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Abstract: Problem statement: Theoretical based data representation is an important tool for model 
selection and interpretations in bankruptcy analysis since the numerical representation are much less 
transparent. Some methodological problems concerning financial ratios such as non-proportionality, 
non-asymetricity, non-scalicity are solved in this study and we presented a complementary technique 
for empirical analysis of financial ratios and bankruptcy risk. Approach: This study presented new 
geometric technique for empirical analysis of bankruptcy risk using financial ratios. Within this 
framework, we proposed the use of a new ratio representation which named Risk Box measure (RB). 
We demonstrated the application of this geometric approach for variable representation, data 
visualization and financial ratios at different stages of corporate bankruptcy prediction models based 
on financial balance sheet ratios. These stages were the selection of variables (predictors), accuracy of 
each estimation model and the representation of each model for transformed and common ratios. 
Results: We provided evidence of extent to which changes in values of this index were associated with 
changes in each axis values and how this may alter our economic interpretation of changes in the 
patterns and direction of risk components. Results of Genetic Programming (GP) models were 
compared as different classification models and results showed the classifiers outperform by modified 
ratios. Conclusion/Recommendations: In this study, a new dimension to risk measurement and data 
representation with the advent of the Share Risk method (SR) was proposed. Genetic programming 
method is substantially superior to the traditional methods such as MDA or Logistic method. It was 
strongly suggested the use of SR methodology for ratio analysis, which provided a conceptual and 
complimentary methodological solution to many problems associated with the use of ratios. 
Respectively, GP will provide heuristic non linear regression as a tool in providing forecasting 
regression for studies associated with financial data. Genetic programming as one of the modern 
classification method out performs by the use of modified ratios. Our new method would be a general 
methodological guideline associated with financial data analysis. 
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INTRODUCTION 

 
 In classical prediction models a convenient 
representation of ratios are in closed form of graphical 
presentation of data. In contrast, achieving better 
accuracy often relies on visualization of predictors. It is 
at this stage when the selection of a proper graphical 
presentation scheme becomes essential for a correct 
scaled visualization. Since numerical presentation of 
ratios cannot be a good representative of characteristics 
of companies, some other ways of displaying them 
must be found. Graphical tools give this possibility. 

This study presents a complementary perspective on the 
study of ratios and bankruptcy. One possible 
explanation for this effect that is consistent with the 
“efficient market hypothesis” that ratio is a proxy for 
risk. Also in banking, the ratios taken to be a proxy for 
the charter value of banks[17]. Statistical techniques 
applications to corporate bankruptcy started in the 60’s 
with the development of computers. The first technique 
introduced was Discriminant Analysis (DA) for 
univariate and multivariate models[1]. Then Altman[1], 
used Multiple Discriminant Analysis (MDA) and 
applied to prediction of business failure. Altman[2] 
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examined railroad bankruptcy propensity and Deakin[9] 
replicated study Edmister[10] testing the usefulness of 
financial ratio in order to predict small business failure. 
Altman, Margaine, Schlosser and Vernimmen[3] 
developed a model in order to determine the credit 
worthiness of commercial loan applicants in a cotton 
and wool textile sector in France. Altman, Haldeman 
and Narayan[4] developed their classical Z model and 
named it Zeta Analysis. After DA and Multiple 
Discriminant Analysis (MDA), the logit and probit 
models were introduced in Martin[19], Ohelson[23]. 
Nowadays these models are widely used in practice. 
The solution in the traditional framework is a linear 
function separating successful and failing companies. A 
company score is computed as a value of that 
function[6]. 
 Northon and Smith[21] who compared the prediction 
of bankruptcy using ratios computed from General 
Price Level (GPL) financial statements to the prediction 
of bankruptcy using ratios computed from traditional 
historical cost financial statements, Taffler[28] who used 
linear discriminant analysis for the prediction of 
bankruptcies in UK with financial ratios. 
 Moreover recursive partitioning also known as 
Classification and Regression Trees (CART) performs 
classification by dividing the data space. Moreover 
Genetic Programming (GP) is a population of linear 
classifiers (genes) that are connected with one another 
in a pre-specified way. The outputs of some of the 
genes are inputs for others. The performance of GP 
greatly depends on its structure that must be adapted for 
solving different problems. However, as there is no 
widely accepted economic theory, every study has 
based their model specification on an empirical 
framework. This results in different accounting ratios 
used in different models. Generally, these multivariate 
models are conducted on procedure that is structured in 
such a way that an equal number of bankrupt and non-
bankrupt firms are chosen randomly with respect to 
company size or industry or large and small samples 
avoiding matching procedure. 
 
