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Abstract: The P300 component of Event Related Brain Potentials (ERP) is commonly used in Brain 
Computer Interfaces (BCI) to translate the intentions of an individual into commands for external 
devices. The P300 response, however, resides in a signal environment of high background noise. 
Consequently, the main problem in developing a P300-based BCI lies in identifying the P300 response 
in the presence of this noise. Traditionally, attenuating the background activity of P300 data is done by 
averaging multiple trials of recorded signals. This method, though effective, suffers two drawbacks. 
First, collecting multiple trials of data is time consuming and delays the BCI response. Second, latency 
distortions may appear in the averaged result due to variable time-locking of the P300 in the individual 
trials. Problem statement: The use of single-trial P300 data overcomes both these shortcomings. 
However, single-trial data must be properly denoised to allow for reliable BCI operation. Single-trial 
P300-based BCIs have been implemented using a variety of signal processing techniques and 
classification methodologies. However, comparing the accuracies of these systems to other multi-trial 
systems is likely to include the comparison of more than just the trial format (single-trial/multi-trial) as 
the data quality and recording circumstances are likely to be dissimilar. Approach: This issue was 
directly addressed by comparing the performance comparison of three different preprocessing agents 
and three classification methodologies on the same data set over both the single-trial and multi-trial 
settings. The P300 data set of BCI Competition II was used to facilitate this comparison. Results: The 
LDA classifier exhibited the best performance in classifying unseen P300 spatiotemporal features in 
both the single-trial (74.19%) and multi-trial format (100%). It is also very efficient in terms of 
computational and memory requirements. Conclusion: This study can serve as a general guide for 
practitioners developing single-trial and multi-trial P300-based BCI systems, particularly for selecting 
appropriate pre-processing agents and classification methodologies for inclusion. The possibilities for 
future study include the investigation of double-trial and triple-trial P300 system based on the LDA 
classifier. The time savings of such approaches will still be significant. It is very likely that such 
systems would benefit from accuracies higher than the one obtained in this study for single-trial LDA 
(74.19%). 
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INTRODUCTION 
 
 A Brain Computer Interface (BCI) is a system that 
permits users to control external devices using only 
their inherent brain activity. Device control is achieved 
by performing a cognitive or physical task that encodes 
the command to be executed. For example, the user 
imagines moving his left hand or attends to a stimulus 
in order to control the movement of a cursor. BCIs are 
responsible for recording and pre-processing brain 
activity, extracting descriptive features from the data 

and then classifying these features to identify the user’s 
command. The most popular medium of brain-
computer communication is Electroencephalography 
(EEG). 
 The features of brain activity that are commonly 
used for Brain-Computer Interfacing are sensorimotor 
rhythms (Peters et al., 2001; Krusienski et al., 2007) 
slow cortical potentials (Birbaumber et al., 2003) and 
visually evoked responses (Lin et al., 2007; Citi et al., 
2008). Visually evoked responses can either be 
oscillatory neuronal responses to repetitively delivered 
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stimuli or delayed positive deflections in the EEG 
following the presentation of target stimuli. The latter is 
termed the P300 Visual Evoked Potential (P300 VEP). 
P300-based BCIs have been utilized for cursor control 
(Trejo et al., 2006), spelling systems (Wills and 
MacKay, 2006) and wheelchair navigation (Pires et al., 
2008; Rebsamen et al., 2007). 
 The P300 wave was first reported in 1965 
(Andrews et al., 2008). It appears as a positive 
deflection in the EEG approximately 300-400 m sec 
following the presentation of a rare, deviant or target 
stimulus. It is measured strongly in midline sites (CZ, 
FZ and PZ) and resides mainly in the 0-8 Hz band 
(Khosrow-Pour, 2009). Both the latency and amplitude 
of the P300 wave correlate with the user’s level of 
fatigue and the saliency (brightness and color) of the 
stimulus. The P300 response can be evoked through the 
visual, auditory or somatosensory modalities, however, 
most studies rely on the visually evoked version 
(Citi  et al., 2008; Serby et al., 2005; Zhang et al., 
2008; Nijboer et al., 2008).  
 The P300 potential evoked using an oddball 
paradigm. In an oddball paradigm, a target stimulus 
which represents the user’s command is presented 
among more frequently occurring non-target stimuli. 
Attending to the target stimulus causes the P300 to be 
evoked which allows the BCI to identify the user’s 
message. Stimulus attendance equates to mere visual 
fixation or keeping a mental count of the amount of 
times the target is highlighted, as in the case of the 
P300 speller paradigm (Farwell and Donchin, 1988). 
 P300-based BCIs benefit both from simplicity and 
ease of use. First, evoking the P300 requires the subject 
to focus on the appropriate stimulus, which consumes 
minimal physical and cognitive resources. Second, 
since the P300 is an inherent response of the brain, 
subjects require minimal training before they can 
operate a P300 based-BCI. This is not always the case 
with other brain signals such as Slow Cortical 
Potentials (SCP). Extensive training periods are often 
required before such brain signals become identifiable 
and thus become able to facilitate brain-computer 
communication. 
 However, the major limitation of the P300 signal is 
its Signal-to-Noise Ratio (SNR), owing to its corruption 
by powerful background noise. P300 signal denoising is 
traditionally carried out using batch averaging of 
signals recorded in multiple trials. In on-line 
applications, trails often need to be repeated until the 
measured P300 value attains statistical significance 
(Serby et al., 2005). However, recording multiple trials 
of data is time consuming and is manifested as lengthy 
delays in BCI processing. Additionally, the latency of 

