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Abstract: Problem statement: This study developed a new application for the output model reference 
adaptive control of linear continuous systems based on the concepts of hyper-stability. Approach: The 
main idea is to design a non-linear controller which will ensure the minimal error between the 
reference model and the plant outputs. Results: Therefore, the synthesis of adaptive control with a 
model of reference was done either using the theory of Lyapunov or from the concept of hyper-
stability. The proposed approach was developed and applied to a lateral motion of aircraft, in order to 
determine the lateral and directional control angles required for trim under steady turns and sideslips. 
Also, this application is based on the directional and lateral static stability derivatives of the aircraft. 
Conclusion/Recommendations: Simulation results showed the effectiveness of the proposed 
application method. 
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INTRODUCTION 

 
 The Model Reference Adaptive Control (MRAC) 
was originally proposed to solve a problem in which the 
performance specifications are given in terms of a 
reference model (Hafizah et al., 2008). The mechanism 
for adjusting the parameters in MRAC is usually 
obtained by using a gradient method or by applying 
different stability theories.  
 Popov introduced the notion of hyper-stability in 
control theory and showed that a linear time-invariant 
system is asymptotically hyper-stable if and only if the 
transfer function of system is strictly positive real 
(Jumarie, 1979). The hyper-stability theory is first, 
applied to applications in control systems and adapted 
into the adaptive digital signal processing applications by 
Landau. The study of this problem is motivated (Xu et al., 
2003) by robust and non-linear control in which a well-
known fact is that the positive realness of a certain loop 
transfer function will guarantee the overall stability of a 
feedback system if uncertainty or non-linearity can be 
characterized by a positive real system.  
 The purpose of this study is to introduce the design 
of MRAC using the concept of hyper-stability to create 
a closed loop controller with parameters that can be 
updated to change the response of the system in the 
Multiple Input and Multiple Output (MIMO) case. The 
output of the system is compared to a desired response 

from a reference model. For example, you may be 
trying to control the lateral motion of aircraft. Using 
MRAC, you could choose a reference model that 
responds quickly to a step input and make the aircraft 
move just like the model (Gonzalez Blazquez, 1990; 
Omran and Newman, 2009). 
 

MATERIALS AND METHODS 
 
 The objective of this study is to design a non-linear 
controller based on the concepts of hyper-stability. Two 
laws of control which synthesize the signal adaptation, 
the proportional law control (P) ensures a limited error 
between the reference model and the plant, have been 
considered. To eliminate some of these undesirable 
phenomena, we suggested the use of proportional 
integrator law control (PI) based on hyper-stability 
approach that is dominantly rich to eliminate the steady 
shift error. This approach of Model Reference Adaptive 
Control is implemented on a computer PC. The 
performances of the proposed MRAC are applied to a 
lateral motion of aircraft, in order to determine the 
lateral and directional control angles required for trim 
under steady turns and sideslips. 
 
Synthesis of model reference adaptive control: Let us 
consider a linear plant described by the following 
equations (Jumarie, 1979): 
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 p p p p pX A X B U= +  (1) 

 
p p pY C X=  (2) 

 
Where: 
Ap = The n×n matrix 
Bp = The n×m input matrix 
Xp = The n-dimensional state vector 
Up = The m-dimensional control input vector 
Yp and Cp = The output vector and plant output matrix, 

respectively, each having appropriate 
dimensions  

 
 A linear system with the same number of states, 
inputs and outputs is selected as reference model having 
the following form: 
 

m m m m mX A X B U= +  (3) 
 

m m mY C X=  (4) 
 
where, Am and Bm are n×n  and n×m constant matrices 
respectively. 
 The error vector Xe, can be defined as: 
 

e m pX X X= −  (5) 
 
 Using some mathematical manipulations, the error 
equation becomes: 
 

e m e m p p m m p pX A X (A A )X B U B U= + − + −  (6) 
 
 The basic structure of Model Reference Adaptive 
Control (MRAC) scheme is shown in Fig. 1. The 
reference model is chosen to generate the desired 
trajectory Ym that the plant output Yp has to follow.  
 

