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Abstract: The analysis of the sieves vibrations in the case of screening civil engineering construction 
bulk materials is usual made by using some differential equations depending on parameters related to 
different material and sieves characteristics. One of those parameters is the throwing coefficient -c- 
that is the ratio between the force capable to throw up the particle from the sieve surface, and the 
gravity of this particle. The throwing coefficient is one of the most important characteristics of a sieve 
dynamic behavior and its values are often used to establish a particular case to the sieve oscillations. In 
order to find the position of a particle that jump on the screen surface, a system of 6 differential 
equations with 6 unknown integrating constants can be established. All the involved equations are in 
transcendent form and it is necessary to solve the system by computer algorithms. First of all, the 6 
unknown integrating constants are replaced with related linear relations depending on the throwing 
coefficient. Secondly, an original computer algorithm based on the so-called false-position method is 
proposed. In order to validate it, the new system of 6 differential equations depending on the throwing 
coefficient is solved for some particular cases of the particle jumps. Finally, the solutions are compared 
for the same conditions of the initial used system.  The conclusion is that in the case of the construction 
bulk materials, the two systems give almost similar solutions. In this case, the new system depending 
on the throwing coefficient is much easier to work with that the initial system. Another advantage is 
that in the very first steps one can choose the throwing coefficient and establish the best vibrating 
regime. 
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INTRODUCTION 

 
 Establishing the most favorable vibration operation 
conditions for swinging screens is the essential problem 
when devising such equipment. The amplitude and the 
frequency of vibrations are the decisive factors that 
influence the vibrating conditions. The sieves operate 
best in over-critical angular resonant regime, at high 
frequencies coupled with small amplitudes for materials 
with a mainly fine grading, and at small frequencies 
coupled with high amplitudes for sorting materials with 
mainly coarse grading. 
 In the literature[1,2], there are guiding principles that 
recommend how to adopt the frequencies, the 
amplitudes, and how to adopt the dynamical conditions. 
 The most used vibrating system in screening 
construction bulk material is the inertia one. In Fig. 1 
the main components of such equipment are presented.  
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Fig. 1: Inertia vibrating one-deck screen components 
 
For the case of sorting construction bulk material on 
vibrating screens with inertia driving system, the over-
critical regime is generally adopted, because it has 
lower  sensitivity  to  perturbations.  For example, when  
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Fig. 2: Over-critical vibratory regime 
 

 
 
Fig. 3: The particle jump in the case when the jump is 

less than a complete sieve oscillation 
 
an over-dose of bulk material occurs accidentally on the 
screen, the equipment presents a tendency to go to 
lower values of frequencies, and also, the amplitude to 
go to higher values Fig. 2. There is the advantage of 
obtaining an intense regime, and that will free faster the 
surface of the screen from the over-dose. 
 During a normal vibratory functioning regime, 
there are two periods of time from the point of view of 
the movements of the sieve: the first one (Interval index 
I in Fig. 3-4) in which the movement of the screen 
makes possible the acceleration, the deceleration and/or 
the stop of the particle movements on the screen 
surface, but the particle will stay all the time on this 
surface. 
 And a second one (Interval index II) in which the 
movement of the screen makes possible the jump of the 
particle from the surface of the screen.  
 Generally is accepted[1-3] that the sieve moves 
describe an ellipse. In this case, the equestion are Fig. 6, 

 
 
Fig. 4: The particle jump in the case when the jump is 

as long as the complete sieve oscillation 
 

   
( )
( )

a sin t

b sin t

ξ = ⋅ ω + ε

η = ⋅ ω
   (1) 

 
 In formula (1), ξ-represents the elongation of the 
sieve motion on Oξ axis, η-represents the elongation of 
the sieve motion on Oη axis, a-represents the half of the 
amplitude of the movement on ξ-line, b-represents the 
half of the amplitude of the movement on η-line; ω-
represents the angular frequency of the movement; ε- 
the difference of phase. 
 The acceleration in this case on η-line is: 
 
   ( )2b sin tη = − ⋅ ω ⋅ ω��    (2) 