the P300 response may vary in each trial, which can 
lead to latency distortion of the averaged result 
(Andrews et al., 2008). 
 Single-trial based P300 BCIs suffer neither of these 
shortcomings. However, single-trial data must be 
properly preprocessed to allow for reliable BCI 
operation. Single-trial P300-based BCIs have been 
developed using a variety of signal processing 
techniques and classification methodologies. However, 
no formal catalogue or comparative analysis of these 
methods exists. This study directly addresses this issue 
by presenting a comprehensive review of a host of 
processing and classification techniques which have 
been used in both the single-trial and multi-trial 
settings. Additionally, the P300 data set of BCI 
Competition II (Schalk et al., 2004) is used to facilitate 
a performance comparison of three separate classifiers 
using various preprocessing agents in both the single-
trial and multi-trial format. 

 
MATERIALS AND METHODS 

 
P300 Pre-processing techniques: 
Trial averaging: Averaging multiple trials of data is 
one method by which time-domain features such as the 
P300 can be pre-processed. According to the central 
limit theorem (Yuehua et al., 2008), the average of n 
instances of a sample drawn from a population has a 
variance of σ2 where: 
 

 
2

population2

n

σ
σ =  (1) 

 
 Assuming the target P300 signal in each trial is 
constant, averaging multiple trials can reduce the 
variance (energy) of signal contaminants and leave the 
target signal unaltered. Pires et al. (2008) compare the 
effect of changing the amount of averaged trials on the 
error rate for a P300-based BCI using Bayesian 
Classification. They registered a monotonic decrease in 
the false positive, false negative and error rate as the 
number of averaged channels increase. Their results 
highlight the efficacy of the trial averaging approach. 
 However, there are drawbacks to this approach. 
The collection of multiple trails followed by a 
computation of their mean is time-consuming. The 
delay can be reduced by averaging fewer trials however 
this reduces the factor of noise attenuation. In addition, 
trial averaging only works well if the signal that 
undergoes averaging is stationary. For the P300, whose 
peak value and latency can vary in every trial, 
averaging can lead to data distortions. 
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Spatial filtering: Spatially distinct data sources, of 
different noise and target signal content, can be 
combined to create a single channel of high SNR. Such 
functions are called spatial filters. Formally defined, a 
spatial filter is a function that operates on signals 
originating at different points in space at the same 
instant in time.  
 Examples of spatial filters used in BCI 
development are the Laplace filter, Local Average 
Technique (LAT) and the Common Average Reference 
(CAR) (Peters et al., 2001). By definition, bipolar and 
mastoid referenced EEG data streams are also spatial 
filters since they produce an output by subtracting 
channels from a spatially distinct reference.  
 The Laplace and LAT filter operate only on 
adjacent channels whereas the CAR filter uses the 
entire data array. All of the filters, however, implement 
a form of mean value removal. This represents an effort 
to reduce the noise content of the data by using noise 
samples from multiple channels. In (Peters et al., 2001), 
the performance of each filter for Artificial Neural 
Network classification of a 3-class intention of motion 
task is compared. The LAT filter performed worse than 
no filter. Additionally, the Laplace and CAR filters 
showed equal performance, yielding 98% BCI 
classification accuracy. 
 Spatial filters are a feasible denoising option when 
multiple channels of data are present. However, as their 
transfer functions are constant and insensitive to the 
input data, they are suboptimal at noise removal.  
 
