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Abstract:  Problem statement: The temperature variation in heterogeneous three layered biological 
tissues was investigated. Approach: The blood perfusion was considered to be temperature 
dependent. The heating modalities were taking to go on simultaneously in each of the regions on the 
one hand and also sequentially in another arrangement. The asymptotic series solution was modified 
for the three layers and the matching were done at the interface of the regions where there is electric 
field effect and where there is none. Results: The result revealed there was a clear difference from 
the temperature pattern when the heating modality was done simultaneously compared to when done 
sequentially. The thickness of the tissues layer has effect on temperature pattern. Conclusion: A lot 
of attention must be taken to determine tissue thermophysical properties before therapy was applied. 
The regional body heating was preferred to spare surrounding normal tissue as against the whole 
body heating procedure. 
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INTRODUCTION 

 
 Hyperthermia has been found to be one of effective 
therapeutic means of destroying cancerous cells. It’s an 
act of heating the tissue volume to a desired 
temperature range for a certain period of time. To attain 
this feat which is tricky since not all tissues in the body 
respond the same way to heat; various researches have 
been undertaken. Penne’s in 1948 published his seminar 
study on developing a quantitative basis for describing 
thermal interaction between perfused blood and tissue. 
He did a lot of experiments to measure temperature 
distribution as a function of radial position in the 
forearm of nine human subjects. His data showed a 
temperature differential to three or four degrees 
between the Skin and the interior arm, which he 
attributed to the effects of metabolic heat generation 
and transfer through perfused blood. He then proposed 
a model describing the effects of both metabolism and 
blood perfusion on the energy balance within the tissue. 
El-Dabe et al. (2003) working much later after Penne’s 
and other authors introduced the effect of 
electromagnetic effect of Microwaves into their model. 
They used numerical technique to solve their governing 
equations. Adebile et al. (2006) did an investigation 
into the uniqueness and existence of self similar 
solution for the coupled Maxwell’s and Penne’s Bio 
heat equations. The criterion for uniqueness and 

existence of self similar solution was established. Many 
other studies undertaken by  Adebile and Akintewe 
(2006) and Adebile et al. (2008), has revealed the need 
for a great care in hyperthemic therapy in an attempt to 
protect surrounding living tissues for different Bio- 
Thermophysical properties of biological tissues.  
Hwang and Lemonier (1995) studied on coupling 
numerical solutions of bio heat transfer and Maxwell’s 
equations during hyperthermia. They predicted thermal 
processes within the tissue using steady state bio heat 
equations which they solved by the finite element 
method using C-continuity and three nodded 
isoparametirc elements. This solution was validated by 
comparing with an analytical solution of a simplified 
case. They were able to present physically reasonable 
temperature distribution within the tissue and highlight 
the advantage of tumors with low perfusion rates during 
irradiation. Gowrishankar et al. (2004) studied Bio heat 
transfer requiring evaluation of temporal and spatial 
distribution of temperature using the Penne’s bio heat 
equation. Transport of heat by Conduction and 
temperature dependent, spatial heterogeneous blood 
perfusion was modeled using the transport lattice 
approach. This method was validated by comparing an 
analytical Solution for a slab with heterogeneous 
thermal properties and spatially distributed uniform 
sink held at constant temperature at the ends. Damage 
was found to be small even with prolonged skin contact 
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to a surface of up to 45°C. Also revealed was the fact 
that spatial heterogeneity in skin thermal properties lead 
to a non uniform temperature distribution during 
exposure. A realistic two dimensional model of the skin 
showed that tissue heterogeneity did not lead to a 
significant local temperature increase when heated by 
an Iron tip. Liu et al. (2007) studied on the computer 
modeling of the effect of perfusion on heating patterns 
in RF tumor ablation. They performed a computer 
simulation of RF heating using 2 and 3-D finite element 
analysis. This simulation was systematically modeled 
on clinically relevant application parameters for a range 
of inner tumor perfusion and outer normal surrounding 
tissue perfusion for internally cooled single and cluster 
electrodes over a range of tumor diameters and RF 
application times. The computer model demonstrated 
that perfusion reduced both RF coagulation and the 
time to achieve thermal equilibrium. Their results show 
the importance of considering not only the tumor 
perfusion but also size and background tissue when 
attempting to predict the effect of perfusion on RF 
heating and ablation times. Ting-Bo et al. (2009) 
proposed a theoretical model of the nonlinear 
propagation in multi-layered tissues for strong focused 
ultrasound. The Spheroidal Beam Equation (SBE) is 
utilized to describe the nonlinear sound propagation in 
each layer tissue and generalized oblique incidence 
theory is used to deal with the sound transmission 
between two layer tissues. Kulikov (2009) investigated 
the mathematical model of the hyperthermy of the 
multilayer biological structure under the effect of laser 
emission was proposed. This allows the variation of the 
electrophysical parameters of the biological structure. 
Xu et al. (2009) studied the theoretical analysis of the 
transfer of heat through skin tissue and closed-form 
solutions were obtained for simple one-layer Fourier 
theory based model. Non-Fourier bioheat transfer 
models for skin tissue are also discussed and various 
skin cooling technologies summarized Mahjoob and 
Vafai (2010) gave a comprehensive analysis of bioheat 
transport through a double layer and multilayer 
biological media in this study. Analytical solutions 
were developed for blood and tissue phase temperatures 
and overall heat exchange correlations, incorporating 
thermal conduction in tissue and vascular system, 
blood-tissue convective heat exchange, metabolic heat 
generation and imposed heat flux, utilizing both local 
thermal nonequilibrium and equilibrium models in 
porous media theory were presented. Investigation to 
understand heat transfer analysis in biological media is 
abounding in a bid to provoke further advances in the 
field of hyperthermia and consequently promoting 