 
 The maximum value of expression (2) is: 
 
   2bη = − ⋅ ω��    (3) 
 
 The expression of gravitation acceleration 
component on η-line is: 
 
   g g cosη = ⋅ α    (4)                  

 
 In order to be able to define the movement 
conditions for each of those intervals, the throwing 
coefficient (symbol c) can be used. The throwing 
coefficient is defined as the minimum value of the ratio 
between the force capable to throw up the particle, and 
the gravity of this particle: 
 

   
2 2

0

b sin t b 1
c

g cos g cos K
⋅ ω ⋅ ω ⋅ ω= = =

⋅ α ⋅ α
   (5) 

 
 In this inertia system, the particle jumping state 
often used is one single jump corresponding to one, two 
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or several complete oscillations of the screen. This state 
of the jump is established[1,3] by the values of the 
throwing coefficient: for instance, the particle will 
begin to move only when the throwing coefficient c is 
greater that 1. That is because in sorting bulk material 
only a dynamical regime where the particle jumps over 
the surface is possible to adopt. That will give the first 
condition: 
 
    c 1>    (6) 
 
 Also, this jump occurs[3] and takes place in the 
same time when the screen makes a complete 
oscillation. That will give the second condition: 
 
    2c 1 3.29= + π =    (7) 
 
 There are also other conditions that must be 
realized, that imposed for the throwing coefficient other 
values, in order to obtain the best dynamical behavior 
for the screen. Other conditions to impose are: 
 
• The particle in its jump must move higher than the 

thickness of the wire from which the sieve is made 
• The length of the particle jump must be big enough 

the particle to pass at least in the next eye of the 
sieve, 

• The dynamical regime must be sufficient to avoid a 
weak jump of the particle 

 
 So, from all these considerations the throwing 
coefficient must have, for the construction bulk 
materials, values in-between: 
 
    2.5 c 3.25≤ ≤    (8) 
 
 We have two possible situations from the point of 
view of the particle’s movements on the sieve:  
 
• The particle jump is less than a complete sieve 

oscillation, so the particle will move together with 
the sieve before another jump will occurs (Fig. 3)  

• The particle jump is as long as the one complete 
sieve oscillation is. This is the ideal case, and 
means that the particle stays on the sieve only in 
the moment of its fall on the sieve, and 
immediately after the particle is thrown again by 
the sieve oscillation (Fig. 4)  

 
 The first regime is an ideal one. It might be present 
sometimes, but even if this regime is the one that is 
wanted and calculated, due to numerous variable factors  
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Fig. 5: Mobile axis (Z, S) and static axis (η, ξ) for the 

sieve-particle system 
 
(such as the thickness of the material layer on the sieve, 
and the collisions in-between the particles inside the 
material layer, the moist of the material, etc.) after an 
ideal, long jump, several others short ones follow. The 
second regime is present almost permanently on the 
particle evolution on the sieve. So, it is preferable to 
adopt from the very beginning the first regime (Fig. 3), 
which is closer to the real phenomenon.   
 In order to build a mathematical model we consider 
such a mobile particle-screen complex as in Fig. 5, 
moving in the dynamic regime as in Fig. 3. In Fig. 5: 
the ηOξ axes are the motionless ones, and the zO1s axes 
are the ones that move together with the sieve, m1 
represents-the total mass of the screen, m2-the mass of 
the particle, kη, kξ - the springs’ rates on Oη, 
respectively, on Oξ axes. Also, generally the inertia 
screens have a gradient � to assure a better fluidity of 
the material on the sieve. 
 In the Interval I (the particle and the sieve stay in 
contact), in the case of the movement of one single 
particle on the sieve of an inertia screen, as in Fig. 5, 
the screen movements are described by the next 
differential equation[2,3]: 
 

   
1 2 1 2

k F
sin t g cos

m m m m
η ηη + ⋅ η = ⋅ ω − ⋅ α

+ +
��    (9) 

 
 In Eq. (9), new dimensionless variables are 
introduced, variables defined in (10). In (10): z-
represents dimensionless elongation, ω-represents the 
angular frequency of the movement of the screen, ω1-
represents the angular resonant frequency of the 
movement of the screen, k1-frequency coefficient, km-
mass coefficient. 
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 The  dimensionless  form  of  the  Eq.  (9) is 
defined in (11). 
      

