
American Journal of Applied Sciences 7 (10): 1406-1411, 2010
ISSN 1546-9239
© 2010 Science Publications

Corresponding Author: Abbas Saliimi Lokman, Faculty of Computer Systems and Software Engineering,
 University Malaysia Pahang, Lebuhraya Tun Razak, 26300 Kuantan, Pahang, Malaysia

1406

One-Match and All-Match Categories for Keywords Matching in Chatbot

Abbas Saliimi Lokman and Jasni Mohamad Zain

Faculty of Computer Systems and Software Engineering,
University Malaysia Pahang, Lebuhraya Tun Razak, 26300 Kuantan, Pahang, Malaysia

Abstract: Problem statement: Artificial intelligence chatbot is a technology that makes interactions
between men and machines using natural language possible. From literature of chatbot’s
keywords/pattern matching techniques, potential issues for improvement had been discovered. The
discovered issues are in the context of keywords arrangement for matching precedence and keywords
variety for matching flexibility. Approach: Combining previous techniques/mechanisms with some
additional adjustment, new technique to be used for keywords matching process is proposed. Using
newly developed chatbot named ViDi (abbreviation for Virtual Diabetes physician which is a chatbot
for diabetes education activity) as a testing medium, the proposed technique named One-Match and
All-Match Categories (OMAMC) is being used to test the creation of possible keywords surrounding
one sample input sentence. The result for possible keywords created by this technique then being
compared to possible keywords created by previous chatbot’s techniques surrounding the same sample
sentence in matching precedence and matching flexibility context. Results: OMAMC technique is
found to be improving previous matching techniques in matching precedence and flexibility context.
This improvement is seen to be useful for shortening matching time and widening matching flexibility
within the chatbot’s keywords matching process. Conclusion: OMAMC for keywords matching in
chatbot is shown to be an improvement over previous techniques in the context of keywords
arrangement for matching precedence and keywords variety for matching flexibility.

Key words: Chatbot, artificial linguistic internet computer entity, artificial intelligence markup

language, VPbot, database management system, hypertext preprocessor, relational
database model, hypothetically

INTRODUCTION

 In 1950, mathematician Alan Turing proposed the
question “Can machines think?” (Turing, 2008). Since
then, a number of attempt to encounter that particular
question have been emerged in computer science field
that later formed the field of Artificial Intelligence. One
of many attempts to visualize an intelligence machine is
chatbot or chatter robot. Chatbot is a technology that
makes interaction between man and machine using
natural language possible. First introduced by
Weizenbaum (an MIT professor) in 1966
(Weizenbaum, 1966), the first chatbot named ELIZA
then famously became an inspiration for computer
science and linguistic researchers in creating a
computer application that can hypothetically understand
and response to natural human language. The huge
breakthrough in chatbot technology came in 1995
where Dr. Richard Wallace, an ex-Professor of
Carnegie Mellon University combine his background in

computer science with his interest in the internet and
natural language processing to produce Artificial
Linguistic Internet Computer Entity (ALICE) (Wallace,
2008). ALICE that later being described as a modern
ELIZA is a three times winner of Loebner’s annual
instantiation of Turing’s Test for machine intelligence
(Shah, 2006). When computer science evolves, so does
the chatbot technology. As for a chatbot that need to
have a wide data storage for its knowledge-based (some
call it “chatbot’s brain”), managing data is really a
crucial issue. Reviewing the evolving of chatbot
technology surrounding the evolving of computer
science technology, ELIZA stored its knowledge-based
data by directly embedding it into the application’s
code while later chatbot ALICE uses more advance
Artificial Intelligence Markup Language (AIML) which
is a derivative of Extensible Markup Language or XML
to stored the knowledge-based data (Shawar and
Atwell, 2007; Wallace, 2008). Then with the emerging
of Relational Database Model together with Database

