
American Journal of Applied Sciences 6 (1): 78-88, 2008
ISSN 1546-9239
© 2008 Science Publications

Corresponding Author: Azzam Sleit, Department of Computer Science, King Abdulla II School for Information Technology,
University of Jordan, Amman, Jordan

78

Efficient Processing for Binary Submatrix Matching

Azzam Sleit, Wesam AlMobaideen, Mohammad Qatawneh, Heba Saadeh

Department of Computer Science, King Abdulla II School for Information Technology
University of Jordan, Amman, Jordan

Abstract: The heavy demand for large volumes of digital data has increased the interest in matrix-like
representation. Matrices are well organized data structures which are suitable to store uniform data in
order to simplify data access and manipulation. For several applications, the need is critical to
efficiently search for a specific pattern in matrix structures. A pattern can be represented as an n-
dimensional matrix which can be searched for within other larger n-dimensional matrices. This query
will be referred to as matrix submatching. In this paper, we present and compare two algorithms for
binary matrix submatching on the basis of time requirement. The first algorithm is a naive brute force
approach with O(n2m2) time requirement. The second approach is based on chain code transformation
which reduces the sizes of matrices resulting in less time requirement.
�

Key words: Matrix submatching, brute-force search, submatrix matching, chain code, transformation

INTRODUCTION

 The importance of matrices comes from their wide
range of applications in various areas such as image
processing, geographic information systems, speech
recognition, document classification, and
bioengineering[1,6,12]. Operations on matrices are at the
heart of scientific computing. Efficient algorithms for
working with matrices are therefore of considerable
practical interest. Matrix operations such as
multiplication received much research attention[2,3,5]. In
1992, Shen and Hu studied a new kind of relationship
between matrices, namely, approximate submatrix
matching (ASM). Given two n x m matrices A and B,
find a k×l submatrix in A and another k×1 submatrix in
B such that their difference is minimized under a
certain measure function. They discussed the ASM
problem under two typical measure functions, namely,
convolution and Euclidean distance[10]. In 2006,
Koyuterk and Grama built a software system, called
PROXIMUS, for error-bounded approximation of high-
dimensional binary attributed datasets based on
nonorthogonal decomposition of binary matrices. This
tool can be used for analyzing data arising in a variety
of domains ranging from commercial to scientific
applications. Using a combination of innovative
algorithms, novel data structures, and efficient
implementation, PROXIMUS demonstrated rather good
accuracy, performance, and scalability to large datasets.
The technique was experimented on diverse

applications in association with rule mining and DNA
microarray analysis[8].
 The matrix containment or submatching problem
received almost no attention in the literature. We
believe that the matrix submatching problem is quite
important and deserves attention from researchers due
to the vast applications that may require such
functionality. This article chooses to focus on defining
and solving the exact binary submatching problem and
will certainly pave the way for future research activities
leading to non-exact general matrix submatching. The
following definition formally presents the MSM
function which accepts two matrices A and B and
returns a set of (i, j) locations in matrix A where matrix
B completely appears in A starting at raw i and column
j of matrix A. Matrix B may appear zero or more times
in A.

Definition: Given two matrices A: nXn and B: mXm,
such that m � n, MSM (A, B) is the set of all
occurrences of B in A. Formally, for 1 � i � n and 1 � j
� m,
MSM(A, B)= {A(i, j): A(i, j) = B(1, 1), A(i, j+1) = B(1,
2), …, A (i, j+m-1) = B (1, m), and
 A (i+1, j) = B (2, 1), A (i+1, j+1) = B (2, 2),
…, A (i+1, j+m-1) = B (2, m), and
 A (i+2, j) = B (3, 1), A (i+2, j+1) = B (3, 2),
…, A (i+2, j+m-1) = B (3, m), and
… A (i+m-1, j) = B (m, 1), A (i+m-1, j+1) = B (m, 2),
…, A (i+m-1, j+m-1) = B(m, m)}

