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Abstract: Problem statement: Over the last few decades, the oil industry has shown a growing 
interest in the new risk analysis methodologies aimed at the evaluation of the uncertainties associated 
with reservoir exploitation. In particular, the effort is made to take all possible sources of uncertainties 
into account so that not only the strengths but also the potential weaknesses of each possible technical 
and economic exploitation strategy are highlighted. Approach: The main parameters used to calculate 
strategic information, such as the Hydrocarbon Originally In Place (HOIP) and to define proper field 
development plans, are porosity, fluid saturations and Net To Gross (NTG). These quantities are 
typically obtained through the log interpretation process, which is an inverse problem where the main 
petrophysical characteristics are calculated as the acceptable minimum of a cost function. The cost 
function describes the discrepancy between measured and simulated logs with the latter being 
reproduced on the basis of an assumed formation model. Results: The results of the calculation 
process can be affected by several uncertainties related to the physics and calibration of the measuring 
tools, the identification of the proper formation model and the quantification of the formation model 
coefficients. An effective and robust methodology able to provide a reliable evaluation of 
petrophysical properties and the assessment of the associated uncertainties is presented and discussed 
in this study. The log interpretation process was approached as a linearly constrained optimization 
problem, solved by coupling a Lagrange-Newton method with a primal active set algorithm. 
Conclusion: The evaluation of the uncertainties was obtained by coupling the optimization algorithm 
with the Monte Carlo approach. The results obtained by the application of the methodology to a real 
case, where the interpretation was complicated by a poor characterization of the reservoir fluids, are 
also presented the study. 
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INTRODUCTION 
 
 Even if the evaluation of the uncertainties in the 
well log interpretation process dates back to some years 
ago (Ventre, 1994; Bowers and Fitz, 2000; Hall et al., 
2000; Verga et al., 2001; Rocca, 2009; Verga and 
Rocca, 2010), the application of the risk analysis 
concepts to reservoir characterization is very recent 
because only modern computer science allowed rapid 
processing of extremely large amounts of data. 
 The calculation of the Hydrocarbon Originally In 
Place (HOIP) is based on the evaluation of the main 
petrophysical parameters, i.e., porosity and water 
saturation. These quantities cannot be directly 
measured, therefore, need to be estimated through an 
interpretation process consisting of combining log 
measurements and core data when available. The 
formation response is observed in the log recordings but 
the minerals and fluids contributing to this response are 

unknown. However, since each measured property can 
be described by a mathematical relationship (forward 
model) that is based on minerals and fluids fractional 
volumes, it is possible to couple these equations with 
the observed data and to solve the resulting inverse 
problem so as to infer the unknown quantities. 
 Each piece of information introduced in the 
interpretation process, i.e. log measurements, model 
coefficients, can be affected by an uncertainty that 
needs to be quantified and corrected whenever possible. 
Wellbore measurements are generally influenced by the 
presence of a mud invaded zone in the proximity of the 
well. Well drilling operations, in fact, require that mud 
is circulated in the well. The pressure gradient between 
the fluids in the wellbore and in the formation induces 
the mud fluid to invade a reservoir zone around the 
wellbore displacing the fluids originally in place 
(groundwater and/or hydrocarbons). Furthermore, 
different types of errors can affect the available 
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reservoir information. Errors can be due to inaccurate 
calibration of the measuring instruments, incorrect 
choice of the forward model parameters or the physics 
of the measurement system. Thus, some of the 
uncertainties affecting the input of log interpretation 
cannot be eliminated. It follows that the impact of these 
uncertainties on the final results of the interpretation 
process has to be evaluated through appropriate 
propagation methods which need to account for the 
interpretation models but also for the solution 
algorithms. In modern log analysis, the log 
interpretation process is treated as an inverse problem. 
The solution is obtained by adopting a constrained 
optimization algorithm to automatically minimize a cost 
(or objective, or error) function. This cost function 
represents the discrepancy between measured log data 
and simulated log response. Even if some optimization 
processes are partially probabilistic in their nature, they 
do not provide an evaluation of the uncertainty 
associated with the obtained results or require too 
strong assumptions on the uncertainty distributions 
characterizing the input data (Bertolini et al., 2009; Sen 
and Stoffa, 1995). 
 The purpose of this study is to present an algorithm 
obtained by the integration of a Lagrange-Newton 
optimization method along with a Monte Carlo 
approach  to  simultaneously  find the solution of the 
log interpretation process, which is an inverse 
constrained problem and  assess  the uncertainties 
affecting the main petrophysical properties estimated 
from log measurements. 
 

