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Abstract: An optimal trajectory design of a nonlinear satellite injection problem for transfer to a final 
target orbit by minimizing the time was investigated. Indeed, this design was an exact solution to the 
nonlinear two-point boundary value problem which determined optimal control history as well as 
optimal state trajectories in the open-loop form. Furthermore, the obtained optimal guidance strategy 
was exerted in the closed-loop form against the environment disturbances using neighboring optimal 
control method in the exact solution. Neighboring Optimal Control (NOC) law could produce time-
variant feedback gains minimizing the performance measure to second order for perturbations from a 
nominal optimal path. Generally, this law was a function of perturbations appeared in the states and 
constraints and could be computed utilizing the backward sweep method. The simulation results 
indicated that the presented methodology was successfully utilized in the real world applications with 
good robustness to each noise or disturbance produced in each state variable.   
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INTRODUCTION 

 
Determination of closed-loop feedback control law is 

not usually feasible for many nonlinear dynamic 
systems. In addition, there exist certain difficulties 
associated with the numerical determination of open-
loop optimal control solution for nonlinear systems, 
such as slow convergence rate and high sensitivity to 
initial guesstimates. Besides, if one manages to 
overcome these inherent difficulties, the determined 
optimal control strategy will be in an open-loop form, 
and thus fully dependent on the initial condition. 
Obviously, perturbation and noise process will make 
the optimal trajectory deviate from its ideal predicted 
values in any actual operating environment. The task of 
controller design for nonlinear systems which requires 
minimization of a functional in addition to 
simultaneous satisfaction of physical constraints is 
usually formidable and often lead to sub-optimal 
solutions. In general, optimal formulations of nonlinear 
dynamic systems either through dynamic programming 
or variational approach lead to nonlinear partial 
differential equations. Numerical solution of these 
equations when dealing with complex nonlinear 
systems is always difficult, especially for real world 

physical problems. Obtaining closed-loop control laws, 
intensifies the inherent difficulty involved and is only 
exceptionally determined for some rare cases. 

It should be considered that optimal control solution 
of a dynamic system can be classified into two main 
categories of open-loop and closed-loop. Open-loop 
optimal controls are only functions of time and once the 
system starts from a known initial condition, the 
predetermined optimal control activate to take the 
trajectory toward the final conditions with no feedback 
of states along the path. It is a task that will perform the 
job well if there is small perturbation or small noise in 
the state variables and in the terminal conditions. On 
the other hand, closed-loop optimal controls are 
functions of time and states and in essence posses a sort 
of inherent robustness against noise and undesirable 
disturbance presented in any actual operating 
environment. It should be noted that closed-loop 
optimal control solutions are seldom possible for 
nonlinear dynamic systems, even though they are 
highly desirable for their robust characteristics. 
However, open-loop control laws are highly sensitive 
with respect to noise and external disturbances and 
therefore are not much preferred for real world 
applications.  
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It should be noted that the technique of NOC is a 
continuous linear feedback law can produce time-
variant feedback gains which minimize the performance 
index[1]. This law is established on the linear 
perturbation equations around the nominal optimum 
path where the weighting factors in the quadratic 
performance index are the second partial derivatives of 
the variational Hamiltonian. Open-loop optimal control 
solution for nonlinear launching in the gravity of moon 
was obtained either by dynamic programming approach 
or through a variational formulation of the optimal 
control problem. Also, the neighboring extremals are 
given for injection into orbit[1]. Also, time-optimal 
solution of nonlinear landing mission in polar 
coordination system was found utilizing a numerical 
technique named linear programming. This law is an 
exact solution to the two-point boundary value problem 
associated with the first variation necessary 
conditions[2]. The results of minimum-time Feedback 
Laws[3] are used to validate the results of an analytical 
open-loop strategy proposed in this paper. Jardin and 
Bryson used the technique of NOC to develop an 
algorithm for optimizing aircraft trajectories in general 
wind fields computing time-varying linear feedback 
gains[4]. Furthermore, Pourtakdoust and Novinzadeh 
presented a time-optimal open-loop strategy for 
nonlinear lunar landing mission obtained using an 
analytical technique. Then in order to create closed-
loop fuzzy guidance logic, a fuzzy algorithm was 
augmented to the variational function of the problem[6]. 
More recently, Palma has worked on optimal predictive 
control by discretizing nonlinear dynamics systems[8]. 
Also, Novinzadeh presented a close form solution of 
the generated optimal formulation of mass-variant 
module utilizing the regular perturbation theory and 
applied fuzzy logic to obtain closed-loop guidance 
strategy[9]. An optimal guidance law that minimized the 
commanded acceleration in three dimensions was 
obtained by Souza[10]. Feeley and Speyer used a 
technique to develop a real-time guidance scheme for 
the Advanced Launch System. Their approach is to 
construct an optimal guidance law based upon an 
asymptotic expansion dealing with regular perturbation 
theorem[11]. In this way, Leung and Calise proposed a 
hybrid approach to launch vehicle guidance for ascent 
to orbit injection. The feedback guidance approach is 
based on a piecewise nearly analytical solution 
evaluating using a collocation method[12]. Dabbous and 
Ahmed presented their work on nonlinear optimal 
regulator problem for final time unspecified systems[13]. 
There are many studies performed by Nuidiu on the 
closed-loop optimal control using singular perturbation 

