American Journal of Applied Sciences 6 (2): 273-275, 2009 ISSN 1546-9239 © 2009 Science Publications

A Fixed Point Theorems in L-Fuzzy Quasi-Metric Spaces

 ^{1,2}Reza Saadati and ¹S. Mansour Vaezpour
 ¹Department of Mathematics and Computer Sciences, Amirkabir University of Technology, Tehran, Iran
 ²Islamic Azad University-Ayatollah Amoly Branch, Amol, Iran

Abstract: At first we considered the L-fuzzy metric space notation which is useful in modeling some phenomena where it is necessary to study the relationship between two probability functions as well observed in Gregori *et al.* [A note on intuitionistic fuzzy metric spaces. Chaos, Solitons and Fractals 2006; 28: 902-905]. Then we introduced the concept of fixed point theorem in L-fuzzy metric space and finally, showed that every contractive mapping on an L-fuzzy metric space has a unique fixed point.

Key words: Fixed-point theorem, fuzzy sets

INTRODUCTION

The concept of fuzzy sets was introduced initially by Zadeh^[1] in 1965. Various concepts of fuzzy metric spaces were considered in George and Veeramani^[2] and Mihet^[3,4].

In this research, at first we shall adopt the usual terminology, notation and conventions of L-fuzzy metric spaces introduced by Saadati *et al.*^[5] which are a generalization of fuzzy metric spaces^[2] and intuitionistic fuzzy metric spaces^[6,7]. Then we consider the fixed point theorem on such spaces and show that every contractive mapping on non-Archimedean L-fuzzy metric space has a unique fixed point.

Definitions 1.1: Goguen^[8] let $L = (L, \leq_L)$ be a complete lattice and U a non-empty set called universe. An L-fuzzy set A on U is defined as a mapping. A: U \rightarrow L. For each u in U, A(u) represents the degree (in L) to which u satisfies A.

Classically, a triangular norm T on $([0,1],\leq)$ is defined as an increasing, commutative, associative mapping T: $[0,1]^2 \rightarrow [0,1]$ satisfying (1, x) = x for all $x \in [0,1]$. These definitions can be straightforwardly extended to any lattice $L = (L, \leq_L)$.

Definitions 1.2: A triangular norm (t-norm) on L is a mapping τ : L² \rightarrow L satisfying the following conditions:

• $(\forall x \in L)(\tau(x, 1_L) = x)$ (boundary condition)

- $(\forall (x,y) \in L^2) (\tau(x,y) = \tau(y,x))$ (commutativity)
- $(\forall (x,y,z) \in L^3) (\tau(x,\tau(y,z)) = \tau(\tau(x,y),z))$ (associativity) $(\forall (x,x',y,y') \in L^4)$
- $(x \leq_L x \text{ and } y \leq_L y) \Rightarrow \tau(x, y) \leq_L \tau(x', y'))$ (monotonicity)

The t-norm τ is Hadzic type if $\tau(x, y) \ge_L \wedge(x, y)$ for every $x, y \in L$ where

$$\wedge (\mathbf{x}, \mathbf{y}) = \begin{cases} \mathbf{x}, \text{if } \mathbf{x} \leq_{\mathrm{L}} \mathbf{y}, \\ \mathbf{y}, \text{if } \mathbf{y} \leq_{\mathrm{L}} \mathbf{x}. \end{cases}$$

Triangle norms are recursively defined by $\tau^1 = \tau$ and

$$\tau^{n}\left(x_{(1)},...,x_{(n+1)}\right) = \tau\left(\tau^{n-1}\left(x_{(1)},...,x_{(n)}\right),x_{(n+1)}\right)$$

for $n \ge 2$, $x_{(i)} \in L$ and $i \in \{1, 2, ..., n+1\}$.

Definition 1.3: Deschrijver *et al.*^[9] A negator on L is any decreasing mapping N: $L \rightarrow L$ satisfying N (0_L) = 1_L and N (1_L) = 0_L . If N(N(x)) = x for all $x \in L$, then N is called an involutive negator.

In this research the negator N: $L \rightarrow L$ is fixed. The negator N_s on ([0,1], \leq) defined as N_s (x) = 1-x, for all x $\in [0,1]$, is called the standard negator on ([0,1], \leq).

Corresponding Author: Reza Saadati, Department of Mathematics and Computer Sciences, Amirkabir University of Technology, Tehran, Iran

Definition 1.4: The triple (X, M, τ) is said to be an L-fuzzy quasi-metric space if X is an arbitrary (nonempty) set, τ is a continuous t-norm on L and M is an L-fuzzy set on $X^2 \times]0,+\infty[$ satisfying the following conditions for every x, y, z in X and t, s in $]0,+\infty[$:

- $M(x, y, t) >_L 0_L$
- $M(x,y,t) = M(y,x,t) = l_L$ for all t > 0 if and only if x = y
- $\tau(M(x,y,t),M(y,z,s)) \leq_L M(x,z,t+s)$
- $M(x,y,.): [0,\infty] \to L$ is continuous
- $\lim_{t\to\infty} M(x,y,t) = l_L$.