Principal component analysis: Transformation of the 
recorded data onto an orthogonal space is one method 
by which data can be decorrelated. This has the ability 
to fastrack the identification of noise and target 
components in the data. Principal Component Analysis 
(PCA) performs such a transformation (Pearson, 1901). 
PCA re-references multidimensional data to a new 
orthogonal basis such that there is no inter-channel 
covariance. Consequently, the covariance matrix of the 
transformed data set is diagonal.  
 
PCA can be used in two ways: As a data compression 
tool or a pre-processing agent. PCA performs data 
compression if some of the PCs are rejected and the 
others retained with no transformation back to the 
original space. Lenhardt et al. (2008) use PCA in this 
manner for P300 data. Alternatively, PCA acts as a pre-
processing agent if the original data is reconstructed 
following the stage of PC rejection. In this case, even 
though the dimensionality in the PC space has been 
reduced, the pre-processed data is of the same 
dimensionality as it was originally. Andrews et al. (2008) 
use PCA in this manner for single-trial P300 data. 

 The most common PC rejection criteria are the 
Residual Power (RP) and Kaiser method. The RP 
method retains the cumulative PCs that account for 
95% of the original data variance, whereas the Kaiser 
(KSR) method retains only those PCs whose variances 
are greater than 1. BCIs designs that incorporate PCA 
as a pre-processing tool have reported classification 
accuracies of 100% (Sellers et al., 2006). 
 
P300 classification methodologies: 
Statistical classifiers: Statistical classifiers rely 
explicitly on class probability functions for feature 
categorization. The three statistical classification 
methodologies commonly implemented are: Maximum 
Likelihood (ML), Maximum A Posteriori (MAP) and 
General Bayes (GB). Each method involves the 
maximization or minimization of a discriminant 
function that provides a probabilistic measure of class 
membership. 
 For an n-class classification problem, the ML 
method classifies an observation (feature vector) x 
according to the rule: 
 

N
n

class argmax P(x | C )=  (2) 

 
 P(x|CN), termed likelihood, is the conditional 
probability that observation x will occur given that a 
sample is drawn from class CN. The term “Maximum 
Likelihood” stems from the fact that the discriminant 
function of likelihood is maximized in order to 
determine class membership. The ML algorithm is 
advantageous since it benefits from both computational 
and conceptual simplicity. In (Serby et al., 2005), ML 
is used for P300-based BCI. 
 The major drawback of this approach is derived 
from the lack of consideration given to the proportion 
of class exemplars in training data. For example, 
consider the two-class classification problem where the 
sample space consists of 100 observations from class 1 
and 20 observations from class 2. The probability that a 
sample is drawn is class 1 is therefore 5 times greater 
than the probability a sample from class 2 would be 
drawn. It is intuitive to expect that the classification 
boundary would be shifted in favor of class 1. 
However, this is not considered by the ML algorithm. 
 The probabilities that embody the proportion of 
class exemplars in the training set are referred to as 
priors and are denoted as P(cN), where P(cN) is the 
probability that a member of class n is chosen. Unlike 
the ML classifier, the MAP rule utilizes both class 
priors and likelihoods for classification. The MAP rule 
classifies observation x according to the rule: 
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N
n

class argmax P(C | x)=  (3) 

 
 P(CN|x), referred to as posterior probability, is the 
probability that an observation is drawn from class n 
given that the observation is x. This is a better measure 
of class membership than likelihood. Posterior 
probabilities are determined using Bayes theorem. 
Bayes theorem states: 
 

N N
N

p(x | C ).p(C )
p(C | x)

p(x)
=  (4) 