methods[14,15]. In addition, Bei applied the line-of-sight 
homing technology to achieve more precision lunar 
landing. Hardware realization concept of precise 
landing mission was also simply discussed[16]. Suzuki 
and Yoshizawa introduced a new guidance law for lunar 
landing module by minimizing fuel expenditure 
considered as a reference for verifying the results of 
presented work[17]. Also, Naghash and Esmaelzadeh 
developed an explicit guidance law that maximized 
terminal velocity for a reentry vehicle to a fixed target. 
Acceleration commands were derived by solving an 
inverse problem related to Bezier parameters and an 
optimal Bezier curve was determined by solving a 
genetic algorithm[18]. 

The presented study concentrates on finding an 
analytical methodology to compute the open-loop time-
optimal guidance strategy for satellite injection 
problem. In addition, a closed-loop control law for 
protecting the launched satellite on the obtained 
trajectory is determined against small perturbations 
using NOC method in the exact form. The mentioned 
perturbations applied on the state variables of injection 
dynamic system can be appeared in the real world 
application such as measurement system performance.  
 

MATERIALS AND METHODS 
 

The main results of[1] which presents a detail 
explanation about NOC theorem and its application in 
the optimal control problems are summarized in the 
following. At first, consider that the optimal control 
problem of dynamic systems can be formulated using 
calculus of variations. In this way, one usually assumes 
a mathematical representation of the current system as a 
first order differential equation 

0( ( ), ( ), ), fx f x t u t t t t t= ≤ ≤� � ��                                (1) 
where ( )x t

�
 and ( )u t

�
 are n-dimensional state vector 

and m-dimensional control vector, respectively. A 
conventional form of performance measure can be 
expressed as: 

0

[ ( ), ] [ ( ), ( ), ]ft
f f t

J x t t L x t u t t dt= Φ + �
� � �

                   (2) 

where [ ( ), ]f fx t tΦ �
 is the penalty function for the final 

states at the final time. The first step toward a 
variational method is to find the system Hamiltonian as: 
 

[ ( ), ( ), ] ( ( ), ( ), )TH L x t u t t p f x t u t t= +� � � �
                  (3) 

By considering the terminal constraints as: 
 

Tϕ υ ψΦ = +
�

                                                            (4) 
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where ψ�  is a q-dimensional vector named constraint 
function and ϕ  is a constant terminal constraint. Since 
the final time is free, so that the necessary conditions 
for optimality are derived as: 

; ( )

; ( )

f

f

x f x t

T
u u f t t

p H p t

H p f H t

= − = Φ

= = −Φ

�

                               (5) 

Now, assume small perturbations from the obtained 
extermal path produced by small perturbations in the 
initial state 0( )x tδ �

 and in the terminal conditionδψ� . 
This expected that if the final time is specified, small 
perturbations such as ( )x tδ �

, ( )p tδ , ( )u tδ �
 and dv

�
 

will be appeared as: 
( ) ( ) ( )

( ) ( ) ( )T

p S t x t R t dv

R t x t Q t dv

δ δ
δψ δ

= +

= +

� �

� � �                                      (6) 

 
where dv

�
 and δψ�  are infinitesimal vectors. These 

matrices can be determined by solving the following 
differential equations with regarding its augmented 
boundary conditions by utilizing backward sweep 
method: 

( ) [ ] ,
f

T

T
f xx xx t t

S SA A S SBS C

S t ϕ υ ψ =

= − − + −

= +

�

�                                       (7) 

( ) , ( ) [ ] ,
f

T T
f x t tR A SB R R t ψ == − − =

�
�                      (8) 