safety in medical therapy. The present study is to 
investigate the effect of simultaneous and sequential 
heating in the layers considered.  
 
Mathematical formulation: The mathematical 
formulation of the problem under physically reasonable 
assumptions are presented in order to establish the 
governing equations of our Mathematical model.  
 
The governing equations: The temperature, electric 
and magnetic fields are the three dependent variables in 
the governing equations: 
 
T = T(x, t);  E = E (0, E(x, t), 0);   
H = H (0, 0, H (x, t)) (1) 
 
 Presented Fig. 1 is a one dimensioned tissue model. 
 In Adebile et al. (2008) and the relevant literature 
sited there in, the Maxwell’s and bio heat equations 
were given as: 
 

H E E 0
x t

∂ ∂
+ ε + σ =

∂ ∂
 (2) 

 

1
E H 0
x t
∂ ∂

+ μ =
∂ ∂

 (3) 

 
2

p b b b b
T TC K C p (T T) Q(T) E
t x x

∂ ∂ ∂⎛ ⎞ρ = + ω − +⎜ ⎟∂ ∂ ∂⎝ ⎠
 (4) 

 
Where: 
ρ = Density 
Cp = Specific heat capacity 
t =Time 
Cb = Specific heat capacity of blood 
E = Electric field 
X = Space coordinates 
H = Magnetic field 
 

 
 
Fig. 1: Multilayered tissue Key: (i) epidermis; (ii) 

dermis; (iii) subcutaneous; (iv) inner tissue 
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T = Tissue temperature 
Ta = Artery temperature 
Tb  = Blood temperature 
Tc = Core temperature 
Tw = Wall temperature 
m = Positive Integer 
ρb = Density of blood 
ωb = Blood perfusion rate 
κ = Thermal Conductivity of tissue 
Q = Body heating coefficient 
μ = Magnetic permeability 
ε = Electric permittivity  
σ = Electric conductivity  
Ho = Magnetic field in free space upon tissue 
Eo = Electric field in free space upon tissue 
Pr = Prandtl’s number 
ν = Kinematics viscosity 
μt = Viscosity of tissue 
ω = Perfusion 
 
 In (4), the first term is the energy gradient; the 
second term presents the energy stored in the tissue 
while the third term is the blood transport between the 
tissue and the blood. 
 Equation 2-4 are subject to the following initial and 
boundary conditions: 
 