 
 

Fig. 1: General structure of a Model Reference 
Adaptive Control (MRAC) 

 MRAC schemes can be characterized as direct or 
indirect adaptive laws. In direct method, the parameter 
vector of the controller is updated directly by an 
adaptive law, whereas in indirect method is calculated 
at each time t by using on line estimates of the plant 
parameters (Mitic, 1997). This design procedure allows 
the use of a wide class of adaptive laws that includes 
Gradient, Least Squares method and those based on the 
Lyapunov design approach or from the concept of 
hyper-stability. This study focuses on the last method to 
the synthesis of adaptive control systems. 
 Using Erzerberger conditions (Stoten and 
Benchoubane, 1990): 
 

m p p p m pA A B B (A A )◊− = −  (7) 
 

m p p mB B B B◊=  (8) 
 
where, T 1 T

p p p pB (B B ) B◊ −= : Pseudo-inverse left of Penrose.  
 By substituting the Eq. 7and 8 in the Eq. 6, we get:  
 

e m e pX A X B= − Φ  (9) 
 
Where: 
 

( )p p m p p m m pB A A X B B U U◊ ◊Φ = − − +  (10) 
  
 A stability proof for these controllers to choose the 
variable elements of linear system so that its transfer 
function is strictly positive real and the block of 
negative feedback with non-linear characteristic 
satisfies the Popov inequality for hyper-stability. Using 
Eq. 5 and 9, we obtain the following system: 
 

e m e pX A X B= − Φ  (11) 
 

e e eY C X=  (12)  
  
 The system described by Eq.11and 12 can be 
represented in a block diagram of Fig. 2. 
 

 
 
Fig. 2: Block diagram of hyper-stable system 
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Proportional form (P): Let us consider the feedback 
control law: 
 

p x p u mU K X K U= +  (13) 

 
 The inequality of Popov is applied (Jumarie, 1979; 
Rao and Hassan, 2004):  
 

1

0

t
T 2

0 1 e e 0
t

(t , t ) (Y )Y dtη = Φ ≥ −γ∫  (14) 

 
Where:  

2
0γ  = Positive constant independent of t  

Ye = Input of non-linear block 
Φ = Output of non-linear block  
  
 By replacing the Eq. 10 in the 14, we obtain the 
following equation:  
  

{

}

1

0

t

0 1 x p m p p
t

T 2
u p m m e 0

(t , t ) K B (A A ) X

(K B B )U Y dt

◊

◊

⎡ ⎤η = − −⎣ ⎦

+ − ≥ −γ

∫
 (15) 

 
 A solution that satisfies the hyper-stability 
condition for Kx and Ku is: 
 

T T 2N 1
x p m p 1 p eK B (A A ) (X Y )◊ +⎡ ⎤− − = α⎣ ⎦  (16) 

 
T T 2N 1

u p m 1 m eK B B (U Y )◊ +⎡ ⎤− = β⎣ ⎦  (17) 
 
where, α1 and β1are two strictly positive matrices with 
dimension n×n and n×m respectively. 
 If N = 0, then Kx and Ku can be written as follow:  
 

T T
x p m p e p 1K B (A A ) Y X◊= − + α   (18) 

 
T T

u p m e m 1K B B Y U◊= + β   (19)  
 
Proportional Integrator form (PI): We define the law 
control Up as (Yang et al., 2006):  
 

[ ] T

p r x u p mU K r K ,K X ,U⎡ ⎤= = ⎣ ⎦  (20) 
 
Where: 
  

r p iK K K= +   (21)  

With: 
  

T
p e 2K Y r= β  (22) 

 
T

i e 2K Y r= α  (23) 
 

i i0K (0) K=  (24) 
 

e e m pY C (X X )= −  (25)  
 
Where:  
α2 and β2 = Adaptive control weightings 
Ki0 = The initial value of integration gain  
 