, ( )T T
fQ R BR Q t R BR= =�                                     (9) 

 
It can be easily shown that equation 7 forms a matrix 
Riccati equation due to contain a quadratic term in S. In 
this way, the matrices A, B and C can be formulated as: 

1

1

1

( ) ,

( ) ,

( )

x u uu ux
T

u uu u

xx xu uu ux

A t f f H H

B t f H f

C t H H H H

−

−

−

= −

=

= −

                                     (10) 

Finally, by using previous equation sets, the NOC law 
is abbreviated as: 
 

1

1 1

1 2

( ) {[ ( ) ]

}

( ) ( ) ( )

T T
u ux

T
u uu

u t f S RQ R H x

f RQ H

u t t x t

δ δ

δψ
δ δ δψ

−

− −

= − − +

+ →
= −Λ − Λ

� �

�

�� �
              (11) 

 
The NOC law when the final time unspecified was 
obtained in equation 11. Besides, if the final time is 
unspecified, this law will be formulated in the similar 
form. But note that small perturbation arises in the final 
time which discussed in[1] perfectly. 

ANALYTICAL OPEN-LOOP SOLUTION TO 
THE SATELLITE INJECTION PROBLEM 

 
Consider an idealized point-mass satellite at the 

origin of inertial frame ( , )x y  at 0t = , moving under 
the action of a constant propulsive force making a 
control angle ( )tβ  with the horizon. Obviously, the 
position and velocity vector of the vehicle will change 
due to the action of forces acting on it. The problem is 
to determine the time-optimal control strategy of this 
system for transfer to a final target orbit. Based on Fig. 
1, the governing state-space equations are: 

cos ,

sin ,

du T
dt m
dv T g
dt m m
dy

v
dt

β

β

� =�
�
� = −�
�
� =�
�

                                              (12) 

with its appropriate boundary conditions: 
( 0) 0, ( 0) 0, ( 0) 0,
( ) , ( ) 0, ( )f f f f

u t v t y t

u t t U v t t y t t h

= = = = = =
= = = = = =

           (13) 

 

 
Fig. 1: Geometry of the satellite injection mission 

 
For a better physical understanding and reaching an 
analytical explicit solution, the governing equations and 
the associated boundary conditions are non-
dimensionalized using a set of assumed reference 
parameters ( *, *, *)u v y : 

, , ,
* * *

1
,

* *

u v y
u v y

U U y
t d d

t dt t d
τ

τ

= = =

= =
                                   (14) 

for time-optimal problems where ft is free, one usually 
utilizes the final time as a referencing condition for 
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determining non-dimensional parameters. Also, the 
reference parameters are: 

* , * , *f
f

h
U U y h t

U
= = =                                      (15) 

Now, by using the above non-dimensional state 
variable equations, the transformed equations become: 

1

1 2

3

cos ,

sin ,

du
w

d
dv

w w
d
dy

w v
d

β
τ

β
τ

τ

� =�
�
� = −�
�
� =�
�

                                             (16) 

where 

1 2 3
* * * *

, ,
* * *

Tt gt U t
w w w

mU mU y
= = =                   (17) 

with non-dimensional boundary conditions: 
( 0) 0, ( 0) 0, ( 0) 0,
( ) 1, ( ) 0, ( ) 1f f f

u v y

u v y

τ τ τ
τ τ τ τ τ τ

= = = = = =
= = = = = =

            (18) 

 
Since the problem is determining the control action of 

( )tβ β=  required for time-optimal control policy for 
transferring the satellite to the specified orbit, so that 
the performance measure is defined as: 

0

fJ d
τ

τ= �                                                                (19) 

and the corresponding Hamiltonian based on equation 3 
will be determined as: 

1 1 2 1 2 3 31 cos ( sin )H p w p w w p w vβ β= + + − +  (20)    
Using the co-state equations and optimality relation, 
one can find the following relations for optimal control 
and co-state parameters: 

2

1
tan

p
p

β =                                                               (21) 

1 1

2 3 3 2

3 3

,

,

p k

p k w k

p k

τ
=

= − +
=

                                                 (22) 

where 1 2,k k  and 3k  are constant parameters which 
should be determined. Now, by using the above 
relations, one can find an implicit formulation for the 
optimal control as: 

3 3 2

1 1
tan

k w k
k k

β τ= − +                                            (23) 

Now, with respect to equation 23 and existing 
relationship between β  and τ , the time derivatives 
appeared in the state-space equations can be written 

with respect to β . By using this technique, β  now 
becomes independent variable and therefore, the 
transformed state-space equations can be rewritten as: 