 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

c c

b

0
0 0

0
0 0

T x T T x,  0 T L,  t T 0,  t 0
L T
E xT 0,  t 0 E L,  t E E L,  t E
L

H xH x,  0 H L,  t H H L,  t H
L

= = =

= = = =

= = =

 (5) 

 
 
where, L, is distance from skin surface to core. 
 As in Adebile et al. (2008) it was reviewed that 
physical properties of materials have power law 
dependence on temperature, so then: 
  
Q (T) = Tm (6) 
  
 Introducing the following non dimensional 
variables: 
 

2

tt
L

∗ ν
=  xx

L
=  TcT

Tb
∗ =  b

1
p

CC
C

=  

0

EE
E

∗ =  
0

HH
H
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1

ρ
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ρ
 

2
b

1
Lω
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υ

 (7)  

22 m 1
b 0

p

L T
C

− Ε
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υρ
 0 0 0

1 2 3
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L E H
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υεΕ σ με σ

λ = λ = λ =
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 Hence the dimensionless Maxwell’s and Penne’s bio 
heat equation after ignoring the star mark is written as: 
 

1 2
H E E 0
x t

∂ ∂
+ λ + λ =

∂ ∂
 (8) 

 

3
E H 0
x t
∂ ∂

+ λ =
∂ ∂

 (9) 

 
2

2 m
1 1 12

T 1 T P C (1 T) E T
t Pr x

⎛ ⎞∂ ∂
= + ω − + λ⎜ ⎟∂ ∂⎝ ⎠

 (10) 

 
 Subject to the non dimensional initial and boundary 
conditions: 
 

( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( )

c c

b b

T TT x,  0 x T 1,  t T 0,  t 0
T T

E x,  0 x E 1,  t 1 E 0,  t 0
H x,  0 x H 1,  t 1 H 1,  t 1

= = =

= = =
= = =

  (11) 

 
MATERIALS AND METHODS 

 
Method of solution: Steady equations for a single 
layered temperature dependent perfusion. 
 Some of the assumptions taken to simplify the 
model are: 
 
• The rate of blood perfusion is temperature 

dependent  
• m = 1 
 
 Therefore the steady states Maxwell’s and Penne’s 
bio heat equations to be solved are: 
 

2
dH E 0
dx

+ λ =  (12) 

 
dE 0
dx

=  (13) 

 

( ) ( ) 2n
0 02

dT a b T 1 T E T 0
dx

β + + − + λ =  (14)  

 
n

0 0 o o(a b T) , a ,b , n Rω = + ∈   (15) 
 
 Subject to: 
 

( ) ( ) ( )

( ) ( ) ( )c

b

T 0 0 E 0 0 E 0 0
TT 1 E 1 1 E 1 1
T

= = =

= = =
 (16) 
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 Equation 12 and 13 are solved to get: 
 

0 x a
E(x)

1 x a
<⎧

= ⎨ ≥⎩
 (17) 

 
 This provokes a solution in two regions and supports two methods of heat application during microwave 
hyperthermia, subtitled Case I and II. 
 
Case I: This is a simultaneous heating procedure within the three heterogeneous layers, while taking cognizance of 
the two region solution in each layer, as illustrated below: 
 
Simultaneous three-way heating procedure:  
 

1 2 3

0 i 0 1 0 i1 i 1 1 I 1
i i ii i ia a a0 U V I

E 1 E 1 E 1E 0 E 0 E 0
T q (1 x) T q (v x) T q (1 x)T q x T T q (1 u) T q (xv)

= = == = =
= − = − = −= = = − =∑ ∑ ∑∑ ∑ ∑  

 
The equations within each layer will be solved subject to the initial and boundary conditions: 
 
T(0) = p0 T(u) = q0 for 0 ≤ x ≤ U (18) 
 
T(u) = P0 T(v) = q0 for U ≤ x ≤ V (19) 
 

T(v) = p0 0
TcT(1) q
Tb

= =  for V ≤ x ≤ 1 (20) 

 
Where: 
U and V = Arbitrary points within the tissue 
a1, a2 and a3 = The matching points in each homogeneous layer 
 