 
 Since the denominator of the expression is constant 
for a given observation x, the classification rule is 
simplified to: 
 

N N
n

class arg max p(C ).p(x | C )=  (5) 

 
 For equal class priors, the MAP rule is equivalent 
to the ML rule. The method of k-Nearest Neighbors 
(kNN) permits the  
 
Linear discriminant analysis: Linear Discriminant 
Analysis (LDA) is a machine learning method which 
seeks a linear transformation of features onto a 1-
dimentional space that maximizes class separation. The 
transformation is sought such that inter-class mean 
distance is maximized and intra-class variance is 
minimized. This allows the classes to be separated by a 
point in 1-dimensional space. 
 The LDA projection of feature vector x can be 
expressed as a vector dot product: 
 
Y = w.x  (6) 
 
where, w is the projection vector. 
 The optimal global value for the pre-multiplying 
projection vector w can be found using vector calculus. 
In this regard, LDA is better than Artificial Neural 
Networks (ANN) as it is common for ANNs to 
terminated at a local minima.  
 
Genetic algorithms: High-dimensional feature sets 
based on P300 data trials are likely to contain features 
that correlate well with the P300 component. However, 
locating the optimal feature subset for a given classifier 
is often manifested as an optimization problem riddled 
with discontinuities and non-linearities. Consequently, 
the analytical methods of gradient descent/ascent 
become inapplicable. Genetic Algorithms (GA) 
however, are ideally suited for this sort of problem.  

 Evolutionary Algorithms (EA) (Fogel, 2005) are 
search and optimization techniques inspired by the 
mechanics of natural selection. Genetic Algorithms 
(GA) are a type of EAs. A GA is initialized by 
generating multiple random solutions to an optimization 
problem. These solutions which are referred to as 
individuals are evaluated to determine their fitness at 
solving the problem at hand. The fitter individuals are 
permitted a greater opportunity to produce new 
individuals, termed offspring, which populate a new 
generation of solutions. This process is reiterated until a 
predefined stopping criterion is met. 
 In (Citi et al., 2008), a GA is used to locate the 
optimal subset of joint-domain time-space-frequency 
features for single-trial P300 data 
 
Comparison of processing and classification 
techniques: The P300 EEG dataset of the BCI 
Competition II (Schalk et al., 2004) is used to evaluate 
and compare the performances of the reviewed 
processing and classification techniques. A full 
description of the EEG recording circumstances as well 
as the visual stimulus presentation paradigm is 
available online (Schalk, 2002). For each of the 
following techniques, each of the 64 EEG channels was 
digitally filtered using a 10th order low-pass Hamming-
window filter with 6 dB cutoff at 30Hz. 
 
LDA:  
Single-trial: EEG was collected 0-375 m sec following 
the flashing of each row/column for all 15 trials for all 
characters. There are therefore 180 (12×15) EEG 
segments associated with each character; 90 row 
segments and 90 column segments. 
 4-dimensional temporal feature vectors were 
extracted from 16 channels (FC1, FC4, FC6, C6, CP2, 
FP1, F2, F6, FT8, T7, TP7, PZ, PO7, POZ, PO8 and 
OZ)   by   down-sampling   the   time  segment  of 
200-375 m sec post-stimulus by a factor of 14. 
Subsequently, the features were concatenated to 
produce one 64-dimensional spatiotemporal feature 
vector. 180 feature vectors were extracted from 42 
characters (7560 features) and used to train the LDA 
classifier. However, for the purpose of classifier testing, 
only a single-trial was used.  
 The classification of each character was treated as 
two 6-class classification problems even though the 
LDA classifier was trained using two classes (P300 
present and P300 absent). For each character, 6 row 
feature vectors and 6 column feature vectors were 
extracted. The 64-dimensional pre-multiplying LDA 
projection vector was used to convert the 12 features 
into 12 1-d values. The target row, that is, the row 
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which contained the target character was classified as 
that row which has the largest 1-d value. The columns 
were classified in a similar manner. 
 