Am. J. Applied Sci., 6 (1): 78-88, 2008

 79

BRUTE-FORCE METHOD

 The conventional algorithmic solution for the
search problem is to sequentially search for a particular
pattern until the pattern has either been found or the
search space exhausted without any match. This
approach is typically referred to as brute-force search or
exhaustive search[2,4,9]. Brute-force search is simple to
implement, and will always find a solution if it exists.
Brute-force search has the advantage that it requires no
imagination or cleverness. Fig. 1 describes a brute-force
algorithm for the matrix submatching problem. The
algorithm expects two matrices A:nXn and B:mXm
where m�n as input, while A is the main matrix, B is
the submatrix. The algorithm goes through the first n-
m+1 rows of the main matrix and for each row it scans
the first n-m+1 columns in order to find the upper left
corners of potential matches. For each element of the
(n-m+1)2 elements in the main matrix, the algorithm
performs at least one comparison and at most m2
comparisons with the elements of the submatrix. It is
obvious that the Brute-force algorithm requires at least
(n-m+1)2 (i.e. Ω(n2)) and at most m2(n-m+1)2 (i.e.
O(n2m2)) comparisons.
 Fig. 3 illustrates a trace for the Brute-Force
algorithm with respect to the main matrix A: 6×6 and
B: 2×2, which are presented in Fig. 2. The elements of
the first five rows and those of the first five columns are
inspected as potential upper-left corner matches. For
various iterations, the shaded areas in the main matrix
represent the elements which are compared with the
corresponding ones of the submatrix. The total number
of comparisons required to return MSM(A, B) = {A(1,
4), A(4, 5)} is 46 comparisons.

CHAIN CODE BASED METHOD

 The matrix submatching or matrix containment
problem implies searching for a pattern in the form of a
matrix inside a larger matrix. The brute-force algorithm
tends to work well for matrices which have no
assumptions with respect to their contents. This section
introduces another solution for the matrix submatching
problem based on chain coding which is a succinct way
of representing a list of points[6]. Only a starting point is
represented by its location while the other points are
represented by successive displacements from point to
point along a certain path. For several applications of
matrices such as image processing, a matrix tends to
have repeating adjacent values representing objects.
Although, the proposed solution works for general grey
values of elements in matrices, the algorithm will be
discussed with respect to binary matrices. Using the

Algorithm Brute-Force Matrix Submatching : MSM(A, B)
1. // A: nXn and B: mXm, where m<=n
2. MSM= {};
3. mrow_idx = 1; mcol_idx = 1; matched_elements = 0;
4. while (mrow_idx <= n-m+1) do {
5. match = UnKnown;
6. matched_elements = 0;
7. srow_idx = 1; scol_idx = 1;
8. candidate_r_idx = mrow_idx; candidate_c_idx = mcol_idx;
9. while ((srow_idx <= m) && (match= =UnKnown) &&
10. (A (mrow_idx, mcol_idx) = = B (srow_idx, scol_idx))) do
11. {
12. matched_elements = matched_elements + 1;
13. if (matched_elements = = size(B))
14. match = Found;
15. else
16. { scol_idx = scol_idx+1;
17. mcol_idx = mcol_idx+1;
18. if (scol_idx > m) {
19. srow_idx = srow_idx +1;
20. scol_idx = 1;
21. mrow_idx = mrow_idx +1;
22. mcol_idx = mcol_idx – m; }
23.
24. if (mcol_idx > n)
25. srow_idx = m+1;
26. } // end else.
27. } // end while.
28. mrow_idx = candidate_r_idx; mcol_idx = candidate_c_idx;
29. if (match = = Found)
30. MSM �A(candidate_r_idx, candidate_c_idx);
31. mcol_idx = mcol_idx +1;
32. if (mcol_idx > n-m+1)
33. { mrow_idx = mrow_idx +1;
34. mcol_idx = 1;
35. } // end if.
36. } // end while.

Return MSM;

Fig. 1: Algorithm brute-force matrix submatching

Main-Matrix

Sub-Matrix

A: 6X6 B: 2X2

Fig. 2: Example of main matrix A: 6×6 and submatrix

B: 2×2

Chain-code based technique, the process of matrix
submatching goes through two phases; namely,
transformation and matching.