Case II: This heating procedure is done with matching at a point in a sequential order for each of the three layers. 
This procedure implies three heating arrangements as illustration below: 
  
Heating method 1: Heat application within the first homogeneous layer: 
 

1 2 3

0 I 0 ii i i I i I
i i ii i ia a a0 U IV

E 1 E 1 E 1E 1E 0 E 1
T q (u x) T q (v x) T q (1 x)T q x T q (x u) T q (x v)

= = === =
= − = − = −= = = − = −∑ ∑ ∑∑ ∑ ∑  

 
Heating method 2: Heat application within the second homogeneous layer: 
 

1 2 3

i i i i 0 i1 i i I i I
i i ii i ia a a0 U V I

E 0 E 1 E 1E 0 E 0 E 1
T P (u x) T q (v x) T q (1 x)T q x T P (u x) T q (x v)

= = == = =
= − = − = −= = = − = −∑ ∑ ∑∑ ∑ ∑  

 
Heating method 3: Heat application within the third homogenous layer: 
 

i i i i i I i I i I 0 i
i i i i i i

E 0 E 0 E 0 E 0 E 0 E 1
T q x T P (u x) T P (u x) T P (v x) T P (x v) T q (1 x)

= = = = = =

= = − = = − = − = − = −∑ ∑ ∑ ∑ ∑ ∑  

 
Where:  
U and V = Arbitrary points within the tissue 
a1, a2 and a3 = The matching points in each homogeneous layer 
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 The equations within each layer for all three 
methods will be solved subject to the initial and 
boundary conditions:  
 
T(0) = 0, T(u) = U, for O ≤ x ≤ U (21) 
 
T(u) = U1, T(v) = v1 for U ≤ x ≤ V (22) 
 

T(v) = v1, T(1) = c

b

T
T

 for V ≤ x ≤ 1 (23) 

 
 The equations for the inner and outer regions each 
layer for the different arrangements are the solved 
subject to the initial and boundary conditions defined in 
(21-23) and (12-14) the governing equations. This is 
shown below. 
 This provokes a solution in two regions. 
 For region I, the steady state Penne’s bio heat 
equation to be solved is: 
 

( ) ( )n
0 02

dT a b T 1 T 0
dx

β + + − =  (24) 

 
T (0) = 0 T (a) = h (25) 
 
 A solution is sought for: 
 

Ti = i
i

i 1
P x

∞

=
∑  0 ≤ × ≤ a (26) 

 
 Subject to the matching condition (25) substituting 
(26) into (24) comparing and collecting the coefficients 
of, Order x0, x1 and x2 to obtain: 
  

1
2 3 0 1

2
22 1

4 2 1 3

f gpP ; P ; P ;
2 6
gp hPP P

12

= − ≡ ϑ = − ≡ ϑ
β β

−
= − ≡ ϑ + ϑ

β

 (27) 

 
Where: 
 

n n n 2 2 n 1
0 0 1 0 0 0 0

n 2 2
0 0 1

2
2 3

n(n 1)f aa ;g ana ;h a b ana b ;
2

n(n 1) fj a b ; ;
2 2

g h gp; ;
6 12 12

− −

−

−
= = = ∞ −

−
= ϑ = − ϑ =

β

− −
− ϑ = ϑ =

β β β

 (28) 

 
 Substituting the compressed forms of P2, P3 and P4 
in (27) into (26) subject to (25), the quadratic equation 
obtained is:  

( )4 2 3 2 4
2 1 1 1 3a p a a p a a h 0ϑ + + ϑ + ϑ + ϑ − =  (29) 

 
 The values of P1 obtained from (29) above are used 
in (27) to find the solution to the inner region. 
 Similarly for the second region, the steady state 
Penne’s bio heat equation to be solved is: 
 

( ) ( )n
0 02

dT a b T 1 T T 0
dx

β + + − + λ =  (30) 

 

T (a) =h T (1) = c

b

T
T

 (31) 

 
 A solution is sought for the outer region: 
 

T0 = i
i

i 1
q (1 x)

∞

=

−∑  ai ≤ x ≤ Ui (32) 