Am. J. Applied Sci., 7 (10): 1406-1411, 2010

1407

Management System (DBMS) technology, came more
advance chatbots that taking advantages of it. One of an
example is VPbot and SQL-Based chatbot for medical
application (Ohno-Machado and Webber, 2005).
Developed by Dr. Webber from Harvard University,
VPbot is a chatbot that takes advantage of a Relational
Database Model to stored, manage and even used the SQL
language (database scripting language) to perform the
chatbot main process which is keywords/pattern matching.
 Reviewing ELIZA’s keywords matching technique,
an input sentence is analyzed from left to right. Each
word is looked up in a dictionary of keywords for a
match and if word/s is identified as keywords, then
decomposition rule will apply (Weizenbaum, 1966)
(note that decomposition rule is a method used by
ELIZA in the process of reassembly rule or response
generation). For ALICE, its knowledge about English
conversation is stored using a mechanism called
Graphmaster (written using AIML). The Graphmaster
consists of collection of nodes called Nodemappers.
These Nodemappers map the branches from each node.
The branches are either single words or wildcards. A
convenient metaphor for AIML patterns is the file
system stored in computers that are organized
hierarchically (tree structure). The file system has a
root, such as “c:\” and the root have some branches that
are files and some that are folders. The folders, in turn,
have branches that are both folders and files. The leaf
nodes of the whole tree structure are files. Every file
has a “path name” that spells out its exact position
within the tree. The Graphmaster is organized in
exactly the same way. AIML that stored a pattern like
“I LIKE TO *” is metaphorically are
“g:/I/LIKE/TO/star”. All of the other patterns that begin
with “I” also go into the “g:/I/” folder. All of the
patterns that begin with “I LIKE” go in the
“g:/I/LIKE/” subfolder. So it’s like the folder
“g:/I/LIKE/TO/star” has a single file called
“template.txt” that contains the template (Shawar and
Atwell, 2007; Wallace, 2008).
 Following Graphmaster rules, A.L.I.C.E pattern
matching process can be described as follows (let say
the input utterance first word is “yesterday” and the
AIML is described as file system architecture with
folders and files):

• From template file in the root folder, find a match

pattern. If no match was found, try
• Find the subfolder “_”. If found, try matching all

remaining suffixes from the input utterance
following the first word “yesterday” (the whole
input utterance). If no match was found, try

• Find the subfolder “yesterday”. If found, try
matching all remaining suffixes minus “yesterday”.
If no match was found, try

• Find the subfolder “*”. If found, try matching all
remaining suffixes from the input utterance
following the first word “yesterday”. If no match
found, change directory to the parent of this folder
and put back “yesterday” on the head of the input

 These processes will run recursively until the input
is null (all words in the input utterance have been
processes), or until the match is found, making the
process to stop.
 As a recap, chatbot’s keywords/pattern matching
techniques can be divided into two categories. First is
rather similar to human brain incremental parsing
technique (Crocker et al., 1999) where an input
sentence is being analyzed in a word-by-word basis
from left to right by sequence. Keywords can be one-
word keywords or many-words keywords but each
word in many-words keywords must be attached to one
another, forming a long keywords pattern (cannot be
separated as e.g., one word in prefix and one word in
suffix separated by several words in the middle).
Second is a direct match process where input sentence
is being analyzed for an appearance of keywords
anywhere in the input sentence. Whole input sentence is
being treated as a one variable and available keywords
in the database will scan this variable for match. The
principal difference between first and second technique
is first being input centered (words from input sentence
is being matched against keywords in knowledge-
based) and second being keywords centered (keywords
in knowledge-based is being matched against an input
sentence). Despite the difference, both categories
suggested the same paradigm for matching process in
which only one keywords is needed in order to trigger
the respective response. One keywords in this context
means one word, phrase or even sentence for one
keywords set (not a collection of word, phrase or
sentence). However, there is an augment regarding this
matter by VPbot’s keywords architecture/design. In
VPbot, author can assign several keywords (maximum
of three) in the same keywords set. All keywords within
the same set must be matched in order to trigger the
respective response (Ohno-Machado and Webber,
2005). Using the second category of keywords
matching technique, all keywords can be located
anywhere in the input sentence and as long as the
keywords is in the same set, VPbot will matched it. For
the issue of precedence over which keywords is more
accurate, longer keywords appear to have the top
priority justified by long keywords set will only match

Am. J. Applied Sci., 7 (10): 1406-1411, 2010

1408

a very specific phrase, while short keywords set will
match a larger range of possible input queries (Ohno-
Machado and Webber, 2005).