   
2 2

21 1
1 1

m m

k k
z z sin k n

1 k 1 k
′′ + ⋅ = ⋅ τ − ⋅

+ +
   (11) 

 
 The Eq. (11) has the following solution: 
 

       

( )

1
I I

m

1
I

m

2
1

1 m2
m 1

k
z A sin

1 k

k
B cos

1 k

k
sin n 1 k

1 k k

� �
= ⋅ ⋅ τ +� �

� �+� �

� �
⋅ ⋅ τ −� �

� �+� �

− ⋅ τ − ⋅ +
+ −

   (12) 

 
 In the above Eq. (12), AI and BI represent the 
integrating constants. The Eq. (12) represents the 
movement of the screen with the particle on the sieve in 
Interval I.  
 In Interval II, we have the equation of the 
movement of the sieve, without the presence of the 
particle on it:  
      

   
1 1

k F
sin t g cos

m m
η ηη + ⋅η = ⋅ ω − ⋅ α��    (13) 

 
 With  the  same  new  variables  from  (10),  the 
Eq. (13) becomes: 
 
   2 2 2

1 1 1 1z k z k sin k n′′ + ⋅ = ⋅ τ − ⋅    (14) 
 
 This equation has the following solution (15): 
 

   
( ) ( )II II 1 II 1

2
1

12
1

z A sin k B cos k

k
sin n

1 k

= ⋅ ⋅ τ + ⋅ ⋅ τ −

− ⋅ τ −
−

   (15) 

 
 The Eq. (15) represents the movement of the screen 
without the particle on the sieve in Interval II. AII and 
BII represent the integrating constants.  
 Similar considerations[3] lead us to the equation of 
particle movement during the jump over the sieve (16).  

  

( ) ( )
( ) ( )

( )

( ) ( )
( ) ( )

( )

( ) ( )

S II 1 0 1 0

II 1 0 1 0

2
1

0 02
1

II 1 1 0

II 1 1 0

2
1

02
1

22
1 1 0

S0 0

z A k cos k

B k sin k

k
cos

1 k

A sin k sin k

B cos k cos k

k
sin sin

1 k

k n
z

2
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− ⋅ ⋅ τ − τ ⋅ ⋅ τ −

− ⋅ τ − τ ⋅ τ −
−

− ⋅ � ⋅ τ − ⋅ τ � −	 


− ⋅ � ⋅ τ − ⋅ τ � +	 


+ ⋅ τ − τ −
−

⋅ ⋅ τ − τ ′− + ⋅ τ − τ

  (16) 

 
 The Eq. (16) represents the jump of the particle on 
the screen in Interval II. In this equation τ0 represents 
the moment when the jump-starts and z’ SO represents 
the speed of the particle in this moment.  
 In order to find the values of the constants AI, BI, 
AII, BII, from the Eq. 12, 15 and 16 the initial states 
are[3]: 
 
• The continuity of the space: When the particle start 

the jump from the sieve surface (τ0), that is the 
screen coordinates before (12), and immediately 
after the jump (15) are the same:  

 
   ( ) ( )I 0 II 0z zτ = τ    (17) 

 
• The continuity of the space: When the particle falls 

on the sieve surface (τc), after the jump, that is the 
screen position before (15), and immediately after 
the falls (12), are the same:  

 
   ( ) ( )II C I Cz zτ = τ    (18)  
 
• The continuity of the screen speed at the moment 

(τ0): 
 
   ( ) ( )I 0 II 0z z′ ′τ = τ    (19) 
 
• The expression of the sieve speed after the particle 

falls (a perfect plastic shock between the sieve 
surface and the particle is considered): 

 