MATERIALS AND METHODS 
 
Problem and model definition: The scientific 
procedure for studying a physical system can be divided 
into three steps: parameterization of the system, 
forward modeling and inverse modeling. The 
parameterization of the system consists in identifying a 
minimal set of model parameters whose values 
completely characterize the system. Forward modeling 
consists in determining the physical laws allowing 
predictions of the values of some observable quantities, 
for given values of the model parameters. Inverse 
modeling is the use of actual measurements to infer the 
values of the model parameters (Tarantola, 1987). 
 In the log interpretation process, the unknowns of 
the problem are the minerals and fluids fractional 
volumes. The forward model is mainly represented by 
the log response equations, i.e., the set of equations 
relating the log response to the fractional volumes of 
the formation components. In most log interpretation 
problems, the forward model is a non-linear operator 

since it is constituted by a set of equations containing 
both linear and non linear log response equations. 
During the development of the methodology, several 
log response equations were analyzed and 
implemented. Linear equations were implemented for 
the density, neutron, sonic and GR logs. Conductivity 
or resistivity log responses can be calculated by 
selecting the most suitable or preferred model: Archie, 
Indonesia and Nigeria equations are available. All three 
equations are non-linear, but the Indonesia and Nigeria 
models are more complicated due to the presence of the 
term expressing the shale content of the formation. For 
the purpose of this study, only the Indonesia formula is 
presented. 
 Let nx ∈ℝ  be a model configuration, i.e. the vector 
of the fractional volumes of the formation components 
(solids and fluids). In the case of fluid components, 
subscripts w and h indicate water (xw) and hydrocarbon 
(xh), respectively, while subscripts x and u indicate the 
fractional volume of fluids in the invaded (xwx and xhx) 
and undisturbed (xwu and xhu) zones, respectively. Each 
component of vector x can range from 0-1. The 
function n mf (x) : →ℝ ℝ  represents the system of the m 
forward model equations which relate the log responses 
to the fractional volumes of the formation components. 
Each equation represents the response of a single one of 
the m considered logs. The forward models of density, 
nuclear and sonic logs are represented by linear 
equations of the type: 
 

ns

i ij j i iwu wu ihu huj 1

i iwx wx ihx hx

f (x) C x (1 )(c x c x )

(c x c x )

=
= + − α + +

+ α +

∑  (1) 

 
where, i = 1,...,m refers to the logs (Neutron, density), j 
= 1,…,ns refers to the solid components (for instance 
quartz, sand, clay,...), cij is the ith log response in the 
pure component i, αi∈[0,1] weighs the influence of the 
invaded zone on the measurement, (αi = 1 indicates a 
measure influenced only by the invaded zone, while αi 

= 0 indicates a measure influenced only by the 
undisturbed zone). 
 As previously mentioned, the forward model of the 
conductivity measurements is represented by a non-
linear equation. The following empirical Indonesia 
Formula (Poupon and Leveaux, 1971) is an example of 
a non-linear equation, where Ct, indicates the total 
conductivity: 
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n
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Where: 
Ccl and xcl = The clay conductivity and the clay 

fractional volume, respectively 
Cw and xwu = The water conductivity and the water 

fractional volume, respectively 
a = The lithology coefficient 
m and mc2 = The cementing exponent and the 

correction factor for m 
n = The saturation exponent  
ϕe = The effective porosity calculated as: 
 
 

e hu wux xφ = +  (3) 
 
 If mr ∈ℝ  represents the vector of the observed log 
values at a single depth point, then the discrepancy 
between the measured and predicted response can be 
defined by the residual vector e(x) = r-f(x). It follows 
that the objective function is defined as: 
 

12 T

2
2

1
obj(x) We(x) [We(x)] [We(x)]