 In general the initial gain values can be set to zero 
such that the controller requires no knowledge of the 
plant parameters Ap and Bp. The adaptive weightings, 
α2 and β2 need to be selected in advance and clearly 
have a significant influence on the rate of adaptation as 
they act as fixed gain values which multiply the 
proportional and integral parts of the controller gain. 
 The Eq.10 can thus be written in vector form:  
 

( )r rL K rΦ = +   (26) 
 
Where 

[ ]r x uK K , K=  

r p p m p mL B (A A ), B B◊ ◊⎡ ⎤= − −⎣ ⎦  
 
 Applying the criterion of Popov, we obtain: 
 

( )
1

0

Tt
2

0 1 r r e 0
t

(t , t ) L K r Y dtη = ⎡ + ⎤ ≥ −γ⎣ ⎦∫  (27) 

 
 By replacing Eq. 21-24 and 25 in 27, the latter will 
thus be written: 
 

( )
1

0

1

0

Tt t
T T T

0 1 r e 2 e
t 0

t
T T T 2

2 e e 0
t

t , t r L Y r d Y dt

r rY Y dt

⎡ ⎤
η = + α τ +⎢ ⎥

⎣ ⎦

β ≥ −γ

∫ ∫

∫
   (28) 

 
 It is clear from (Eq. 28), a solution that satisfies the 
hyper-stability condition for α2 and β2 is: 
 

T
2 0α >  

 
T

2 0β ≥  
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Table 1: Geometric characteristics 
Description Values for CESSNA-182 
Wing area 174.00 sq. ft 
Wight 2645.00 Ibs 
Wing span 35.80 ft 
Mean aerody. chord 4.90 ft 
Air speed 219.00 ft/sec 
Air density 0.00205 slugs/cu. ft 
Initial theta 0.00 rad 
High 5000 ft 
Iyy 1346 slugs. sq. ft 
Ixx 948 slugs. sq. ft 
Izz 1967 slugs. sq. ft 
Ixz 0.00 slugs. sq. ft 
xcg 0.25 

 
Table 2: Lateral factors of stability 
Quantity Values for CESSNA-182 
Lβ -28.7492/rad. sec2 

Lp -12.4092/rad. sec 
Lr 2.5346/rad. sec 
Lδa 57.4984/rad. sec2 

Lδr 4.7485/rad. sec2 

Nβ 10.1194/rad. sec2 
Np -0.3817/rad. sec 
Nr -1.2597/rad. sec 
Nδa -8.2512/rad. sec2 

Lδr -10.2284/rad. sec2 

Yβ -32.2554 ft/rad. sec2 

Yp -0.3147 ft/rad. sec 
Yr 1.7859 ft/rad. sec 
Yδa 0.0000 ft/rad. sec2 

Yδr 19.4730 ft/rad. sec2 

 
Application to CESSNA-182 aircraft: The CESSNA-
182 was introduced in 1956, as a tricycle gear variant of 
the 180. The characteristics of CESSNA-182 are 
presented (Maddi et al., 2009) on Table 1 and having 
the following lateral factors of stability represented on 
Table 2.  
 The rigid body equations of motion are the 
differential equations that describe the evolution of the 
basic states of an aircraft. These equations of motion 
are all non-linear first order ordinary differential 
equations. In addition they are highly coupled, i.e., each 
differential equation depends upon variables.  
 However, we may gain some insight into the 
equations of motion by examining in steady state 
solutions, which then are in the matrix form:  
 

p p p p pX A X B U= +  

 
Where 
δa, δr = Aileron and rudder deflection 
β, φ = Sideslip and roll angle 
p, r = Roll and yaw rate 

[ ] [ ]T T
p p a rX p r , U= β ϕ = δ δ  

 
p r

0 00
0 0

00

p p r rp

p p r r

0

Y Y
Y gV cos( )V
V V

cos( )sin( )
L aNL aN L aNA 0

N aLN aL N aL 0

0 1 tg( ) 0

β

β β

β β

⎛ ⎞⎛ ⎞ ⎛ ⎞−+⎜ ⎟⎜ ⎟ ⎜ ⎟ θ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎜ ⎟⎜ ⎟⎜ ⎟θθ ⎝ ⎠⎝ ⎠⎜ ⎟