Transformation phase: “chain code matrix
transformation” The objective of the transformation
phase is to convert the main matrix and submatrix into
two sets of vectors with each vector represents the
chain code of the elements of the corresponding row in
the original matrix. The chain code based
transformation takes advantage of repeating values of

Am. J. Applied Sci., 6 (1): 78-88, 2008

 80

Row = 1

of comparisons = 2
of occurrences = 0

MSM(A,B) = { }

Row = 1

of comparisons = 4
of occurrences = 0

MSM(A,B) = { }

Row = 1

of comparisons = 6
of occurrences = 0

MSM(A,B) = { }

Row = 1

of comparisons = 10
of occurrences = 1

MSM(A,B)={A(1, 4) }
Row = 1

of comparisons = 11
of occurrences = 1
MSM = { A(1, 4) }

Row = 2

of comparisons = 16
of occurrences = 1
MSM = { A(1, 4) }

Row = 3

of comparisons = 18
of occurrences = 1
MSM = { A(1, 4) }

Row = 3

of comparisons = 20
of occurrences = 1
MSM = { A(1, 4) }

Row = 3

of comparisons = 24
of occurrences = 1
MSM = { A(1, 4) }

Row = 3

of comparisons = 25
of occurrences = 1
MSM = { A(1, 4) }

Row = 4

of comparisons = 27
of occurrences = 1
MSM = { A(1, 4) }

Row = 4

of comparisons = 30
of occurrences = 1
MSM = { A(1, 4) }

Row = 4

of comparisons = 32
of occurrences = 1
MSM = { A(1, 4) }

Row = 4

of comparisons = 36
of occurrences = 2

MSM = {A(1, 4), A(4, 5)}

Row = 5

of comparisons =45
of occurrences = 2

MSM = {A(1, 4), A(4, 5)}

Row = 5

of comparisons =46
of occurrences = 2

MSM = {A(1, 4), A(4, 5)}

Fig. 3: Trace for the brute-force algorithm with respect to matrices A and B in Fig. 2

Am. J. Applied Sci., 6 (1): 78-88, 2008

 81

// a ’ (i, 1) is the number of the first consecutive zero-value elements in A i starting with a(i, 1).
 a ’ (i, 1) � 0 if a(i, 1)=1
 a ’ (i, 1) � r 1 if a(i, 1)= a(i, 2)= …= a(i, r 1)=0, where r 1 <= n
 IF (r 1 == n) THEN { k i =1; STOP}

// a ’ (i, 2) is the number of the next consecutive one-value elements in A i starting with a(i, r 1 +1).
 a ’ (i, 2) � r 2 if a(i, r 1 +1)= a(i, r 1 +2)= …= a(i, r 1 + r 2)=1, where (r 1 + r 2)<= n
 IF ((r 1 + r 2)== n) THEN { k i =2; STOP}

// a ’ (i, 3) is the number of the next consecutive zero-value elements in A i starting with a(i, r 1 + r2+1).
 a ’ (i, 3) � r 3 if a(i, r 1 + r2 +1)= a(i, r 1 + r 2 +2)= …= a(i, r 1 + r 2 + r 3)=1, where (r 1 + r 2 +r 3) <=n
 IF ((r 1 + r 2 +r 3)== n) THEN { k i =3; STOP}
…, and so on.

Fig. 4: Chain code matrix transformation rules

successive elements within a specific row in order to
reduce the size of the main and sub matrices. During
the transformation (i.e. pre-processing) phase of matrix
A, starting with the first row, each row Ai[a(i, 1), a(i,
2), a(i, 3), …, a(i, n)] in the nXn matrix is parsed and
transformed into a vector Ai

’[a’(i, 1), a’(i, 2), a’(i, 3), …,
a’(i, ki)], where ki � n is the length of the vector Ai

’
corresponding to row Ai, i=1, 2, …, n. The contents of
the vector Ai

’ will be determined as per Fig. 4.
 It can be seen from the previous description that
the first element of the vector Ai

’ represents the number
of consecutive zeros starting with a(i, 1) of row Ai.
However, if a(i, 1) contains one instead of zero, the first
element of the Ai

’ vector will be assigned zero. The
second element of the Ai

’ vector will be assigned the
number of the next successive ones while the third
element will receive the number of the next successive
zeros and so on. All rows of the main matrix and those
of the submatrix will be transformed in a similar
fashion.

