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Abstract: This research describes a parallel implementation of Liang-Barsky clipping algorithm on a 
pipeline network configuration. The implemented configuration uses pipeline of four transputers and 
programmed under Occam2 language. In order to achieve the concurrency, to improve the performance 
and to cut down the hold-ups caused by the calculation of intersection, data buffering is used. 
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INTRODUCTION 

 
 Computer graphics is a field of computing which 
requires intensive processor use. Algorithms in graphics 
are very repetitive and operate on very large data sets. 
The process of clipping can be defined as the process of 
removing the portion of an image that falls outside the 
visible region. In graphics, there are line and polygon 
clipping algorithms[3,4,5,7,8]. The polygon clipping 
algorithm clips a polygon against one boundary 
window after another, rather than clipping against all 
boundaries at once. This has certain features which is a 
natural candidate for parallel implementation.  
 Several well-known polygon clipping algorithms 
have been proposed[1,2,4,10,12,13]. The basic idea of these 
algorithms is to clip a given polygon against each 
boundary line of the window separately. Both 
Sutherland-Hogman and Liang-Barsky algorithms 
generate connected clipped polygons[9,12]. The Liang-
Barsky algorithm is optimized for rectangular windows 
but is extendable to arbitrary convex windows. Results 
indicate that for rectangular windows the optimized 
algorithm is twice as fast as the Sutherland-Hogman. 
Liang-Barsky is a parametric polygon clipping 
algorithm. 
 The choice of parallel configuration for a particular 
problem is not always straightforward. Much research 
in parallel processing[6,11] is directed towards matching 
problems to configuration. This research presents a 
parallel implementation of Liang-Barsky polygon 
clipping algorithm which is based on a Transputer 
Development System (TDS). The INOMS T414 
transputer[7] is a 32 bit microcomputer with 4Kbytes on-
chip RAM for high speed processing, a configurable 
memory interface, and all necessary system services. It 

has four ports of communication links all in single 
wafer.  The programming language Occam[7,11] is a 
concurrent programming language designed for the 
transputer. The implemented system uses pipeline of 
four transputer and programmed under Occam2 
language.  
 

DESIGN CONSIDERATION 
 
 An arrangement of four processors in a pipeline-
configuration is an obvious method of implementing 
polygon-clipping algorithms[2,3] against four 
boundaries. Each processor runs the clipping process 
for a different boundary, where polygon data passes 
from processor to processor. In addition, four other 
processes are required to make the pipeline work, these 
are: Reading and writing data to the pipeline, create the 
polygon data and to display the resulting clipped 
polygon. 
 Figure 1 shows an example of two processes 
(create and write) accessing the common area of 
memory have to be synchronized to avoid unpredictable 
result. The create process can terminate before the write 
process starts. Also, the boundary data (bound data) and 
write processes both communicate with clip.bo. Hence 
synchronization is achieved through the running order 
of the process. Fig. 2 shows the pseudo Occam which 
presents the ordering of these processes. 
      A problem that can be greatly reducing the 
performance of a pipeline is uneven load balance. This 
problem  may  occur  when  a  processor  in the pipeline 
takes longer to perform some process than the other 
elements of the pipeline. Since all the processors, in the 
research paper work, run the same code, there is 
nothing that can be done to even up the load balance by 
redistributing the code. 
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Fig. 1: The interaction of the main processes 
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Fig. 2: The pseudo code for create and write processes 

in Occam  
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Fig. 3: Clipping to buffering communication 
  
 In order to cut down the hold-ups caused by the 
calculation of intersections by buffering data which are 
sent by previous processor in the pipeline. The 
buffering can be done by a process working in parallel 
with the clipping algorithm as shown in Fig. 3. As the 
buffering process takes place on the same processor as 
the clipping processor, concurrency is achieved through 
multitasking. The buffer improves the performance by 
allowing a clipping process to pass on its data to 
another clipping process even if that process is not 
ready to process the data. This result a reduction in 
waiting times, however, operating a buffer does 
introduce an extra processing overhead. 
 The clipping algorithm wants to know when one 
polygon ends and the next start otherwise, the list of 
polygon would be treated as one large polygon. Since 
the whole polygon list and pointer table are not passed 
from processor to processor, consequently, they can not 
be used to find the start, or end of each polygon. The 
following solutions could be considered: 