MATERIALS AND METHODS

 To test the proposed technique of One-Match and
All-Match Categories (OMAMC), we had designed and
developed a new chatbot named Virtual Diabetes
physician (ViDi), a web-based chatbot that functions in
the specific domain of Diabetes education. Taking
advantage of Relational Database Model approach, we
redesign the whole architecture of chatbot’s keywords
by incorporating the proposed technique into it. In
technical details, ViDi is being coded using Hypertext
Preprocessor (PHP) programming language together
with Asynchronous Javascript + XML (AJAX)
technology which contains Hypertext Markup
Language (HTML), Cascading Style Sheets (CSS),
XMLHttp Request (XHR) and Document Object Model
(DOM) being accessed via JavaScript. Figure 1-3
shows ViDi’s UI (User Interface) design. Fig. 1 is a
chatting UI for users while Fig. 2 and 3 are knowledge-
based (responses and keywords) management UI
known as vBrain (developed for authors). Note that
ViDi is a Bahasa Malaysia human language chatbot
(Lokman and Zain, 2010a) and that being the case,
contents presented in each UI are mostly originated
from this language.

Fig. 1: ViDi chatting interface

 OMAMC technique comprises of two components
that correlated with each other. The two components
are (1) keywords arrangement for matching precedence
and (2) keywords variety for matching flexibility.
Describing the fundamental idea of OMAMC, each
response in ViDi’s knowledge-based is designed to
have an infinite number of keywords sets associated
with either One-match or All-match category. Each
keywords set in One-match category contains single
keywords that can be in a form of one-word or
many-words keywords (a single word or a phrase)
while each keywords set in All-match category
contains more than single keywords as in VPbot’s
keywords design.

Fig. 2: vBrain-managing ViDi’s response

Fig. 3: vBrain-managing ViDi’s keywords

Am. J. Applied Sci., 7 (10): 1406-1411, 2010

1409

The different is that ViDi’s All-match keywords had no
limit over how many keywords can a single set have
(VPbot limitation is three keywords for each single set).
Therefore, All-match keywords can be in a form of
combination between a single word and a phrase,
producing either multiple one-words keywords,
multiple phrases keywords or both one-word/s and
phrase/s keywords in the same single keywords set. For
both OMAMC, each keywords set will be stored as a
single variable. Therefore for All-match category that
can have multiple keywords within the same set, author
need to put a symbol of commas (“,”) to separate each
keywords. For matching process, One-match is
considered to be an exact-match process where word/s
and its location must be the same as in the input
sentence, while All-match is considered to be a
flexible-match where word’s location is a flexible
factor. Same as VPbot’s keywords matching technique,
if each All-match keywords within the same set is
matched, it will then trigger the response. The sequence
location of the keywords can be different between the
set and the input sentence. As example, first and second
keywords in the set do not have to be in the same
sequence location as in the input sentence (in the input
sentence, the second keywords can came first before the
first keywords).
 Looking back to the two components of OMAMC
(keywords arrangement for matching precedence and
keywords variety for matching flexibility), keywords
arrangement for this technique is designed based on
keywords precedence that is as in literature, long
keywords over short keywords (note that the length of
keywords is defined by total count of words within the
set) and exact-match over flexible-match (generic
keywords) that is One-match over All-match. For
keywords variety, OMAMC technique had expanse
VPbot’s technique on generic keywords by making no
limitation on the number of keywords that can be
associated with a single set.

RESULTS

 Table 1-3 will demonstrate results for the same
sample of input sentence being converted into several
possible keywords sets using Graphmaster-AIML
technique, VPbot technique and OMAMC technique
presented by three respective tables. Note that
keywords variations for each technique can be more
than as presented but given the purpose of analyzing
the capability and limitation for each technique, such
variations is considered to be not essential. The
sample input sentence is “Yesterday, my chest hurt
badly”.