   ( ) ( ) ( )m
I C II C S C

m

k
z 2 z z

1 k
′ ′τ − π = τ + ⋅ τ

+
    (20) 

 
• The mobile system acceleration in the moment of 

the jump of the particle is equal and opposite to the 
gravity component on Oη axes: 
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Fig. 6: The AI

 values (from [3] – pg 175, Fig.7.14) 
 

 
 
Fig. 7: The BI

 values (from[3] pp: 175, Fig. 7.15) 
    
   ( ) 2

I 0 1 1z k n′′ τ = − ⋅                   (21) 

 
• The displacement of the particle in the moment of 

the fall on the sieve is null: 
 
   ( )S Cz 0τ =   (22) 
 
 The initial states 17-22 will lead us to a system of 6 
differential equations with 6 unknown parameters AI, 
BI, AII, BII, τ0, τc. 
 All the involved equations are in transcendent form 
and it is necessary to solve the system by computer 
algorithms. Solving each times this system of equations 
is  intricate, of course. There are some graphs[3] in order 
to  find  the  necessary  values  for  AI,  BI,  AII, BII, 
(Fig. 6-9).  
 There is an important difficulty to assure the 
integration of all those factors in a one comprehensive 
mathematical model. 
 The main object of the present case of study is to 
adapt  the  existing  system  of  Eq.  17-22 in order to be  

 
 
Fig. 8: The AII

 values (from[3] pp: 175, Fig. 7.17) 
 

 
 
Fig. 9: The BII

 values (from[3] pp: 175, Fig. 7.18) 
 
able to build a numerical model to establish a best 
inertia vibratory regime in the case of sorting 
construction bulk materials. Starting from the above-
mentioned system, a new system is made using linear 
expressions depending on throwing coefficient to 
replace the system integrating constants.  The two 
systems are solved using the so-called false-position 
method for some usual sorting cases, and using the 
same initial conditions. Finally the results in those two 
cases are compared.   
 

MATERIALS AND METHODS 
 
 It is obviously that the work with the diagrams to 
find values of interest of AI, BI, AII, BII, is not very 
precisely, and also, working with the six equations 
system is not realistic in a day-to-day design work.  
 So, in order to make it easier to work with all these 
equations, the actual values of the integrating constants 
(corresponding to the construction bulk material) AI, BI, 
AII, BII, obtained from the graphs in Fig. 6-9 was 
replaced   with   a   linear   interpolation   of  them.  The  
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Table 1: The values of integrating constants considered for linear 
interpolations 

c AI BI AII BII 

2.50 0.042 -0.400 -0.050 -0.168 
2.55 0.050 -0.425 -0.040 -0.173 
2.60 0.060 -0.440 -0.035 -0.175 
2.65 0.080 -0.450 -0.032 -0.185 
2.70 0.090 -0.465 -0.025 -0.190 
2.75 0.110 -0.475 0.000 -0.195 
2.80 0.120 -0.490 0.030 -0.200 
2.85 0.140 -0.500 0.040 -0.205 
2.90 0.143 -0.515 0.042 -0.210 
2.95 0.147 -0.525 0.048 -0.215 
3.00 0.150 -0.545 0.050 -0.220 
3.05 0.154 -0.555 0.053 -0.215 
3.10 0.156 -0.558 0.055 -0.215 
3.15 0.159 -0.575 0.058 -0.210 
3.20 0.160 -0.585 0.059 -0.210 
3.25 0.162 -0.610 0.060 -0.210 
3.30 0.165 -0.620 0.068 -0.215 
 
parameters in Fig. 6-9 considered for linear 
interpolation are[4]: the throwing coefficient 2.5≤c≤3.3, 
the frequency coefficient k1 = 0.1, the mass coefficient 
km = 0. In Table 1 are the AI, BI, AII, BII, values 
obtained. The linear interpolations were built with the 
corresponding built-in functions of MatLab program. 
The interpolations are illustrated in Fig. 10-13 (in the 
highlight windows are the interpolation equations). The 
new forms of Eq. are 23, 24 and 25. 
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  (25) 