⎜ ⎟++ += ⎜ ⎟
Δ Δ Δ⎜ ⎟

⎜ ⎟++ +
⎜ ⎟

Δ Δ Δ⎜ ⎟
⎜ ⎟θ⎝ ⎠

 

 
r a

0 0

r r a a

p

r r a a

Y Y
V V
L aN L aN

B
N bL N bL

0 0

δ δ

δ δ δ δ

δ δ δ δ

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟+ +
⎜ ⎟= Δ Δ⎜ ⎟
⎜ ⎟+ +
⎜ ⎟

Δ Δ⎜ ⎟
⎜ ⎟
⎝ ⎠

 

 
Where: 

xz

xx

Ia
I

=  

xz

zz

Ib
I

=  

1 a bΔ = − ×  
 

RESULTS 
 
 The reference model of an aircraft (Maddi et al., 
2009) is selected according to three criteria:  
 
• The state matrix Am is negative defined to ensure 

the stability and the handiness of the aircraft in the 
same time 

• A sideslip angle β induced by the ailerons is null, 
to ensure a correct turn  

• A roll angle φ induced by the rudders is negative to 
improve a static stability 

 
 By respecting the criteria quoted above, the 
matrices parameters of the state equation describing the 
following model m m m m mX A X B U= +  that we will use 
all along our study (Datta and Ioannou, 1994), will be 
equal to:  
 

 m

0.7 0 1 0
10 10 0 0

A
9 0 0.7 0
0 1 0 0

− −⎡ ⎤
⎢ ⎥− −⎢ ⎥=
⎢ ⎥−
⎢ ⎥
⎣ ⎦

 m

0 0
9.82 1.01

B
9.49 0
0 0

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥−
⎢ ⎥
⎣ ⎦
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Fig. 3: Time response of sideslip angle and roll angle in 

case Proportional law control (P) 
 

 
 
Fig. 4: Time response of aileron deflection and rudder 

deflection in case Proportional law control (P) 
 
 Simulation results are shown in Fig. 3-6 where we 
show the time responses of the output system Yp, the 
output reference model Ym and the control  Up for P and 
PI law control. 
 

DISCUSSION 
 
 From Fig. 3 and 5, it is clear that, with 

2 2 20.01I ×α = and 2 2 20.01I ×β = , the case of Proportional 
Integrator law control (PI) gives a better transient 
performance as compared to the Proportional law 
control (P). The value of Steady Shift Error (SSE) 
was then further reduced to zero and the control 
signals  are  little  smooth  as  shown  in Fig. 4  and  6. 

 
 
Fig. 5: Time response of sideslip angle and roll angle in 

case Proportional Integrator law control (PI) 
 

 
 
Fig. 6: Time response of aileron deflection and rudder 

deflection in case Proportional Integrator law 
control (PI) 

 
This confirms our observation that, in the PI case law 
control, the SSE cannot be chosen to be too small or 
else instability of the control signals will result, which 
do not meet any more the characteristics of the control 
surfaces of aircraft. 
 

CONCLUSION 
 
 The Model Reference Adaptive Control (MRAC) 
knew many industrial applications and especially in the 
field of aeronautics. Indeed, the convergence of such 
algorithms is related to a condition of positivity relating 
to either a matrix or a transfer function.  
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 An application to lateral motion of aircraft was 
presented to show that phenomena such as a limited 
steady shift error could occur. To eliminate some of the 
undesirable phenomena, we suggested the use of 
proportional integrator law control based on hyper-
stability approach that is dominantly rich to eliminate 
the SSE. This law control is shown to guaranty a good 
convergence to the following model.  
 Finally, the MRAC gives a very good following of 
the reference model with a steady shift error limited. 
The control signals are little smooth except in the PI 
law control, it appears oscillations, which do not meet 
any more the characteristics of the control surfaces of 
aircraft, from where we need the other class of control. 
 The extension of a proposed method to the design 
of model reference adaptive controller for disturbed 
systems is a current research topic. 
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