In this case, M is called an L-fuzzy quasi-metric. If, in the above definition, the triangular inequality (c) is replaced by

$$\begin{aligned} & (\text{NA}) \ \tau \Big(M \big(x, y, t \big), M \big(y, z, s \big) \Big) \\ & \leq_{\text{L}} M \big(x, z, \max \{ t, s \} \big) \ \forall x, y, z \in X, \quad \forall t, s > 0 \end{aligned}$$

or, equivalently,

$$\begin{aligned} \tau \big(M(x,y,t), M(y,z,t) \big) &\leq_L \\ M(x,z,t) \quad \forall x, y, z \in X, \quad t > 0. \end{aligned}$$

Then the triple (X, M, τ) is called a non-Archimedean L-fuzzy quasi-metric space^[3,4].

For $t \in [0,+\infty[$, we define the closed ball B [x, r, t] with center $x \in X$ and radius $r \in L \setminus \{0_L, 1_L\}$, as

$$B[x,r,t] = \{y \in X : M(x,y,t) \ge_L N(r)\}.$$

Definition 1.5: A sequence $\{x_n\}_{n \in N}$ in an L-fuzzy quasi-metric space (X, M, τ) is called a right (left) Cauchy sequence if, for each $\epsilon \in L \setminus \{0_L\}$ and t > 0, there exists $n_0 \in N$ Such that, for all $m \ge n \ge n_0$ $(n \ge m \ge n_0)$,

$$M(x_m, x_n, t) >_L N(\varepsilon).$$

The sequence $\{x_n\}_{n \in \mathbb{N}}$ is said to be convergent to $x \in X$ in the L-fuzzy quasi-metric space (X, M, τ) (denoted by $x_n \xrightarrow{M} x$) if $M(x_n, x, t) = M(x, x_n, t) \rightarrow 1_L$, whenever $n \rightarrow +\infty$ for every t>0. An L-fuzzy quasimetric space is said to be right (left) complete if and only if every right (left) Cauchy sequence is convergent. **Definition 1.6:** Let (X, M, τ) , be an L-fuzzy metric space and let N, be a negator on L. Let A be a subset of X, then the LF-diameter of the set A is the function defined as:

$$\delta_{A}(s) = \sup_{t \leq s} \inf_{x, y \in A} M(x, y, t).$$

A sequence $\{A_n\}_{n \in \mathbb{N}}$ of subsets of an L-fuzzy quasi-metric space is called decreasing sequence if $A_1 \supseteq A_2 \supseteq A_3 \supseteq \dots$

The following lemma gives conditions under which the intersection of such sequences is nonempty.

Lemma 1.7: Let (X, M, τ) be a left complete L-fuzzy metric space and let $\{A_n\}_{n \in \mathbb{N}}$, be a decreasing sequence of nonempty closed subsets of X such that δ_{An} $(t) \rightarrow 1_L$ as $n \rightarrow \infty$. Then $A = \bigcap_{n=1}^{\infty} A_n$ contains exactly one point.

Proof: From the assumption $\delta_{An}(t) \rightarrow 1_L$, it is evident that the set A can't contain more than one element. So it is enough to show that A is nonempty. Let x_n be a point in A_n . Since $\delta_{An}(t) \rightarrow 1_L$, by definition of 5F-diameter, $\{x_n\}_{n\in\mathbb{N}}$, is a left Cauchy sequence in X. Since (X, M, τ) , is left complete, $\{x_n\}_{n\in\mathbb{N}}$, has a limit x. We show that x is in A and for this it suffices to show that x is in A_{n_0} , for a fixed but arbitrary n_0 . If $\{x_n\}_{n\in\mathbb{N}}$, has only finitely many distinct points, then Ax is that point infinitely repeated and is therefore in A_{n_0} . If $\{x_n\}_{n\in\mathbb{N}}$ has infinitely many distinct points, then x is a limit point of the set of points of the sequence, so it is a limit point of the subset $\{x_n:n\geq n_0\}$ of the set of the points of the set of the points of the sequence which implies it is a limit point of A_{n_0} and

since A_{n_0} is closed, it is in A_{n_0} .

Corollary 1.8: Let (X, M, τ) be a left complete L-fuzzy metric space and let $\{A_i\}_{i \in I}$ be a family of closed subsets of X, which has the finite intersection property and for each $\epsilon > 0$, contains a set of LF-diameter less than ϵ , then $\bigcap_{i \in I} A_i \neq \phi$.