2
= =  (4) 

 
where the diagonal matrix m mW ×∈ℝ  has been 
introduced to define the weight to be assigned to each 
log. Weights are calculated by taking into account the 
normalization factors and the noise affecting each log 
measurement.  
 The minimum of the objective function often 
corresponds to a physically meaningless solution such 
as negative values for fractional volumes of formation 
components. Therefore, the problem has to be 
formulated so as to take into account some constraints 
classified in equality constraints ce(x) and inequality 
constraints ci(x): 
 

e

i

Minimize obj(x)

Subject to c (x) b

c (x) 0


 =
 ≥

 (5) 

 
 The main equality constraints are: fractional 
volume balance (6) and horizontal continuity of 
porosity (7): 
 

n

j wx hxj 1
x x x 1

=
+ + =∑  (6) 

 

wu hu wx hxx x x x+ = +  (7) 
 
 Note that Eq. 7 follows from Eq. 3 by assuming a 
homogeneous value of porosity along the investigation 
depth of the whole log. 
 The main inequality constraints impose that each 
volume component can only have non-negative values (8): 
 

ix 0 i 1,...,n≥ =  (8) 

 
 
Fig. 1: Example of a constrained problem 
 
 Since all the considered constraints are linear, the 
problem stated by Eq. 5 can be formulated as: 
 

e e

i

Minimize obj(x)

Subject to c (x) b

c (x) 0


 =
 ≥

 (9) 

 
where, Ce and Ci are the equality and inequality matrix 
constraints, respectively.  
 The set of equality and inequality constraints 
define the feasible solution region of the problem. An 
example of graphical representation of problem (9) is 
showed in Fig. 1. Since the absolute minimum is not in 
the feasibility region, the feasible solution lies on one of 
the constraints.  
 The use of a computationally efficient solution 
method requires problem (9) to be formulated as: 
 

e

Minimize obj(x)

Subject to c (x) b


 =

 (10) 

 
where, C contains all the active constraints. In 
particular, equality constraints are always active; 
whereas, the inequality constraints are activated only if 
they are not respected by the current solution and, in 
some cases, may also be deactivated. The 
activation/deactivation process is based on the primal 
active set method (Gill et al., 1981; Luenberger, 2003) 
which is a basic algorithm used to solve inequality-
constrained optimization problems as in (9). The main 
idea of the method is that the active set be determined 
iteratively by exploring the region of feasibility. A 
working set of constraints is selected at each iteration. 
Then, the corresponding equality-constrained problem 
is solved (10) and a check on the optimality of the 
solution is performed. The main advantage of this 
algorithm is that each point generated in the search 
procedure is feasible. Therefore, if the process is 
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terminated before reaching the solution, the terminating 
point is feasible. 
 Therefore, the solution to equation (9) is 
determined by the exploration of the feasibility region 
Ω, whose boundaries (∂Ω) are defined by the set of 
constraints which hold exactly. Since Ω can change at 
each step of the exploration, the minimum of the 
objective function strictly depends on the chosen set of 
binding constraints. In other words, the inequality 
constraints are divided in two dynamic subsetsi{C ,C}

⌢
ɶ . 

Subset iC
⌢

 is the matrix of the inactive constraints and 

subset iC
⌢

 represents the matrix of the active ones. It 

follows that, at each step of the exploration, the matrix 

C changes and is defined as e

i

C
C

C

 
=  
 
ɶ

. 

 Since it is reasonable to assume that the 
petrophysical properties at different depth points are 
independent, problems of the form of (10) will be 
solved at each depth point independently. 
 
Problem solution: The solution of the problem as 
shown in (10), depends on the choice of the optimal set 
of active constraints, which define the feasibility region 
and on the minimization of the objective function. 
Then, an Active Set method (Luenberger, 2003) 
coupled with the Lagrange-Newton method (Fletcher, 
1987) needs to be applied to solve the linearly-
constrained minimization problem under the hypothesis 
that the system is well-determined. The optimal 
solution can thus be theoretically obtained in a finite 
number of steps (Fletcher, 1987). 
 Let’s suppose that the set of active constraints, i.e. 
the working set, is fixed. 
 Let’s now introduce the Lagrangian function: 
 