 
 
Fig. 4: Example of data flow between pipe elements 
 
• By passing an integer to a pipeline telling it how 

many vertices are in the polygon, vertex list is then 
communicated. However, the clipping process may 
reduce the number of vertices in the list. This 
means that the number of vertices in the list cannot 
be communicated until the entire polygon has been 
clipped. The result is an undesirable flow of data 

• A more satisfactory solution is to pass a start of 
polygon token. It does not communicate the 
polygon length. Such token can also be used to 
signal the end of the polygon list and therefore 
cause the pipeline element to reset. The token can 
be a Boolean variable, true for start and false for 
end of polygon list (an example shown in Fig. 4). 
Notice, those two true values with no vertices 
between, signifies that a polygon has no vertices 
with the window boundaries, and has therefore an 
empty vertex list. Therefore, only two data types 
need to be communicated between processes 
(Boolean and two element integer arrays, holding 
the (x, y) component of each vertex) 

 
 Boundary positions take the form of signal integer 
values, two giving x-coordinate and two giving y-
coordinates. The host sends all four positional values, 
put in order, to the first processor in the pipeline. The 
first processor takes the first value and passes the rest 
onto the second processor and so on.  
 

IMPLEMENTATION OF PIPELINE 
 
 The clipping algorithm is implemented on a 
pipeline of processors using Transputer Development 
System (TDS). The system consists of host PC (CPU 
Dual core 2.4 GHz and 1GB RAM), host transputer, 
and four transputers as shown in Fig. 5. The TDS runs 
on the host Transputer and provides a folding editor, 
Occam2 compiler, debugger and various tools. Under 
TDS, the code which runs on the transputers network is 
stored in a program fold.  
 Transputer Network Program consists of a links 
configuration and a set of procedures code to be run on 
each Transputer in the network. The link Configuration 
is concerned with the creation of a unidirectional 
pipeline. Each processor must have an output link 
connected to an input link of the next processor as 
shown in Fig. 6. The channel between processes in the 
pipeline must carry INT and BOOL data types and 
defined CASE statement as follow: 
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Fig. 5: Transputer development system 
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Fig. 6: Links configuration used by the clipping 

pipeline 
 
 The processors are configured to run the procedure 
called clippoly which can be found in the program fold, 
which is run on each processor. The input and output 
channels are different for each processor, as is the 
boundary against which it clips, which is passed to the 
processors as parameters. The clip procedure has the 
parameterization clippoly (input channel, output 
channel, and boundary). This procedure is effectively 
called only once when the network is loaded. 
 The clippoly procedure contains all the code which 
runs on the pipelining processors. The procedures 
declared Clippoly are Boundary.Pos Buffer.Space and 
Liang-Barsky algorithm (LB.algm). The overall 
structure of the clippoly procedure in pseudo Occam is 
shown in Fig. 7. 
 The infinite loop exists so that when the pipeline 
has finished processing a polygon list, the pipeline 
processor code resets itself. A reset is the transition to a 
state where the code running on pipeline processor is 
waiting for boundary position to be communicated. The 
followings are the procedures called within Clippoly 
procedure.  
 
Boundary.Pos: This procedure is invoked for each new 
polygon list. The pseudo Occam of this procedure is 
shown in Fig. 8. 
 
Buffer.Space: To make the operation on the pipeline 
more efficient the data is buffered. This process runs 
concurrently with the clipping algorithm and reads the 
channel from the previous processor in the pipe. If the 
clipping code is not ready to receive the data, the 
Buffer.Space process is suspended until it is. The 
following Pseudo Occam procedure shows the actions: 

SEQ
While more vertices
Get value fro m previous processor, communicate to
Clipping code, when ready output vertex.