Problem statement: According to literature, predictors 
used in various studies, generally exhibit non-normal 
distribution and high standard errors[8,20,24]. Some 
researchers made correction for univariate non-
normality and tried to approximate univariate normality 
by transforming the variables prior to estimation of 
their models[29,5]. Deakin[9] used log transformation, 
then square root and log-normal transformation of 
financial ratios were used by Ooghe[13] and Gu[14]. 
Other researchers approximate univariate normality by 
'trimming' or 'outlier deletion', which involves 

segregating outliers by reference to normal 
distribution[12]. Furthermore rank transformation been 
used by Perry et al.[25] and Kenjegalieva et al.[15]. 
Recently Bahiraie et al.[7] used Geometric 
transformation of ratios, which may become general 
guidelines concerning the transformation details was 
discussed. 
 
Objectives: Our objective in this study is to discuss 
about new geometric approach to ratios, which involves 
data transformation and we illustrate the use of this 
methodology for bankruptcy predictions. For 
illustration of this new methodology, book and market 
ratio values (X, Y) are used as numerator and 
denominator of common ratio values and represented as 
Cartesian coordinates in our constructed modification 
box in which we derive the isoclines of associated 
components of bankruptcy risk. This study is regarded 
as one of the classic studies in this field. We show that 
Genetic Programming (GP) as one of the modern 
classification methods outperform by risk box method 
in compare to ratios. 
 

MATERIALS AND METHODS 
 
Genetic Programming (GP): Genetic Programming 
(GP) is a search methodology belonging to the family 
of Evolutionary Computation (EC). GP can be 
considered as an extension of Genetic algorithms, 
GA[16]. GA is stochastic search techniques that can 
search large and complicated spaces stemmed on the 
ideas from natural genetics and evolutionary principle. 
They have been demonstrated to be effective and robust 
in searching very large spaces in a wide range of 
applications. GP is basically a GA applied to a 
population of Computer Programs (CP). While a GA 
usually operates on strings of numbers, a GP has to 
operate on CP. GP allows, in comparison with GA, the 
optimization of much more complicated structures and 
can therefore be applied to a greater diversity of 
problems[22]. While bankruptcy prediction can be 
considered as a classification problem, we provide 
necessary description of GP with emphasis on its 
application in classification role[16]. Genetic 
programming models were inspired by the Darwinian 
theory of evolution. According to the most common 
implementations, a population of candidate solutions is 
maintained and after a generation is accomplished, the 
population is fitted better for a given problem. Genetic 
programming uses tree-like individuals that can 
represent mathematical expressions. Such a GP 
individual is shown in Fig. 1. 
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Fig. 1: Tree representation of the program (expression): 
(X*Y) + 6 - (Z/8) 

 

 
 
Fig. 2: Representation of crossover (parents) 
 

 
 
Fig. 3: Representation of crossover (children) 
 
 Three genetic operators are mostly used in these 
algorithms: Reproduction, crossover and mutation. First 
the reproduction operator simply chooses an individual 
in the current population and copies it without changes 
into the new population. In second step two parent 
individuals are selected and a sub-tree is picked on each 
one. Then crossover swaps the nodes and their relative 
sub-trees from one parent to the other. If a condition is 
violated the too-large offspring is simply replaced by 
one of the parents. There are other parameters that 
specify the frequency with which internal or external 
points are selected as crossover points. Figure 2 and 3 
show an example of crossover operators. 
 The mutation operator can be applied to either a 
function node or a terminal node which in the tree is 
randomly selected. If the chosen node is a terminal 
node it is simply replaced by another terminal and if it 
is a function and point mutation is to be performed, it is 
replaced by a new function with the same parity[18]. 
When tree mutation is to be carried out, a new function 
node is chosen and the original node together with its 
relative sub-tree is substituted by a new randomly 
generated sub-tree. A depth ramp is used to set bounds 
on size when generating the replacement sub-tree. 
Naturally it is to check that this replacement does not 
violate the depth limit. If this happens mutation just 
reproduces the original tree into the new generation. 