TL(x, ) obj(x) (Cx b)λ = = λ −  (11) 
 
where, pλ ∈ℝ and λi is the ith Lagrange multiplier 
(1≤i≤p). Then the Lagrangian relaxation of (10) is: 
 
Minimize L(x,λ) (12) 
 
 Let’s now define a local quadratic model of L in a 
neighborhood No of [x0, λ0], that is a generic feasible 
solution: 
 

T T
L o 0 o

x 0

0

1
q ( ) L L HL

2

x x
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λ

δ = + ∇ δ + δ δ

   δ −
δ = =   δ λ − λ   

 (13) 

Where: 
 
L0 = L(x0, λ0) (14) 
 

T
0 0

0

0

g C
L
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 − λ
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0
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L
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and: 
 

T 2
0 0 0g J W e(x )=  (17) 

 
T 2

0 0 0 0H J W J Q= +  (18) 

 

0 0J f (x )= ∇  (19) 

 

0

m 2
0 ii i 0fi(x )i 1

Q w H e (x )
=

=∑  (20) 

 
 It is worth noting that the objective function is 
twice continuously differentiable in a neighborhood of 
a feasible solution xo since the log responses are linear 
with respect to x. Even if the conductivity model is 
non-linear, it is also continuously differentiable. Since 
the Lagrangian relaxation depends linearly from λ, L 
can also be supposed twice continuously differentiable 
in No: 
 

0
L 0L

T T
0 x 0 0

x 0

q 0 H L

H C g C

C Cx b
λ

∇ = → δ = −∇

 δ − δ = − + λ→  δ = − +

 (21) 

 
 Since the optimization algorithm moves only from 
one feasible point to another, then there is no loss of 
generality if it is assumed that xo, which is the result of 
a generic iteration, is a feasible solution for the original 
problem. Thus Cxo = b. Moreover let d = δx and λ = λ0 
+ δλ then system (21) becomes: 
 

T
0 0dH C g

C 0 0

   −  
= −    λ−     

 (22) 

 
 In order to reduce the computational cost, the term 
Qo in the definition of Ho was neglected in the Gauss-
Newton approach. This approximation makes the 
second order operator dependent only on the first order 
derivatives (Jo). As a consequence, the Hessian matrix 
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can be decomposed as H0 = ATA with A = WJ0 real and 
non-singular. This implies that H0 is symmetric and 
positive define ∀x∈N0 (Ayres, 1962). 
 Since C is full rank and H0 is positive definite, it 
follows that the coefficient matrix in (22) is non-
singular (Luenberger, 2003). Thus, the solution [d, λ] 
can be obtained in a closed form concluding the 
following: 
 

* 0 *x x d,= + λ = λ  (23) 

 
 Note that the solution of the linear system (22) 
requires that the inversion of the Hessian matrix H0 is 
performed. In general, the inversion is not directly 
computed and the use of a factorization strategy is 
preferred. In the analyzed problem, taking advantage of 
the symmetry of H0, the following unique 
decomposition can be calculated: H0 = LDLT where L is 
a lower triangular matrix and D is a diagonal matrix 
(Gill et al., 1991). 
 
Integration of uncertainty estimation: Theoretically, 
the Monte Carlo method provides the possibility of 
simulating a high number of measurements that, due to 
economic reasons, cannot be performed in common 
practice. In all Monte Carlo simulations, it is necessary 
to draw statistically representative samples from given 
probability distributions (Spanier and Gelbard, 1969). 
The results of the process are computed for each 
sampling so that, after a reasonable number of samples, 
a probability distribution of results can be defined. 
Thus, a suitable number of samples needs to be selected 
in order to obtain stable and reliable results in a 
reasonable elaboration time. 
 A flexible statistical tool for Monte Carlo 
simulation was implemented and integrated with the 
interpretation algorithm. The methodology provides the 
possibility of taking several sources of uncertainties 
into account, Statistical distributions and random 
sampling can be associated not only to the input log, 
but also to the main model parameters such as: 
conductivity model parameters, fluid density and water 
resistivity as a function of salinity. 
 Previous studies (Verga et al., 2001) demonstrated 
that the uncertainties associated to log measurements 
can be represented by different kinds of statistical 
distributions. The implemented methodology provides 
the possibility to associate a different statistical 
distribution to each source of uncertainty: normal, 
lognormal, uniform and triangular statistical 
distributions were considered in this study. 
 The  steps  of  the  algorithm  can be summarized 
as follows. 