 
 The two systems of equations (first 12, 15, and 16, 
and second 23, 24, and 25) are both to characterize the 
movements of the particle-screen system at any 
moment. 
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Fig. 10: The linear interpolation for AI 
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Fig. 11: The linear interpolation for BI 
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Fig. 12: The linear interpolation for AII 
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Fig. 13: The linear interpolation for BII 
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 The two systems are in transcendent form and it is 
necessary to solve the system by computer algorithms. 
One of the available mathematical numerical 
possibilities is the so-called false-position method[4], 
valid because in both systems the functions are 
differentiable. A computer algorithm was made to find 
the values for the moments when the particles start the 
jump over the sieve (τ0), based on Eq. 17. 
 To apply the false-position method in this case, 
from (26) we build a new function, made by the 
difference between the two functions existing in (26). 
 

 ( )

( ) ( )

1 1
I 0 I 0

m m

2
1

0 1 m2
m 1

II 1 0 II 1 0
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0 12
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− ⋅ τ −
−

  (26) 

 
 The new function -g(τ0)-as  show bellow, must be 
null  for  the  solution (in this case the throwing 
moment τ0):  
 

( ) ( )
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  (27) 

 
 Now, a straight-line approximation to g (τ0) in the 
range of two solutions [g (τ0 1), g (τ0 2)] is possible, and 
we   can  estimate  the  root  by  linear  interpolation 
(Fig. 14). 
 

g(τ 0)

g(τ 0_1) g(τ 0 s) g(τ 0 2)

 
 
Fig. 14: The false-position method 

 After each iteration, a new domain is defined 
which incorporates the new found solutions so that [g 
(τ0 1), g (τ0 2)] always spans the root. That is, we replace 
g (τ0 1) or g (τ0 2) by g (τ0 S), depending on its sign. The 
τ0_S formula is in Eq. (28) below: 
  

 ( ) 0 _1
0 _S 0 _1 0_ 2 0 _1

0_ 2 0 _1

g( )

g( ) g( )

� �− τ
τ = τ + τ − τ ⋅� �� �τ − τ� �

  (28) 

 
RESULTS AND DISCUSSION 

 
 The values found for τ0, depending on the throwing 
coefficient c, are shown in Table 2.  
 This calculus is made for the same screening 
conditions  already   mentioned:  2.5<c<3.3; k1 = 0.1, 
km = 0.4.   
 The analysis that follows of the screen-particle 
system behaviour in the case of the two systems was 
done with values of the throwing coefficient that are 
important for construction bulk materials (that is 
2.5≤c≤3.3). Using MatLab, the values of the functions 
zI,, zII, and zS from Eq. 12, 15 and 16 where overlapped 
for each of the 17 values of the throwing coefficient in 
Table 2 (an example is illustrated in Fig. 15 for c = 2.5), 
and  the  same  process  was  done  for z1, z2, and zs 

(Fig. 16). Another analysis was done also using 
MatLab, for the maximum values of the Eq. 12, 15, 16, 
23, 24 and 25. The results in the case of Eq. 16 and 25 
are illustrated bellow in Fig. 17 for 2.5<c<2.75, and in 
Fig. 18 for 2.8<c<3.3. Also, starting at the same jump 
moments, the particle falling locus was calculated in the 
two cases, using Eq. 16 and 25 (Fig. 19 are the results 
for the falling coordinates of the particles on the sieve 
for 2.5<c<2.75, and in Fig. 20 are the results for the 
falling coordinates for 2.8<c<3.3). 
 From the analysis of the overlapped graphs results 
that best trajectory are at values of the throwing 
coefficient in-between 2.5 and 2.75. For the values 
greater than 2.75 the trajectory of the particle is not 
high  enough.  One of the most important conditions for 
 