 Figure 5 displays the chain code transformation for
main matrix A: 6×6 and submatrix B: 2×2. Obviously,
the transformation vectors corresponding to the rows of
a particular matrix may not be of equal sizes. Actually,
the size of the transformation vector Ai

’ corresponding
to row Ai of n elements may become as small as one in
the best case. For example, Ai = [0, 0, 0, …, 0] will be
transformed into Ai

’ = [n]. However, when Ai = [1, 0, 1,
…, 0/1], the transformation vector is Ai

’ = [0, 1, 1, 1,
…, 1] and will have its maximum possible size; i.e.
n+1. The size reduction of matrices using chain code

transformation is more substantial when the matrix
frequently contains continuous streams of identical
values. This is typical in applications related to image
processing, voice representation matrices and traffic
control.

Fig. 5: Chain code transformation for matrices A and B

of Fig. 2

 We can notice from Fig. 5 that the transformation
phase reduces the size of the matrices depending on
sequential repetition of the values in the matrix. This
reduction in size will decrease the time of matrix
searching using our proposed algorithm comparing with
the brute-force algorithm that works on the original
matrices.

Am. J. Applied Sci., 6 (1): 78-88, 2008

 82

Table 1: Variables utilized in the chain code based search Algorithm
Variable name Description
TMM n X n transformed main matrix corresponding to main matrix A.
TSM m X m transformed sub matrix corresponding to submatrix B.
Offset_row Indicates the offset of the row in the original main matrix A.
Offset_col Indicates the offset of the column in the original main matrix A.
Result A 2-D matrix [row, col], where row is Offset_row and col is Offset_col.
Flag Boolean variable, set to “True” if the start point of matrix submatching is found.
Stop Boolean variable which indicates the end of the matching process; i.e. when the end of TMM is reached.
Break Boolean variable which indicates the end of the matching process; i.e. when the end of TSM is reached.
Sub_col Number of columns in the current Sub_row.
S_col Number of columns in the original submatrix B.
Main_col Number of columns in the current Main_row.
M_col Number of columns in the original matrix A.
i, j Row and column counters in TMM, respectively.
n, m Row and column counters in TSM, respectively.

Fig. 6: Flow chart for finding the first point of match in TMM

Search phase: “matrix submatching algorithm” The
task of a submatching algorithm is to find all
occurrences of a two-dimensional matrix B: m×m in a
two-dimensional matrix A: n×n. This section introduces
a matrix submatching algorithm which utilizes the
chain code transformation vectors of A and B. Table 1
states the variables used in the search phase while
Fig. 6 illustrates the first part of the algorithm.
 The chain code based search algorithm builds on
the assumption that each vector of the transformed

matrices starts with the count of zeros. Obviously, if the
first value in the vector is zero, it reflects that the
corresponding row in the original matrix starts with
one. Fig. 6 illustrates a flow chart for finding the first
point of match in TMM.
 If TMM starts with a number of zeros or ones
larger than that in TSM, we call the function: Check
leading zeros or ones as explained in Fig. 7 to search
for submatrix matching sequentially.
 If the start point of match is found, the function:
Return offset in original Main Matrix () as described in

Am. J. Applied Sci., 6 (1): 78-88, 2008

 83

Algorithm: Check leading zeros or ones()

1. if (TMM (i, j) > TSM (n, m))
2. if (TSM (n,1) = = S_col || [(TSM (n, 1) = = 0 && TSM (n, 2) = = S_col)])
3. Leading Zeros or ones in the TMM , start searching sequentially like the brute force

algorithm.
4. continue;

Fig. 7: Check leading zeros or ones function

Algorithm: Return offset in original Main Matrix ()
 // find the exact row and column in the original Main Matrix.

1. counter = 0;
2. if (Flag = = false)
3. next = j; // to calculate the next position from which we will continue searching.

4. if (j > 1)
5. { for (d = 1 : j - 1)
6. counter = counter + TMM (i, d); } // find the summation of previous values .
7. else
8. counter = 0;

9. offset_row = i;
10. offset _col = TMM (i, j) – TSM (n, m) + counter + 1; // we add 1 because the matrix’s

index starts from 1.