 Associate an uncertainty distribution to the log 
measures and/or to the model parameters: 
 
• Associate an uncertainty distribution to the log 

measures and/or to the model parameters 
• Generate a set S of random configurations si = log 

measures ∪ model parameters 
• Determine V, φ and Sw distributions by solving the 

inverse problem associated for each configuration 
si∈S 

• Compute mean and confidence al [p10, p90] of the 
resulting porosity, φ and water saturation, Sw, 
distributions 

  
 Sensitivity analyses showed that a limited number 
of random samples (approximately 100) is sufficient to 
reach stable values of the statistical parameters 
associated to each result.  
 

RESULTS 
 
Application to a real case: The previously described 
methodology was applied to a real case (Viberti et al., 
2007) represented by a deep-water exploration well 
intercepting a shaly sand oil bearing formation. The 
application has to be considered as an example used to 
show the potential of the methodology and should not 
be taken as an exhaustive demonstration of its 
effectiveness. No laboratory tests were available to 
characterize the conductivity equations parameters. An 
interpretation with a commercial software was 
performed and the values of model parameters were 
imposed by assuming a petrophysical analogy with the 
some nearby fields. However, the information available 
was different for each of the nearby fields even though 
the lithology was the same; therefore, there wasn’t a set 
of parameters that could be used as a reference but 
rather a range for each parameter. This made even more 
necessary the use of an approach capable of handling 
uncertainties. The interpretation model is constituted by 
two solid components: sand (Vsand) and clay (Vclay). 
The volume of clay is represented mainly by a mixture 
of illite and montmorillonite. Mud invasion phenomena 
were taken into account by splitting the fluids (oil and 
water) in the flushed zone and in the undisturbed zone 
and considering the invasion factor α_showed in Eq. 1. 
The measured curves available for the interpretation 
were the density, neutron, GR and sonic logs along with 
a deep resistivity log assumed to be representative of 
the true resistivity of the formation. The Indonesia 
equation was adopted as conductivity model. 
 Initially, a base case interpretation scenario was 
performed assuming Archie parameters n = 2 and m = 2. 
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Fig. 2: Base case scenario interpretation 
 
Table 1: Simulation scenarios for uncertainty evaluation 
Scenarios Uncertain parameters 
1 Input Log 
2 m, n 
3 Input Log, m, n 

 
Table 2: Instrumental errors 
Log GR Neutron Resistivity Sonic Density 
Instrumental 5% 7% 10% 7% 0.015  
error      (g cm−3) 
Statistical Normal Normal Log normal Normal Normal 
distribution 

 
Table 3: Uncertainty associated to conductivity equation parameters 
Parameter Standard deviation Statistical distribution 
m 10% Uniform 
n 10% Uniform 

 
 The interpretation obtained for the base case 
scenario, expressed in terms of formation component 
fractional volumes and reconstructed logs versus 
measured logs, is shown in Fig. 2. 
 The evaluation of the uncertainty associated to 
porosity and water saturation was performed adopting 
the Monte Carlo method coupled with the inversion 
methodology while assuming the three simulation 
scenarios summarized in Table 1. 
 The uncertainties associated to GR, Neutron, Sonic 
and Density log measurements were represented by 
normal statistical distributions where the measured 
value represents the mean value and the standard 
deviation is equal to the instrumental error. Based on 
previous studies (Verga et al., 2001), the uncertainty 
associated to the resistivity log was represented by a 
lognormal statistical distribution. The instrumental error 
associated to each log type is given in Table 2. The 
uncertainty associated to the conductivity equation 
parameters was represented by a uniform statistical 
distribution having a standard deviation of 10% of the 
mean values (Table 3). 