 
Subject to (31): Introducing (32) into (30), comparing 
and comparing the coefficients of, Order Z0, Z and Z 2: 
 

 

( )

( )

( ) ( ) ( )

3 2
0 0 0

2

2
0 0 1

3 1 1

2 2
0 0 2 0 1

4

2
2 1 3

Jq hq g q f
q
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q q
6

3Jq 2hq g q 3Jq h q
q
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q
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β
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β
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Where: 
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3 2
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2 3
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−
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β
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β β
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= = −
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 (34) 

 
 Equation 33 is substituted into (32) for (30) the 
resulting quadratic equation is: 
 

 ( )

3 3 2 2
0 2 3 3 1 0 1

3
1 1

2 4
3 0

(1 a) (1 a) q (1 a) q

(1 a) (1 a) q

(1 a) (1 a) q h 0

⎡ ⎤− ∂ ∂ + − ∂ + − ∂ +⎣ ⎦

− + − ∂ +

− ∂ + − ∂ + − =

 (35) 
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 The two values of q1 obtained from (35) are then 
substituted into (32) to find the temperature for the 
outer region. 
 

RESULTS AND DISCUSSION 
 
 Graphs of steady states of the governing equations 
for a multilayered model (temperature dependent blood 
perfusion when m = 1) are displayed below. 
 
Case 1: Figure 2-4 show the various points at which 
there is rise and fall in temperature for the different 
arrangements of the thermal conductivities within each 
layer of the heterogeneous tissue.  
  

 
 
Fig. 2: Temperature distribution, against the space 

coordinate, x for a multilayer solution of 
temperature dependent perfusion, w; where n = 
2, a0 = 1, b0 = 1, E0 = 1, Cb = 3770, Cp = 3590, 
wb = 0.00125, g = 1050 and gb = 1060. 
(Matching at three points, 0.15, 0.5 and 0.85) 

 

 
 
Fig. 3: Temperature distribution, against the space 

coordinate, x for a multilayer solution of 
temperature dependent perfusion, w; where n = 
2, a0 = 1, b0 = 1, E0 = 2, Cb = 3770, Cp = 3590, 
wb = 0.00125, g = 1050 and gb = 1060. 
(Matching at three points, 0.15, 0.5 and 0.85) 

  
Fig. 4: Temperature distribution the space coordinate, x 

for a multilayer solution  of w = (a+bT)n, where 
n = 2, a0 = 1, b0 = 1, E0 = 2, Cb = 3770, Cp = 
3590, wb = 0.00125, g = 1050 and gb = 1060. 
(Matching  at  three  points,  0.3, 0.7 and 0.9 for 
u = 0.4 and v = 0.8) 

 

  
Fig. 5: Temperature distribution, T against the space 

coordinate, x for a multilayer solution of 
temperature    dependent    perfusion,  w;  where 
n = 2, a0 = 1, b0 = 1, E0 = 2, Cb = 3770, Cp = 
3590, wb = 0.00125, g = 1050 and gb = 1060. 
*(Matching at one point, 0.15) 

 

  
Fig. 6: Temperature distribution, T against the space 

coordinate, x for a multilayer solution of 
temperature   dependent   perfusion,   w;  where 
n = 2, a0 = 1, b0 = 1, E0 = 2, Cb = 3770, Cp = 
3590, wb = 0.00125, g = 1050 and gb = 1060. 
*(Matching at one point, 0.5) 
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Fig. 7: Temperature distribution, T against the space 

coordinate, x for a multilayer solution of 
temperature   dependent   perfusion,   w;   where 
n = 2, a0 = 1, b0 = 1, E0 = 2, Cb = 3770, Cp = 
3590, wb = 0.00125, g = 1050 and gb = 1060. 
*(Matching at one point, 0.85) 

 
Case II: The graphs for this heating approach are 
displayed in Fig. 5-7. The pattern of heat response as 
the thermal conductivity is being varied is evident in 
each of the graphs. 
 

CONCLUSION 
 
 A great care and adequate knowledge of tissues 
properties must be known before adopting a treatment 
procedure. 
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