1 1

3

1 1 1 2

3

1 3
2

3

,
cos

sin
,

cos

cos

k wdu
d k

k w k wdv
d k

k w vdy
d k

β β
β

β β

β β

�
=�

�
� −� =�
�
�

=�
��

                                     (24) 

In addition, non-dimensional initial conditions and 
terminal conditions are defined as: 

0 0 0( ) 0, ( ) 0, ( ) 0,

( ) 1, ( ) 0, ( ) 1.f f f

u v y

u v y

β β β
β β β

= = =
= = =

                           (25) 

for a set of assumed values of the parameters 

0( , , , , )U h T m g  the geometrical parameters 

1 2 3( , , )w w w  can be determined. For example if 

0 1U h T m= = = =  and 1/ 3g = , the geometrical 
parameters are 1 2 31, 1/ 3, 1w w w= = = . 

Considering the simpler form of equation 24 and 
applying initial conditions, it is integrated to yield the 
result as a function of the control angle β  in the 
following formulation: 

1

3 0 0

(sec tan )
( ) ln

(sec tan )
k

u
k

β ββ
β β

+=
+

                               (26) 

1
0 1 0

3 0

sin( ) (cos cos )
3( )

cos cos

k
k

v
k

β β β β
β

β β

− − − −
=         (27) 

2
1

2
0 03

2 2
0 0

0
0 0 2

0

sec tan
( ) [3ln 3 tan

sec tan6

1 2 1 1
( ) ( )
cos cos cos cos

sin
2 tan (tan tan ) 3 ]

cos

k
y

k

β ββ β
β β

β β β β
ββ β β
β

+= + ×
+

− − −

− − −

         (28) 

Obviously for explicit results, it is necessary to specify 
the values of 1 2 3 0, , , , fk k k β β  and fτ . This can be 
accomplished by using the six boundary conditions 
presented as:  

0 0

( ) 1, ( ) 0, ( ) 1,

( ) 0, ( ) , ( )
f f f

f f f

u v y

H

β β β
β β τ β β τ β

= = =
= = =

                       (29) 

In this way, the following algebraic equations are 
derived as: 

2 0 1 0cos sin 0,k kβ β− =                                         (30) 

2 3 1( ) cos sin 0,f f fk k kτ β β− − =                          (31) 
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1 2 31 cos( ) ( )(sin( ) 1/ 3) 0,f fk k kβ τ β+ + − − =        (32) 

3

1

0 0

ln(sec( ) tan( ))

ln(sec( ) tan( )) 0,

f f
k
k

β β

β β

+ +

− + =
                                    (33) 

0

0

tan tan1 1
0,

cos 3 cos 3
f

f

β β
β β

− − + =                  (34) 

0
2 2

0 00

2 2
0 0

2
20 0 3

1

sinsin sec tan1 1
( ) ln( )

2 2 sec tancos cos

sin 1 1 1
( )

cos cos 6 cos cos

tan tan tan
( ) 0

3

f f f

f

f

f f

f k
k

ββ β β
β ββ β

β
β β β β

β β β

+− +
+

− − −

−
+ − =

     (35) 

By solving the above algebraic equations, the six 
unknown parameters can be easily found as: 

0

1 2 3

2.213, 1.428 rad, 1.275 rad,

0.221, 0.725, 0.995
f f

k k k

τ β β= = = −
= = =

        (36) 

Consequently, the optimal control histories and optimal 
state trajectories are determined as:  

1tan (6.671 4.499 ),β τ−= −                                        (37) 
( ) 0.577 0.222ln(sec tan ),u β β β= − +                   (38) 

13.57cos sin 3
( ) 0.0741 ,

cos
v

β ββ
β

− − +=                  (39) 

2

( ) 0.223tan 0.025ln(sec tan )

0.025 tan sec 0.008sec 0.689

y β β β β
β β β

= − + +

+ − +
    (40) 

 
It should be noted that the investigated results are 

identical with the analytical results of reference [3]. By 
regarding this fact that the solution parameters 

, ,u v y  and x  have been expressed in the terms 
of β , and β  is related to τ , so that the solution 
parameters could be expressed respect to τ . As a better 
demonstration, the optimal results are compared by 
using four satellite injection scenarios with different 
initial conditions tabulated in the table 1� Also, the 
variation of initial and final thrust angle are visible.    
 
