3
C1 C2 L1 L2 L1 C2 C1 L2

2
C1 L2 L1 C2 L2 L1

C1 C2 L1 L2
11 4 3

C1 C2 L1 L2 L1 C2 C1 L2

2
C1 C2 L1 L2

C1 C2 L1 L2

p ( )p

[ ( ) ( )]p

( )pS
p ( )p

( )( )p

( )p 2

τ τ τ τ + τ τ τ − τ +

τ τ + τ + τ τ − τ

+ τ + τ − τ − τ
=
τ τ τ τ + τ τ τ + τ +

τ + τ τ + τ +

τ + τ + τ + τ +

 (41)  

 
4 3

C1 C2 L1 L2 C2 L1 C2 C1 L2

2
C2 L1 L2 C1 L1 L2

C1 C2 L1 L2
22 4 3

C1 C2 L1 L2 L1 C2 C1 L2

2
C1 C2 L1 L2

C1 C2 L1 L2

P ( )p

[ ( ) ( )]p

( )pS
p ( )p

( )( )p

( )p 2

−τ τ τ τ τ + τ τ τ − τ +

τ τ + τ − τ τ + τ +

τ + τ − τ − τ
=

τ τ τ τ + τ τ τ + τ +

τ + τ τ + τ +

τ + τ + τ + τ +

 (42) 
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Fig. 11: Reflexion coefficient S11 seen at entry 
 

 
 
Fig. 12: Transmission coefficient S12 seen from exit to 

entry 
 

 
 
Fig. 13: Transmission coefficient S21 seen from entry 

to exit 
 

21 4 3
C1 C2 L1 L2 L1 C2 C1 L2 C1 C2

2
L1 L2 C1 C2 L1 L2

2S
p ( )p ( )

( )p ( )p 2

=
τ τ τ τ + τ τ τ + τ + τ + τ

τ + τ + τ + τ + τ + τ +

 (43) 

 
 
Fig. 14: Reflexion coefficient S22 seen at exit 
 

 
 
Fig. 15: The high frequency filter under HP-ADS 

software 
 

21 4 3
C1 C2 L1 L2 L1 C2 C1 L2 C1 C2

2
L1 L2 C1 C2 L1 L2

2S
p ( )p ( )

( )p ( )p 2

=
τ τ τ τ + τ τ τ + τ + τ + τ

τ + τ + τ + τ + τ + τ +

 (44) 

 
 We notice that the reflex ions coefficients S11 and 
S22 are equal in module. This result is also checked by 
the figures below: 
 
                               11 22| S | | S |=  (45) 
 
To validate and checked the found results, by 
simulation, it is enough to simulate the high frequency 
filter of the Fig. 15 to find the representative curves of 
the reflexion and transmission coefficients 
respectively Sii and Sij under HP-ADS software 
(Advanced  Design  System) Dirk Jansen et al. (2003) 
often used in microwave and it is regarded as a 
traditional method in the line’s theory (Magnusson et al., 
2001). 
 The Fig. 15 thus represents the system’s model 
studied with adapted entry and exit and the numerical 
values of its elements necessary for simulation. 
  The simulation of the high frequency filter above 
gives the graphical representation of the reflexion and 
transmission coefficients Sii and Sij (i ≠ j and i, j = 1...2) 
according to the frequency like Fig. 16 indicates it. 
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 (a) 
 

 
 (b) 
 

 
 (c) 
 

 
 (d) 
 
Fig. 16: Simulation results of the high frequency filter 
 

DISCUSSION 
 
 The purpose of these simulations is to validate this 
new extraction method of scattering parameters from a 
causal bond graph model of a filter often functioning in 
high frequency and contrary to the work carried out by 
Kamel et al. (1993) and Kamel and Dauphin-Tanguy 
(1996) where the causality concept was ignored and which 
represents a significant property in the formalism with 
network type and in particular the bond graph formalism. 
 All simulation given by Fig. 11-14 were carried out 
in the maple software they give us the curves of the 
reflexion coefficients (S11 and S22) and transmission 
coefficients (S12 and S21). These curves give us 

information about the cut-off frequency and the type of 
the studied filter which is a low-pass filter with cut-off 
frequency 10 GHz. 
 The second type of simulation which given by the 
Fig. 16 was carried out in the HP-ADS software to 
validate the simulation results given by the new 
extraction method.  
 The direct simulation of the studied filter under the 
HP-ADS software and the simulation by the new 
analytical method show that the tow representations are 
equivalent.  
     

CONCLUSION 
 
 In this study, we showed how we can extract the 
scattering parameters (scattering matrix S) of any 
physical system by a jointly use of the scattering 
formalism and the bond graph technique and by taking 
account to the causality concept. 
 Indeed, by adopting the reticulation assumption 
which allows the phenomena separation and the 
orthogonality property of the scattering matrix S 
associated to a physical system, we showed the 
existence of an ideal structure junction of Kirchhoff 
which includes a junction with common effort and flow 
known as a decomposition junction (0-junction or 1-
junction: according to the studied system type). 
 We showed how to characterize the interaction 
between several systems by using the bond graph 
concepts such as the generalized variables effort, flow, 
impedance and admittance in order to give a physical 
interpretation of the various concepts introduced by the 
scattering formalism. 
 The new developed method and applied to a filter 
functioning in high frequency makes it possible, on the 
one hand, to obtain a scattering representation of 
complex systems and on the other hand to confirm that 
the scattering formalism has the same properties as the 
bond graph formalism and thus belonged to the 
formalism’s  class of network type.  
 In a future study, we’ll use this new method which 
combines at the same time the bond graph technical and 
the scattering formalism for modeling and simulation of 
the scattering matrix of any physical system functioning 
in high or low frequency by building a special form of 
bond graph model often named “scattering bond graph 
model” which enable us to capture the power transfers 
in a simple and direct manner at the same time and it 
proposes us a temporal approach of the phenomena 
usually modeled with the frequencies tools. 
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