Table 1: AIML result
 YESTERDAY MY
 CHEST HURT
 BADLY
 * MY CHEST HURT
 BADLY
 MY CHEST HURT
<pattern> BADLY <pattern>
 MY CHEST HURT *
 MY CHEST HURT
 * CHEST HURT BADLY
 CHEST HURT BADLY
 CHEST HURT

Table 2: VPbot result
Keyword 1 Keyword 2 Keyword 3
YESTERDAY
MY CHEST
HURT BADLY
YESTERDAY MY CHEST HURT
BADLY
YESTERDAY MY CHEST HURT
MY CHEST HURT BADLY
MY CHEST HURT
MY CHESTHURT BADLY
MY CHEST HURT
MY CHEST HURT
CHEST HURT BADLY
CHEST HURT
CHEST HURT BADLY
CHEST HURT

Table 3: OMAMC result
One-match
YESTERDAY MY CHEST HURT BADLY
MY CHEST HURT BADLY
MY CHEST HURT
All-match
Keyword 1 Keyword 2 Keyword 3 Keyword 4 Keyword n
YESTERDAY MY CHEST HURT BADLY
YESTERDAY MY CHEST HURT BADLY
MY CHEST HURT BADLY
MY CHEST HURT BADLY
MY CHEST HURT
CHEST HURT BADLY
CHEST HURT
CHEST HURT BADLY
CHEST HURT

DISCUSSION

 Presented results are possible keywords database
for three separated keywords storing technique. The
first issue to be analyzed is precedence. For AIML with
Graphmaster component, precedence for keywords goes
by atomic categories (exact-match), then default
categories (pattern with wildcard/s) and later recursive
categories (symbolic reduction, synonyms
replacement). To be noted that in AIML, longer
keywords will not affect the precedence level. For
VPbot, all keywords will be matched first before
precedence analysis is being done.

Am. J. Applied Sci., 7 (10): 1406-1411, 2010

1410

 VPbot precedence goes by specific instance over
generic response (exact-match over flexible-match),
variation with low total weighs over high total weights
(symbolic reduction, synonyms replacement) and later
total string length (longer string over shorter string).
For both techniques, exact-match is considered to be
the highest precedence over all keywords. As such, in
OMAMC technique, exact-match keywords is treated in
a totally different category from generic keywords
(flexible-match) with One-match being the exact-match
and All-match being the flexible-match. Being in
different group, if algorithm finds a match in One-
match category, then All-match category will not be
processed. This scenario will result on the elimination
of redundant matching time for less precedence
keywords if more precedence keywords had already
matched. Next if no match is found within One-match
category, then algorithm will proceed to generic
keywords category, which is All-match category. With
strong argument by VPbot that longer string length
have more precedence over short string length, One-
match and All-match keywords had built in attached
variable name “wordCount” to encounter this issue. In
each category according to precedence (One-match then
All-match), wordCount will be among the first to be
analyzed in order to avoid unnecessary matching
process. That is if a match is found, wordCount for that
keywords will be hold as a benchmark for string length.
Therefore, algorithm will not process keywords with
less count of words than already matched keywords,
eliminating the need for unnecessary matching process
for keywords that eventually will not be used.
 The second issue to be analyzed is matching
flexibility, which is created by generic keywords
technique. AIML did not have the support for generic
keywords while VPbot had the limit of maximum three
keywords for each set (keywords 1, 2 and 3). For All-
match category, generic keywords had no limit in quota
(keywords 1 to n). Same rule as VPbot is applied where
all keywords within the same set must be matched in
order to trigger the response. As shown in Results
section, more quotas on generic keywords can produced
more keywords variety for matching flexibility.