DISCUSSION 
 
 Preliminary analyses of the results provided by the 
application of the Monte Carlo method showed that the 
statistical distribution associated to porosity and water 
saturation assumes different shapes, often not 
symmetrical, at different depths. Therefore, in order to 
provide a detailed uncertainty characterization, the 
results of the statistical approach were analyzed in 
terms of four statistical parameters: median, standard 
deviation and percentiles 10 and 90. Figure 3-5 show 
the results obtained for simulation scenarios 1, 2 and 3, 
respectively. 
 The uncertainties associated to the input logs 
(scenario 1) have an impact on both porosity and water 
saturation (Fig. 3). The uncertainty associated to 
porosity is quite constant and ranges from 1-2 porosity 
units for all the porosity values. If expressed in terms of 
percentages, these values correspond to an uncertainty 
varying from approximately 2-15% of the calculated 
porosity value. On average, the uncertainty associated 
to water saturation is 3% of the deterministic value and, 
as expected, progressively reduces when water 
saturation approaches unity. 
 The uncertainties associated with the conductivity 
equation parameters m and n, (scenario 2) have a 
negligible impact on porosity and a relatively strong 
impact on water saturation (Fig. 4). The uncertainty 
associated to porosity has an average value of about 0.3 
porosity units and therefore, it is in accord with the 
results obtained from the sensitivity analyses previously 
discussed. The uncertainty associated to water 
saturation and expressed in terms of percentage of the 
calculated water saturation, approximately ranges from 
50% for low water saturation to 10% for high water 
saturation. 
 In scenario 3, the impact of the uncertainty 
associated to both input log and conductivity equation 
parameters on porosity and water saturation was 
evaluated (Fig. 5). The uncertainty associated to 
porosity is quite constant and ranges from 1-2 porosity 
units, which show no significant differences with 
respect to the results obtained for scenario 1. The 
uncertainty associated to water saturation and expressed 
in terms of percentage of the calculated water 
saturation, approximately ranges from 48% for low 
water saturation to 10% for high water saturation, 
which show no significant differences with respect to 
the results obtained for scenario 2. Therefore, in the 
considered case, the combination of two sources of 
uncertainty, i.e., m, n and input logs did not introduced 
any additional uncertainty in the water saturation 
estimation with respect to scenario 2. 
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Fig. 3: Scenario 1-Median, percentiles 10 and 90 for 

Porosity and Water Saturation profiles 
 

 
 
Fig. 4: Scenario 2-Median, percentiles 10 and 90 for 

Porosity and Water Saturation profiles 
 

 
 
Fig. 5: Scenario 3-Median, percentiles 10 and 90 for 

Porosity and Water Saturation profiles 

CONCLUSION 
 
 The goal of Formation Evaluation is to provide the 
information necessary for reserves evaluation and thus 
for defining the most suitable technical and economic 
strategies for reservoir exploitation. Any source of 
errors affecting the results obtained from the log 
interpretation process should be identified and possibly 
removed to ensure that reliable petrophysical 
parameters are obtained, especially during the 
exploration and appraisal phases of a reservoir. 
 The present study describes the details of the 
mathematical background behind the developed 
methodology of coupling the robust constrained 
optimization process and the Monte Carlo approach. 
 When the probabilistic approach is adopted, not 
only the uncertainty associated to the rock 
petrophysical characteristics are quantified, but also the 
most critical sources of uncertainty affecting porosity 
and water saturation can be identified for a given 
formation. Therefore, a consistent reduction of the 
uncertainty associated with the reservoir petrophysical 
parameters can be expected upon acquisition of specific 
additional information. 
 The Monte Carlo method is fully integrated into 
the solution algorithm to provide the uncertainty 
affecting porosity and water saturation based on the 
uncertainty associated to any input variable, log 
measurements and model parameters. The developed 
approach was applied to an offshore exploration oil 
well where a poor characterization of the shaly sand 
formation complicated the interpretation. 
 Results showed that the uncertainty on porosity 
was mainly due to errors potentially affecting log 
measurements and not particularly critical. On the other 
hand, the uncertainty on water saturation ranges 
approximately from 10-50%. This is mainly due to the 
uncertainty affecting the parameters in the water 
saturation model. It is quite evident that the large 
uncertainty of water saturation could make the 
difference on the economic reliability of a subsequent 
development project. Therefore, laboratory analyses to 
determine the model parameters and a new, more 
reliable interpretation would be recommended before 
any decision is taken on the field. 
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