Table 2: The values of �0 
c 2.50 2.55 2.60 
τ0 26.546 25.553 24.741 
c 2.65 2.70 2.75 
τ0 23.958 23.321 23.132 
c 2.80 2.85 2.90 
τ0 23.163 22.841 22.57 
c 2.95 3.00 3.05 
τ0 22.496 22.193 21.792 
c 3.10 3.15 3.20 
τ0 21.661 21.302 21.147 
c 3.25 3.30 
τ0 21.038 20.768 
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Fig. 15: Overlapping   of   zI,   zII  and zS, for c = 2.5 

(Eq. 12, 15 and 16) 
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Fig. 16: Overlapping  of  z1,  z2  and  zs,  for c = 2.5 

(Eq. 23-25) 
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 Fig. 17:  Maximum  values  of  zI  from  (12)  and  z1 

from (23) 
 
an optimal functioning regime is that the fall of the 
particle to be almost normal to the sieve surface. 
Without a high enough trajectory this request cannot be 
fulfilled.  
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Fig. 18: Maximum  values  of  zII  from (15) and z2 

from (24) 
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Fig. 19: The falling coordinates of the particles on the 

sieve for the initial system (rhombus) and the 
new system (triangle) for 2.5≤c≤2.75 

 
 The maximum values of the particle jump are 
almost similar for both equations systems. Still, for 
values of the throwing coefficient in-between 2.8 and 
3.3  there  are  some  differences  in  the  limits  of 
around 10%.  
 Regarding the falling locus of the particles, for the 
values of the throwing coefficient in-between 2.5 and 
2.75 the spreading is almost similar in the field of the 
graph. Instead, in the case of the values of the throwing 
coefficient in-between 2.8 and 3.3 it is obviously that 
the spreading is different, covering two different zones.  
 The conclusion is that in the case of the 
construction   bulk   materials ,   the   two  systems  give  
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Fig. 20:  The falling coordinates of the particles on the 

sieve for the initial system (rhombus) and the 
new system (square) 2.8≤c≤3.3 

 
similar solutions, especially for the throwing coefficient 
values in-between 2.5 and 2.75. In the case 2.8�c�3.3 
other values should be considered for k1 and km in order 
to keep the sorting efficiency at high level. Generally, 
for construction bulk material the functioning frequency 
must be 10 times greater that the angular resonant 
frequency of the screen - this in highly necessary in 
order to avoid a slow crossing by resonant area, that can 
destroy the screen, so k1 should be around 0.1[4]. Also, 
the mass of the material on the sieve should not be 
greater because the whole system became instable, that 
is a small over-dose of material can stop the vibrations 
or  disturb  the  plane-parallel movements of the screen,  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

so km should be around 0.4[4]. Finally it results that the 
throwing coefficient used for equations in the case of 
construction bulk material must also be in the range of 
2.5-2.75. 
 The new system is more convenient and easy to 
work with for devising sorting construction bulk 
materials processes. Another advantage is that in the 
very first steps one can choose the throwing coefficient 
and establish the best oscillations parameters.  
 

REFERENCES 
 
1. Mihailescu, St., 1983. Masini de Constructii si 

pentru Prelucrarea Agregatelor. Editura Didactica 
si Pedagogica, pag. 369-384. Machines in Civil 
Engineering and Aggregate Processing. Didactical 
and Pedagogical Publishing, pp: 369-384.  

2. Munteanu, M., 1986. Introduction in the Dynamics 
of Vibrating Machines. Editura Academiei RSR, 
(RSR Academy Publishing, pp: 96-99).  

3. Peicu, R.A., 1975. Studiul vibra�iilor la ciururi în 
vederea stabilirii unor metode de calcul �i 
proiectare, în scopul îmbun�t��irii coeficientului de 
calitate a cernerii. Tez� de doctorat. Istitutul de 
Construc�ii Bucure�ti 1975. (Screens vibrations 
study with a view to establishing some calculus 
and design methods in order to optimized the 
sorting quality coefficient, PhD thesis, Civil 
Engineering University, Bucharest 1975).   

4. Stoicovici, D., 2004. Contribution to the 
optimization of vibration sieves’ dynamical 
parameters in the case of screening critical 
humidity material. PhD Thesis, Technical 
University of Cluj Napoca, June 2004.  