11. Return offset_row, offset_col;

Fig. 8: Return offset in original main matrix function

Fig. 8 is invoked to find the row and column offsets in
the original main matrix. Then, Flag is set to True.
 After finding the first point of match, we continue
searching for potential other points of match as per Fig.
9. Search is terminated when one of the following two
cases occurs:

• If the last element of TSM Matrix has been

reached, then a sub-matrix match has been found
• If the value of TMM < the corresponding in TSM,

then Flag is set to FALSE

 If the end of the current row in TSM has been
reached, the function: Get the new values(i, j, n, m)
will be called in order to update the values of counters i,
j, n, and m. Fig. 10 shows how the function works.
 To update the value of counter j, function Return
offset in TMM () as demonstrated in Fig. 11 will be
invoked. This function will return the exact column in
the next row in TMM to start search.
 After finding the value of j (i.e., lines 1-5) of Fig.
11 which indicates the column in the next row in TMM,
we continue searching while maintaining that m (i.e.,
column counter in TSM) is pointing to a valid position.
If the row starts with 1, then the first column will
contain 0. In this case, we increment m to point to the
next location (i.e., line 6). Then, we compare the
location to which j is pointing with the corresponding

Fig. 9: Flow chart for finding subsequent points of

match after detecting the first one

Am. J. Applied Sci., 6 (1): 78-88, 2008

 84

A lgorithm : get the ne w value s (i , j, n , m)
 // check if w e reach the end o f the current ro w in the T S M .

1 . if (m > S ub_co l
2 . { m = 1 ;
3 . if (n+1 > Sub_ro w) {
4 . n = 1 ; b reak = true; // to b reak fro m the w h ile . R eturn ;}

5 . e lse{ n = n + 1 ;
6 . if (i + 1 < = M ain_ ro w)
7 . i = i + 1 ;
8 . e lse { stop = true ; b reak = true; // to b reak from the w hile . R eturn ;}
9 . } // end else.

10 . [i, j] = R eturn offse t in T M M ()
11 . } // end if.

12 . e lse { m = m + 1 ; j = j + 1 ; }
13 . R eturn i, j , n , m ;

Fig. 10: Get the new values of i, j, n, m function

A lgorithm: Return offset in TM M ()
 // return the exact column in the next row in TM M to start searching from.

1. w = 0; sum = 0;
2. wh ile (sum < offset_col) {
3. w = w + 1;
4. sum = sum + TM M (i, w); }
5. j = w;

6. if (TSM (n, m) = = 0) m = m + 1;

7. if (m od (j, 2) ~ = 0 && m od (m , 2) = = 0) {flag = false; break = true; Return ; } // j pointing
to a one location , while the search m ust start from a zero location .

8. if (m od (j, 2) = = 0 && m od (m , 2) ~ = 0) {flag = false; break = true; Return ; } // j
poin ting to a zero location , wh ile the search must start from a one location .

9. [w, x] = Return offset in original Main M atrix ();

10. if (~ (x >= offset_col && x <= offset_col + (TSM (n, m) - 1)))
11. {flag = false; break = true; Return ; }

Fig. 11: Return offset in TMM function

A lg o r ith m : E n s u re p o s i t io n ()

 / / e n s u re th a t th e s e a rc h in g p ro c e s s w il l s ta r t f ro m a lo c a t io n r e p re se n t in g 0 .

1 . i f (m o d ((n e x t + 1) , 2) ~ = 0)
2 . j = n e x t + 1 ;
3 . e ls e
4 . { j = n e x t + 2 ; }
5 . m = 1 ; n = 1 ; i = o ff s e t_ ro w ;
6 . R e tu r n i, j , n , m ;

Fig. 12: Ensure position function

one in TSM. If the two are not pointing to the same
location, we set Flag to false. If they are pointing to the
same location, the function Return offset in original
Main Matrix () will be called to check that the value of j
remains in the correct boundaries of search (i.e., lines 7-

11). Then, we check if the flag is true to register the
offset_row and offset_col in result matrix as the first
occurrence. Fig. 12 displays the function which
validates location correctness. The whole search
process will stop once we reach the end of TMM.

Am. J. Applied Sci., 6 (1): 78-88, 2008

 85

 Fig. 13 shows a trace using the chain code based
algorithm for the main and sub matrices shown in Fig.
5. While the brute-force algorithm requires 46
comparisons to complete the search of the indicated
matrices, the chain-code based algorithms requires only
17 comparisons to find all occurrences. This is due to

 the reduction in size caused by the transformation
phase by almost 50%. A comprehensive experimental
comparison between the two algorithms in terms of the
required number of comparisons to find all occurrences
is discussed in the following section.