CONCLUSION

 ViDi is designed and developed to functions as
virtual diabetes physician for diabetic patients and
public to learn about diabetes disease. Several
additional techniques and/or algorithms had been
proposed in attempt to enhance ViDi’s productivity in
becoming the virtual helpdesk for diabetes education
domain (Lokman and Zain, 2010b). OMAMC

technique is proposed to enhanced ViDi’s keywords
matching technique in the context of keywords
arrangement for matching precedence and keywords
variety for matching flexibility. Presented results and
discussion had demonstrated the result in using this
technique against previous techniques, showing
improvement in keywords matching precedence and its
flexibility in the process.
 Other area in which OMAMC technique can be
implemented is in Information Extraction (IE)
application. As proposed by Christy and Thambidurai
(2008), additional algorithms can be useful in
performing IE process. Using OMAMC technique
logic, input keywords from user can be transformed
into several keywords varieties (in respect to OMAMC
format) in order to make retrieval process results have
the value of precedence (based on the matched
keywords categories). This value later can be used for
results representation. Computer hardware processing
algorithms also had involved in string matching process
algorithms (Raju and Babu, 2007). In this area, further
research can be done into making the two categories of
OMAMC being process in two different string maching
algorithms with One-match category being directly
match without preprocessing phase and All-match
category being match with preprocessing phase
(because the flexible matching process of generic
keywords). Differentiating these two processes could
result in (1) faster processing time by the logic that All-
match category did not have to be matched if One-
match category already found a match and (2)
maintaining matching flexibility for generic keywords
category (All-match category) while still concerning the
processing time for exact match keywords category
(One-match category). From interconnectivity between
OMAMC and other areas of computing, it can be said
that OMAMC technique is also and could be useful in
many areas despite the original design purposed that is
for the used of keywords matching process in chatbot
technology.

REFERENCES

Crocker, M.W., M. Pickering and C. Clifton, Jr., 1999.

Architectures and Mechanism for Language
Processing. 1st Edn., Cambridge University Press,
Cambridge, ISBN: 0521631211, pp: 357.

Christy, A. and P. Thambidurai, 2008. CTSS: A tool for
efficient information extraction with soft matching
rules for text mining. J. Comput. Sci., 4: 375-381.

DOI: 10.3844/jcssp.2008.375.381

Am. J. Applied Sci., 7 (10): 1406-1411, 2010

1411

Lokman, A.S. and J.M. Zain, 2010a. Chatbot enhanced
algorithms: A case study on implementation in
Bahasa Malaysia human language. Network. Digit.
Technol., 87: 31-44. DOI: 10.1007/978-3-642-
14292-5_5

Lokman, A.S. and J.M. Zain, 2010b. Extension and
prerequisite: An algorithm to enable relations
between responses in chatbot technology. J.
Comput. Sci., 6: 1212-1218.
http://www.scipub.org/fulltext/jcs/jcs6101212-
1218.pdf

Ohno-Machado, L. and G.M. Webber, 2005. Data
representation and algorithms for biomedical
informatics applications. Ph.D. Thesis, Harvard
University.
http://portal.acm.org/citation.cfm?id=1104329

Raju, S.V. and A.V. Babu, 2007. Parallel algorithms for
string matching problem on single and two
dimensional reconfigurable pipelined bus systems.
J. Comput. Sci., 3: 754-759. DOI:
10.3844/jcssp.2007.754.759

Shah, H., 2006. ALICE: An ACE in digitaland. tripleC,
4: 284-292.

Shawar, A.B. and E. Atwell, 2007. Chatbots: Are they
really useful? LDV-Forum Band, 22: 31-50.

Turing, A.M., 2008. Computing Machinery and
Intelligence. In: Parsing the Turing Test, Epstein
R., G. Roberts and G. Beber (Eds.). Springer,
USA., ISBN: 978-1402096242, pp: 23-65.

Wallace, R.S., 2008. The Anatomy of ALICE. In:
Parsing the Turing Test, Epstein R., G. Roberts and
G. Beber (Eds.). Springer, USA., ISBN: 978-
1402096242, pp: 181-210.

Weizenbaum, J., 1966. ELIZA-a computer program for
the study of natural language communication
between man and machine. Commun. ACM,
9: 36-45. DOI: 10.1145/365153.365168