Table 1: Comparison between Four Satellite Injection 

Scenarios with Different Initial Conditions 
 (h0,U0) (1,1) (1,0.75) (0.75,1) (0.75,0.75) 

k1 : -0.2211 -0.1436 -0.2755 -0.1779 
k2 : -1.4753 -1.4896 -1.4614 -1.4841 
k3 : -0.9951 -1.0292 -1.1152 -1.1724 
�f : 2.2114 2.1661 1.9483 1.8920 
�0 : 1.4220 1.4747 1.3845 1.4515 
�f : -1.2748 -1.3791 -1.2013 -1.3331 

The computed control policy is in the open-loop 
form and in order to protecting the moving satellite 
against the environment disturbances, the closed-loop 
control law must be determined. For achieving to this 
purpose, the NOC method is utilized. 
 

APPLICATION OF NOC LAW FOR CLOSED-
LOOP SOLUTION 

 
In this stage, the optimal closed-loop solutions are 

determined analytically using the non-dimensional form 
of NOC law. At first, the unknown matrixes namely 

( )A τ , ( )B τ  and ( )C τ  are determined using the 
equation 10 as following: 

3 3

2

2

0 0 0
( ) 0 0 0 , ( ) 0 ,

0 1 0

s ( ) s( )c( ) 0

( ) 4.523c( ) s( )c( ) c ( ) 0
0 0 0

A C

B

τ τ

β β β
τ β β β β

×

� �
� 	= =� 	
� 	
 �

� �−
� 	

= −� 	
� 	
� 	
 �

     (41) 

Computing ( )A τ , ( )B τ  and ( )C τ , it is possible to 
determine ( )R τ  by solving the differential equation 
contained in equation 8 as follows:  

3 3
31 32 33 3 3

0 0 0
, ( )

0 0 0
f

dR
R R R R I

d
τ

τ
×

×

� �
� 	= − − − =� 	
� 	
 �

          (42) 

Each member of above matrix equation forms a 
differential equation which must be integrated 
backward from the terminal time to the current time. 
Furthermore, by considering equation 14, it can find 
that the thrust angle ( )β τ  is related to time, thus ( )Q τ  
could be found by solving a set of independent 
differential equations with corresponding boundary 
condition in the following form: 

3 3

2

2 2

2 2 2

3 3

4.523c( )

s( )c( ) s( )( )c( )s ( )
s( )c( ) c ( ) ( )c ( ) ,

s( )c( )( ) c ( )( ) ( ) c ( )

( )

f

f

f f f

f

dQ
d

Q

β
τ

β β β τ τ ββ
β β β τ τ β

β β τ τ β τ τ τ τ β
τ

×

×

= ×

− − −� �
� 	

− −� 	
� 	− − − −
 �

= ∅

  (43) 

Therefore, ( )Q τ  is obtained by backward integration 
from each member of the above matrix differential 
equation with respect to the time analytically. In effect, 
the differential equations are swept backward from the 
terminal condition to the current condition in the exact 
solution. 
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+

+

([ ( ), ( ), ( )] , , )Tx f u v yτ τ τ β τ=�

( )β τ

( )x τ

−

−
−

[ ( ), ( ), ( )]Tu v yδ τ δ τ δ τ

[ , , ]u v yK K KΛ =
[ ( ), ( ), ( )]Tu v yτ τ τ

( )β τ

( )δβ τ

 
Fig. 2: Block-diagram of NOC law for determining closed-

loop trajectory for satellite injection mission. 
  

 
Fig. 3: Neighboring optimum gains for satellite injection 

mission. 
 
According to equation 7, since the co-state equations 

are not functions of state variables, so that the matrix 
( )S τ  are equal to zero and solving the Riccati equation 

is not required. Note that because the satellite injection 
problem is in the class of a terminal guidance problem, 
thus the terminal constraints perturbation will be equal 
to zero. As result of the mentioned reason, the NOC law 
is a function of state variables perturbation only. The 
NOC block-diagram for determining optimal closed-
loop control law for satellite injection problem is 
depicted in Fig. 2. Also, by computing the time 
perturbation, it is found that it is less than 10-3, so that it 
is negligible. By regarding the previous relations, the 
NOC law could be found in the following formulation: 

 
( ) ( ) ( ) ( ) ( ) ( ) ( )u v yK u K v K yδβ τ τ δ τ τ δ τ τ δ τ= + +   (44) 

where the perturbed terms, ( )uδ τ , ( )vδ τ  and ( )yδ τ  
are small perturbations applied to the state variables of 
satellite injection system. Also, ( )uK τ , ( )vK τ  and 

( )yK τ  are neighboring optimum gains for 

determination of optimal closed-loop guidance law. 
 