Proof: For each n=1,2,... let $i_n \in I$ denote an index such that

$$\delta_{A_{i_n}}(t) = M\left(x, y, \frac{1}{n}\right)$$

for every $x \neq y$. The set $A_n = \bigcap_{j \leq n} A_{i_j}$ satisfy the assumption of the last lemma. Therefore $\bigcap_{n=1}^{\infty} A_n$,

contains exactly one point say x_0 . Then $x_0 \in A_{i_1}$, for $i_1 \in I$. Indeed define $A'_n = A_{i_1} \cap A_n$ for $n = 1, 2, \dots$ Now

$$\phi \neq \bigcap_{n=1}^{\infty} A'_n = A_{i_1} \cap \left(\bigcap_{n=1}^{\infty} A_n\right) = A_{i_1} \cap \{x_0\}.$$

Definition 1.9: Let (X, M, τ) be an L-fuzzy metric space. A mapping $\Delta: X \rightarrow X$ is said to be contractive if whenever x and y are distinct point in X, we have

$$M(\Lambda x,\Lambda y,t)>_{_{L}}M(x,y,t).$$

MAIN RESULT

Theorem 2.1: Let (X, M, τ) be non-Archimedean L-fuzzy metric space, in which τ is Hadzic type. If Δ : $X \rightarrow X$ is a contractive mapping then Δ has a unique fixed point.

Proof: Let $B_x = B[x, \eta, t]$ with $\eta(x, t) = N(m(x, \Delta x, t))$ and t > 0. Let A be the collection of all these balls for all $x \in X$. The relation $B_x \leq B_y$ if and only if $B_y \subseteq B_x$ is a partial order in A. Consider a totally ordered subfamily A_i of A. From Corollary 1.8, we have,

$$\bigcap_{B_x \in A_1} B_x = B \neq \varphi.$$

Let $y \in B$ and $B_x \in A_1$, then

 $M(x, y, t) \ge_{L} N(N(M(x, \Lambda x, t))) = M(x, \Lambda x, t)$ (1)

Now, if $x_0 \in B_y$, then

$$M(x_0, y, t) \ge_L N(N(M(y, \Lambda y, t)))$$

$$\ge_L \tau^2(M(y, x, t), M(x, \Lambda x, t), M(\Lambda x, \Lambda y, t))$$

$$\ge_L M(x, \Lambda x, t).$$

Thus

$$M(x_0, y, t) \ge_L M(x, \Lambda x, t)$$
(2)

Now, by using (1) and (2) we obtain

$$\begin{split} & M(x_0, x, t) \geq_L \tau(M(x_0, y, t), M(x, y, t)) \\ & \geq_L \tau(M(x, \Lambda x, t), M(\Lambda x, x, t)) \\ & \geq_L M(x, \Lambda x, t). \end{split}$$

Therefore $x_0 \in B_x$ and $B_y \subseteq B_x$ implies that $B_x \le B_y$ for all $B_x \in A_1$. Thus B_y is an upper bound in A for family A₁. Hence by Zorn's Lemma, A has a maximal element, say, B_z, for some $z \in X$. We claim that $z = \Delta z$.

Suppose that $z \neq \Delta z$. Since Δ is contractive, therefore

$$M(\Lambda z, \Lambda^2 z, t) >_L M(z, \Lambda z, t),$$

where $\Delta^2 = \Delta 0 \Delta$ and

$$\Lambda z \in B[\Lambda z, \eta(\Lambda z, t), t] \cap B[z, \eta(z, t), t]$$

Therefore $B_{\Delta z} \subseteq B_z$ and z is not in $B_{\Delta z}$. Thus $B_{\Delta z} \subset B_z$, which contradicts the maximality of B_z . Hence Δ has a fixed point.

Uniqueness easily follows from contractive condition.

CONCLUSION

In this research we introduce the concept of fixed point theorem in L-fuzzy metric spaces and present some results.

REFERENCES

- 1. Zadeh, L.A., 1965. Fuzzy sets. Inform. Control, 8: 338-353. doi: 10.1016/S0019-9958(65)90241-X
- George, A. and P. Veeramani, 1994. On some result in fuzzy metric space. Fuzzy Sets Syst. 64: 395-399. doi: 10.1016/0165-0114(94)90162-7
- Mihet, D., 2005. On the existence and the uniqueness of fixed points of Sehgal contractions. Fuzzy Sets Syst, 156: 135-141. doi: 10.1016/j.fss.2005.05.024.
- Mihet, D., 2004. A Banach contraction theorem in fuzzy metric spaces, Fuzzy Sets and Syst. 144: 431-439. doi: 10.1016/S0165-0114(03)00305-1.
- Saadati, R., A. Razani and H. Adibi, 2007. A common fixed point theorem in L-fuzzy metric spaces. Chaos, Solitons Fractals, 33: 358-363. doi: 10.1016/j.chaos.2006.01.023.
- Park, J.H., 2004. Intuitionistic fuzzy metric spaces. Chaos Solitons Fractals, 22: 1039-1046. doi: 10.1016/j.chaos.2004.02.051
- Saadati, R. and J.H. Park, 2006. On the intuitionistic fuzzy topological spaces. Chaos, Solitons Fractals, 27: 331-344. doi: 10.1016/j. chaos.2005.03.019
- Goguen, J., 1976. L-fuzzy sets. J. Math. Anal. Applied, 18: 145-174. doi: 10.1016/0022-247X (67)90189-8.
- Deschrijver, G. and E.E. Kerre, 2003. On the relationship between some extensions of fuzzy set theory. Fuzzy Sets Syst., 133: 227-235. doi: 10.1016/S0165-0114(02)00127-6.