No. of comparisons: 1

TMM (i, j) >= TSM (n, m)
offset_row = 1

offset_col =(4 - 1)+ 0+1 = 4
i = 1, j = 1, n = 1, m = 1,

No. of comparisons:2

TMM (i, j) >= TSM (n, m)
offset_row = 1
offset_col = 4

i = 1, j = 2, n = 1, m = 2,

No. of comparisons:3

TMM (i, j) >= TSM (n, m)
offset_row = 1
offset_col = 4

i = 2, j = 2, n = 2, m = 2.

Match found

No. of comparisons: 4

TMM (i, j) < TSM (n, m)
offset_row = 0
offset_col = 0

i = 2, j = 1, n = 1, m = 1,

No. of comparisons: 5

TMM (i, j) < TSM (n, m)
offset_row = 0
offset_col = 0

i = 3, j = 1, n = 1, m = 1,

No. of comparisons:6

TMM (i, j) >= TSM (n, m)
offset_row = 3

offset_col = (2 - 1)+ 2+1 = 4
i = 3, j = 3, n = 1, m = 1,

No. of comparisons:7

TMM (i, j) >= TSM (n, m)
offset_row = 3
offset_col = 4

i = 3, j = 4, n = 1, m = 2.

No. of comparisons:8

TMM (i, j) >= TSM (n, m)
offset_row = 0
offset_col = 0

i = 4, j = 2, n = 2, m = 2.

In TMM start searching from j
= 2, incorrect lower boundary.

No. of comparisons:9

TMM (i, j) >= TSM (n, m)
offset_row = 4

offset_col = (2 - 1)+0+1 = 2
i = 4, j = 1, n = 1, m = 1,

No. of comparisons:10

TMM (i, j) >= TSM (n, m)
offset_row = 4
offset_col = 2

i = 4, j = 2, n = 1, m = 2

No. of comparisons:11

TMM (i, j) >= TSM (n, m)
offset_row =0
offset_col = 0

i = 5, j = 1, n = 2, m = 2.

In TMM start searching from j =
1, which indicate a location which
contains summation of
consecutive zero.

No. ofcomparisons:12

TMM (i, j) >= TSM (n, m)
offset_row = 4

offset_col =(1 - 1)+4+1 = 5
i = 4, j = 3, n = 1, m = 1.

Am. J. Applied Sci., 6 (1): 78-88, 2008

 86

No. of comparisons:13

TMM (i, j) >= TSM (n, m)
offset_row = 4
offset_col = 5

i = 4, j = 4, n = 1, m = 2,

No. of comparisons:14

TMM (i, j) >= TSM (n, m)
offset_row = 4
offset_col = 5

i = 5, j = 2, n = 2, m = 2

Match found

No. of comparisons:15

TMM (i, j) >= TSM (n, m)
offset_row =5

offset_col = (4-1)+0+1= 4
i = 5, j = 1, n = 1, m = 1.

No. of comparisons:16

TMM (i, j) >= TSM (n, m)
offset_row = 5
offset_col = 4

i = 5, j = 2, n = 1, m = 2.

No. of comparisons:17

TMM (i, j) >= TSM (n, m)
offset_row = 5
offset_col = 4

i = 6, j = 3, n = 2, m = 2.

In TMM start searching from j =
3, which indicate a location
contains summation of
consecutive zero.

Fig. 13: Trace for the chain-code based matrix submatch algorithm for matrices A and B in Fig. 5.