Multi-trial: EEG was collected 0-375 m sec 
following the flashing of each row/column for 15 
trials and then averaged. There are therefore 12 EEG 
segments associated with each character; 6 row 
segments and 6 column segments. The feature 
extraction stage of the single-trial approach was used to 
extract 12 feature vectors from each character leading 
to a total number of 504 feature vectors from 42 
characters. The rows and columns were classified in the 
same manner as the single-trial approach. 
 
PCA: PCA was used as a pre-processing tool using 
both the RP and KSR rejection criteria. PCA was 
implemented on the entire EEG runs as a whole and not 
on the individual post-stimulus EEG segments that is 
sometimes done.  
 
Genetically Optimized Spatial Filtering (GOSF): 
The techniques of genetic algorithms and spatial 
filtering were combined to produce one united 
preprocessing and classification methodology. A GA 
was used to obtain the optimal spatial filter for a simple 
classifier. 
 EEG was collected 300-400 m sec following the 
delivery of row/column stimuli. 12 EEG segments were 
therefore extracted from each character. Each segment 
was spatially filtered, resulting in one discrete-time 
series. The spatial filtering is represented by the matrix-
vector multiplication: 
 
Y = X.s  (7) 
 
Where:  
X = 24×64 matrix  
s = 64×1 vector 
 
 The P300 feature is taken as the most positive 
value in the resulting discrete-time series (Y). 
Therefore, for each character, there are 12 associated 
features: 6 row features and 6 column features. The row 
with the largest P300 feature is classified as the target 
row, i.e., the row that contains the character to which 
the attention is paid. The columns are similarly 
classified. Identification of the target row and target 
column uniquely identifies the character to which 
attention was paid. 
 
Statistical classifiers: Class probability functions are 
required to implement the statistical classifiers 
reviewed earlier in the text. However, the posterior 

probability can be directly estimated using the 
technique of K-Nearest Neighbors (KNN) thus making 
it possible to implement the MAP classifier. In order to 
classify a given feature vector, the KNN algorithm 
searches for the K closest feature vectors from the 
training set in Euclidean space. Features were extracted 
in the same manner as they were for the LDA classifier. 
K was chosen to be 10 after some preliminary 
simulations. 
 The posterior probabilities for class K is then given 
as: 
 

K
K

n
P(C | x)

K
=   (8) 

 
RESULTS 

 
 In addition to frequency filtering, three pre-
processing instances were employed for the 
performance comparison. They are RP-PCA, KSR-PCA 
and no further preprocessing. They were implemented 
for the three classification methodologies presented 
earlier in the text in both the Single-Trial (ST) and 
Multi-Trial (MT) settings. Percentage accuracy for both 
the training data and the unseen test data for all possible 
classification/preprocessing combinations are provided 
in Table 1. As aforementioned, the training data 
consists of 42 alphanumeric characters (84 6-class 
classification problems) whereas the test data consists 
of 31 alphanumeric characters (62 6-class classification 
problems). The test data was not seen by the classifier 
and as such provides an unbiased measure of classifier 
generalization. 
 
Table 1: P300 classification accuracy for LFA, GOSF and KNN 

classifiers over a range of preprocessing agents in both the 
single-trial and multi-trial settings 

   Accuracy 
   ----------------------------- 
   Training Test data 
Method Format Pre-processing data (%) (%) 
LDA ST NONE 63.10 75.81 
LDA MT NONE 98.81 100.00 
LDA ST RP-PCA 52.38 54.84 
LDA MT RP-PCA 98.81 100.00 
LDA ST KSR-PCA 63.10 75.81 
LDA MT KSR-PCA 98.81 100.00 
GOSF ST NONE 41.67 35.48 
GOSF MT NONE 95.23 80.65 
GOSF ST RP-PCA 36.90 30.62 
GOSF MT RP-PCA 70.24 64.52 
GOSF ST KSR-PCA 41.67 35.48 
GOSF MT KSR-PCA 95.23 80.65 
KNN ST NONE 40.48 35.48 
KNN MT NONE 84.52 80.65 
KNN ST RP-PCA 48.81 37.10 
KNN MT RP-PCA 88.10 79.03 
KNN ST KSR-PCA 40.48 35.48 
KNN MT KSR-PCA 84.52 80.65 
ST: Single-Trial; MT: Multi-Trial 
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DISCUSSION 
 