 
 

While True
SEQ
Boundary.Pos ()
PAR
Buffer .Space
SEQ
While vertices left to process
Input vertex
Clippoly ()
Output vertex

 
 
Fig. 7: Pseudo code of clippoly procedure 
 

SEQ
Loop once for each Processor, which follows in pipe,
it  read a boundary position from previous processor.
If vertex type
If first position read,
Make boundary position = position read
Else
Pass on boundary posit ion to next processor.
Else
Stop (an error)

 
 
Fig. 8 The pseudo occam of Boundary.Pos procedure 
       

While more vertices to process
Read a value fro m the input channel
If value is Bool
If not the first vertex of list
Then p = first vertex o f list
P erform LB>alg.
Output a Trues until False or vertex value read
Input True until False or vertex value read
If False value
Then output false value
Else save vertex value
It is first of list
S = vertex value
Else P erform LB .alg
S = P

 
 
Fig. 9: The pseudo Occam of Clippoly procedure 
 
 A more conventional circular buffer could be used. 
This has the advantage that the storage size of the 
buffer does not effect the processing time needed to 
operate the buffer. 
 
Clippoly code: This is the main part of the procedure, 
which is contained within a while loop. It will continue 
while there are vertices to process. The Pseudo code in 
Occam is shown in Fig.  9. 
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SEQ
Initialize ()
Boundary Data ()
Start timing
PAR
Write data ()
Read data
Stop timing
Results

 
 

Fig. 10: Interface pseudo code 
 
 The interface program runs on the host Transputer. 
Its code is completely separated from the clipping code. 
All interactions between the interface and the clipping 
code take via channel communication. The interface 
code is illustrated in Fig. 10. 
 

RESULTS AND DISCUSSION 
 
 The main draw back in using a pipeline for 
polygon clipping is that of processors being forced to 
wait for one another to finish tasks. This problem is 
addressed by the use of a buffer. However, due to the 
overhead of operating a buffer, only a single element 
buffer is used. Experiments with a circular buffer show 
that between 10-20 data items are being queued up. The 
buffer used is therefore only going a small way to deal 
with the hold up problem. 
 The same causes of hold-up exist on a single 
processor   system.  However,  on  a  single  processor, 
a process which has to wait for another process does not 
cause the processor to be kept idle. Instead a runnable 
process is run (i.e., Processes are multi-tasked). 
Therefore, the processor in the single processor 
implementation will always be kept busy; keeping the 
processor busy maximizes performance. The amount of 
clipping which has to be done has a direct effect on the 
number of hold-ups caused. For example a processor in 
the pipeline may have to perform no clipping because 
the polygons are all visible, but neighbor processor in 
the pipeline, on the other hand, might be clipping for a 
boundary, which passes through the polygons. The 
result is that one processor takes longer to process the 
same data as the other one, such a load imbalance will 
cause hold ups. It is found that the speed up is more or 
less perfect for four or five processor implementation. 
However, two processors implementation is unique in 
that it employs the best attributes of the single 
processor and multi processor implementation, which 
are respectively multitasking and parallel processing. 
Multitasking allows each of the processors to alternate 
between the two clip processes. Parallel processing 
allows boundaries 0 and 1 to be clipped at the same 
time as boundaries 2 and 3. 

 The processor pipeline performance is at its worst 
when there is a lot of clipping and vertex exclusion. It 
might be expected that a heavy workload would favor 
the parallel system, since it would keep the processors 
busy. 
 

CONCLUSION 
 
 A parallel implementation of a polygon clipping 
algorithm on a pipeline of four transputers is presented 
and implemented, in order to provide a high speed-up 
over sequential implementation of the graphics 
operations concerned. Transputer Development System 
(TDS) hardware is implemented. The procedure code 
which runs on the pipeling processors also is written in 
Occam.  
 The advantage of using general purpose parallel 
processors rather than special purpose architecture 
include low development costs (only the software has to 
be developed) and a large degree of flexibility. Users of 
general purpose parallel processors can reduce their 
investment in graphics hardware by using algorithm 
presented here in order to achieve high graphics 
performance. 
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