RESULTS AND DISCUSSION 
 

The time histories of neighboring optimal feedback 
gains for satellite injection problem are depicted in Fig. 
3. Having obtained these gains, the time optimal closed-
loop control solution can be computed by using 
equation 44. By observing the figures, it can be easily 
shown that the NOC law can satisfy each of the 
boundary condition of satellite injection problem by 
minimizing the time introduced as the performance 
measure. Obviously, the position vector components 

( )x τ  and ( )y τ  are computed by integrating from 
velocity vector components ( )u τ  and ( )v τ  with 
respect to the time, respectively.  

There are several source of disturbance in the 
operating environment which could effect on the 
performance of our determined optimal feedback law. 
To investigate robustness potentials of the proposed 
NOC, the satellite injection system is analyzed under 
the influence of small disturbances exerted in the state 
feedback (measurement unit) of the satellite injection 
dynamical. These state disturbances modeled similar to 
the control actuation noise are taken as: 

1 1

( ) sin( ),t tξ ε ω=                                                      (45) 
( ), ( )u u t v v tξ ξξ ξ= + = +                                     (46) 

With the following set of parameters 1 250ω =  and 
0.01ε = . The perturbed thrust angle for protecting the 

launched satellite against the environment disturbances 
is depicted in Fig. 4. In addition, the comparisons 
between open-loop and closed-loop optimal results are 
illustrated in Fig. 5, Fig. 6, Fig. 7, Fig. 8 and Fig. 9. 
Also as can be seen in Fig .10 and Fig. 11, there exists 
an excellent agreement between open-loop and closed-
loop solution in the state-space trajectories. One can 
easily verify from the results that the measurement 
disturbance has no effect on the performance of NOC, 
while the system behaves in an oscillatory fashion when 
it is not in the closed-loop form with NOC. The 
simulation results indicate that the feedback 
performance is in close agreement with the exact 
solution and thus, the presented methodology can be 
successfully utilized in the real world application with 
good robustness to each noise or disturbance produced 
in the each state variable.   
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Fig. 4: The perturbed thrust angle due to apply 

disturbance obtained using NOC law. 
 

 
Fig. 5: Comparison between open-loop and closed-loop 

solution of time-optimal thrust angle. 
 

CONCLUSION 
 

The determination of an analytical open-loop 
optimal control strategy for a nonlinear problem of 
satellite injection problem is achieved in this study. The 
open-loop results show that there is a good agreement 
between the investigated results and the analytical 
results of minimum-time feedback laws achieved for 
dynamic systems[3]. Then by, the closed-loop optimal 
control is computed using NOC law in the exact 
solution. This optimal closed-loop law can protect the 
satellite injection mission against the environment 
disturbances in each instant of time in the actual 
applications. Indeed, this performance is due to the fact 
that the NOC gains are functions of time. The 
comparison between the open-loop state-space 
trajectories with the closed-loop trajectories illustrates a 
good accuracy of NOC method for protecting the 
satellite mission on its nominal path. Another benefit to 
this approach is that it may be easily extend to 
dynamically varying parameters.   

Considering the fact that the NOC law is a function 
of state variables perturbation, it can be easily 
illustrated that the instantaneous values of feedback 
gains ( ( ), ( ), ( ))u v yK K Kτ τ τ  represent the sensitivity of 

the feedback law to the corresponding state variables 
perturbation namely uδ , vδ and yδ respectively. 
Another advantage of the proposed strategy is that 
several difficulties associated with the numerical 
determination of optimal control solution for nonlinear 
systems such as slow convergence rate, undesirable 
singularity and high sensitivity to initial guesstimates 
are not appeared. 

 
Fig. 6:  Comparison between open-loop and closed- 

loop solution of time-optimal horizontal velocity. 

 
Fig. 7: Comparison between open-loop and closed-loop 

solution of time-optimal vertical velocity. 
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Fig. 8: Comparison between open-loop and 

closed-loop solution of time-optimal altitude. 
 

 
Fig. 9: Comparison between open-loop and 
         closed-loop solution of time-optimal down range. 
 

 
Fig. 10:  Comparison between open-loop and  

           closed-loop solution of time-optimal trajectory. 

Fig. 11: Comparison between open-loop and  
          closed-loop solution of time-optimal velocity. 
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