 Predictably, single-trial approaches perform worse 
than multi-trial approaches. The mean classification 
accuracy of the single-trail approaches across all 
classification and pre-processing techniques for unseen 
test data was 47.62% compared to 85.13% for the 
multi-trial format. The majority of single-trial 
approaches performed poorly (<50%) except LDA 
which exhibited a classification performance of 75.81% 
for unseen test data with no additional preprocessing 
besides frequency filtering. 
 For the majority of cases, RP-PCA attained worse 
classification performance than no preprocessing agent. 
This was so for all instances except that of the KNN 
classifier on single-trial data where the classification 
accuracy for RP-PCA (37.10%) was slightly better than 
no preprocessing agent. The general poor performance of 
the PCA algorithm using the RP PC rejection criterion is 
consistent with the findings of (Andrews et al., 2008). 
KSR-PCA performed the same as no preprocessing 
agent for every possible preprocessing/classification 
instance. KSR-PCA entails the rejection of PCs whose 
variances are less than 1. However, PCA was 
performed on the entire data set and not just the 
individual extracted segments. As such, no PC had a 
variance which was less than 1. Therefore, KSR-PCA 
resulted in the rejection of no PCs which is equivalent 
to no additional preprocessing. 
 With regard to different classification 
methodologies, LDA outperformed both GOSF and 
KNN with a mean classification accuracy of 84.41% on 
unseen test data. LDA was the only classifier to attain 
100% classification accuracy with no additional 
preprocessing on the multi-trial setting. In contrast, the 
GOSF and KNN classifiers achieved mean accuracies 
of 54.57 and 58.07% respectively. Of these three 
classifiers, GOSF is the most computationally and 
memory intensive and takes hours on average to 
execute. The KNN classifier is also memory-intensive 
as all training examples need to be stored in order to 
implement the classifier. For this reason, it is 
considered to be a computationally greedy algorithm. 
However, the LDA classifier executes in a matter of 
seconds and has minimal memory requirements.  
 In one rare instance, the single-trial LDA classifier 
outperformed a multi-trial approach. This is significant 
given the powerful preprocessing efficacy of trial 
averaging. As the main attraction of single-trial P300 
BCI operation is it’s time saving ability, the LDA 
classifier is ideal for single-trial operation if a fractional 
drop (25%) in system accuracy is tolerable to the 
specific application. It must be noted however, that the 
classification accuracy and communication delay are 
application-specific requirements. For cursor control, 

time is not as important as accuracy as wrong moves 
can be easily compensated for in subsequent actions. 
However, for wheelchair navigation, the communicated 
commands are likely to be success-critical. 
 Additionally, adaptive stimulus presentation 
schemes were observed in some multi-trial P300-based 
BCIs. These schemes limit the amount of 
presentations/trials based on the quality of the collected 
signal (Serby et al., 2005; Pearson, 1901). They do not 
present the time savings of single-trial operation or the 
classification accuracy of multi-trial designs, but they 
are a reasonable middle ground for performance/speed 
tradeoff. It will be worthwhile to examine the 
performance of LDA in the double-trial and triple-trial 
P300 setting as this mode will likely offer high 
accuracies along with significant time savings. 
 

CONCLUSION 
 
 In this study, a number of P300 processing 
techniques and classification methodologies were 
compared using the P300 data set of BCI Competition 
II in both the single-trial and multi-trial settings. Single-
trial P300 operation presents significant time savings to 
BCIs compared to the conventional multi-trial 
averaging approach. Furthermore, the single-trial mode 
of operation averts the problem of latency distortion 
associated with trial averaging. Predictably, the single-
trial approaches performed worse in general than the 
multi-trial approaches. However, the LDA classifier 
exhibited a classification accuracy of 75.17% in the 
single-trail setting with no pre-processing besides 
forward frequency filtering. It is also relevant to note 
that this accuracy surpassed the results of some multi-
trial setups. This is significant considering that the 
multi-trial setting entails the averaging of 15 trials. It 
may be worthwhile to investigate P300 double-trial and 
triple-trial operation in the future as it likely to produce 
significant time savings at reasonably high 
classification accuracies (>80%). 
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