RXPERIMENTAL RESULTS

 The brute-force and chain-code based algorithms
are considered sequential search mechanisms for the
matrix submatching problem. In order to
experimentally compare the performance of both
algorithms, we randomly generated a database for main
matrices with sizes 50×50, 75×75, 100×100 and
200×200 and another one for submatrices with sizes
10×10, 15×15, 25×25, 30×30, 35×35, 40×40 and 45×45
using Matlab. The databases contain 1000 occurrences
of each indicated size and the average numbers of
comparisons required by both algorithms to find the

occurrences of submatricies in the corresponding main
matrices were computed. The outcome of the
experiments is summarized in Fig. 14. Our experiments
clearly show that the chain code based algorithm
requires half the number of comparisons required by the
brute-force approach. This is basically attributed to the
compression in size due to the preprocessing phase of
the chain-code approach. For several applications, it is
typical that a database of matrices exists and a query is
posed against the database to retrieve all matrices which
contain an incoming sub matrix[7, 11]. In such cases, the
preprocessing phase for the main matrices needs to be
done only once.

Am. J. Applied Sci., 6 (1): 78-88, 2008

 87

Fig. 14: No of Comparisons required by the brute-force and chain-code based Algorithms

Table 2: Average percentage of square matrix size (NXN) reduction

due to preprocessing phase
 Percentage of Percentage of
Matrix N= size reduction Matrix N= size reduction
2 0 500 49.8
5 30 1,000 49.9
10 40 5000 50.0
15 43.3 10000 50.0
20 45.0 25000 50.0
25 46.0 50000 50.0
50 48.0 100000 50.0
75 48.7 500000 50.0
100 49.0 1000000 50.0

 Table 2 demonstrates the average percentage of
size reduction for randomly generated square binary
matrices with various sizes. The maximum average
percentage of size reduction is 50%.

CONCLUSION

 This article brings focus to the matrix submatching
operation as an essential problem to be solved for many
applications including watermarking, geographic
information systems and pattern recognition. Most of
these applications start with a database of matrices and
require the retrieval of those matrices which contain an
incoming matrix. The chain code based approach

presented in this paper consists of two phases; namely,
transformation and matching. The transformation phase
reduces the sizes of all relevant matrices by nearly half
of their original sizes bringing about clear saving in the
number of comparisons when compared with the brute
force approach. Although, this paper demonstrated
superiority of the chain-code approach for binary
square matrices, the results hold true for general
matrices.

ACKNOWLEDGMENT

 The authors would like to acknowledge the
contribution of Thaer Al-Ibaisi and Khitam Jbara in
obtaining experimental results.

REFERENCES

1. Angiulli, F. and E. Cesario, 2006. A Greddy Search

Approach to Co-clustering Sparse Binary
Matrix, 18th IEEE International Conference on
Tools with Artificial Intelligence
(ICTAI'06), pp: 363-370.

2. Bronson, R., 1989. Schaum's Outline of Theory
and Problems of Matrix Operations, McGraw-Hill.

Am. J. Applied Sci., 6 (1): 78-88, 2008

 88

3. Coppersmith, D. and S. Winograd, 1990. Matrix
multiplication via arithmetic progressions, J.
Symbolic Computat., 9: 251-280.

4. Cormen, T.H., C.E. Leiserson, R.L. Rivest, and C.
Stein, 2001. Introduction to Algorithms. 2nd Edn.,
The MIT Press.

5. Jane, A., 1995. Parallel search with matrices with
sorted column, 7th IEEE Symposium on Parallel
and Distributed Processing, pp: 224-228.

6. Mei-Chen, Y., Y. Huang and J. Wang, 2002.
Scalable Ideal-Segmented Chain Coding, IEEE
international conference on image processing.

7. Knuth, D.E., J.H. Morris and V.R. Pratt, 1977. Fast
pattern matching in strings, SIAM. J. Comput.,
6 (2): 323-350.

8. Koyuturk, M. and A. Grama, 2006. Nonorthogonal
decomposition of binary matrices for bounded-
error data compression and analysis, ACM
transactions on mathematical software,
32 (1): 33-69.

9. Robinson, S., 2005. Toward an optimal algorithm
for matrix multiplication. SIAM News, 38 (9).

10. Shen, X. and Q. Hu, 1992. Approximate submatrix
matching problems. Proceeding of the ACM
Symposium on Applied Computing (SAC’92),
pp: 993-999.

11. Sleit, A., W. AlMobaideen, A. Baarah and
A. Abusitta, 2007. An efficient pattern matching
algorithm. J. Applied Sci., 7 (18): 2691-2695.

12. Smith, P., 1991. Experiments with a very fast
substring search algorithm. Software-practice and
experience. 21 (10): 1065-1074.