 
 
Fig. 4: Representation of mutation 
 
Further parameters specify the probability with which 
internal or external points are selected as mutation 
points. An example of mutation operator is shown in 
Fig. 4. 
 The last step for obtaining the best fitness function 
for all classification problems, in order to apply a 
particular fitness function, the learning algorithms must 
convert the value returned by the evolved model into 
“1” or “0” using the 0/1 Rounding Threshold. If the 
value returned by the evolved model is equal to or 
greater than the rounding threshold, then the record is 
classified as “1”and “0” otherwise. There are many 
varieties of fitness function such as number of hits, 
sensitivity/specificity, Relative Squared Error (RSE), 
Mean Squared Error (MSE), that can be applied for 
evaluating performance of generated classification 
rules. We used “number of hits” as fitness function 
because of its simplicity and efficiency which is based 
on the number of samples correctly classified. More 
formally, the fitness fi of an individual program 
corresponds to the number of hits and is evaluated by fi 
= h where h is the number of fitness cases correctly 
evaluated or number of hits. So, for this fitness 
function, maximum fitness fmax is given by fmax = n 
where n is the number of fitness cases. 
 Its counterpart with “parsimony pressure” uses this 
fitness measure fi as “raw fitness”, rfi and complements 
it with a parsimony term. Parsimony pressure puts a 
little pressure on the size of the evolving solutions, 
allowing the discovery of more compact models. Thus, 
in this case, raw maximum fitness rfmax = n and the 
overall fitness fppi that is, fitness with parsimony 

pressure is evaluated by max i
i i

max min

1 S S
fpp rf (1 )

5000 S S

−= × + ×
−

 

where Si is the size of the program, Smax and Smin 
represent minimum and maximum of program 
population respectively. Maximum and minimum of 
program sizes are evaluated by the formulas:  
 
Smax = G(h+t)  
 
and 
 
Smin = G 
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Where: 
G = The number of genes and h  
T = The head and tail sizes 
 
 Thus,  when  rfi = rfmax   and   Si = Smin,   with 
fppmax = 1.0002×rfmax the process will be optimized. 
The described procedure is depicted in the flowchart 
of[27]. Once fitness function is defined, bankruptcy 
prediction problem becomes a search problem of the 
best solution in the search space of all the possible 
solutions, that is to say an optimization of the fitness 
function for which optimization techniques can be used. 
The implementation of a genetic model is to 
automatically extract an intelligible classification rule 
for prediction classes of bankrupt and non-bankrupt 
firms in a sample by the given values of some financial 
ratios, called predicting variables. Each rule is 
constituted by a logical combination of these ratios. The 
combination determines a class description which is 
used to construct the classification rule. Given a 
number of variables describing each firm and their 
related domains, it is easy to understand bankruptcy 
prediction problems by the number of possible 
solutions obtained which is enormous. 
 
The share risk box methodology: The framework is a 
two-dimensional box in which associated with ratio 
values in which pair values of each risk ratios (Xi, Yi) 
are represented as Cartesian coordinates. For 
expositional purposes suppose our proxy for risk 
chosen is employed by Xi as numerator and Yi as 
denominator values of i

i

X
Y

 ratio. For any number of 

firms, ∀i = 1,2,3,…,n, proposed Share Risk (SRi) is 
defined as a function of Xi and Yi. Consider a square 
two-dimensional space that captures all changes in 
numerator Xi and denominator Yi, for any firm i and 
any period t where X and Y can be positive, negative or 
zero (It is applicable to any level of aggregation such as 
cross-country studies, cross sector and ratios). Assume 
a hypothetical study of risk covering n years for sector 
j. For ∀t = 1,2,3,…,n, we have: Xt, Yt>0. All risk 
components  measure  indices  such  as,  Total   Risk 
TR = X+Y, Net  Risk NR = |X-Y|, Overlapping Risk 
OR = (X+Y)-|X-Y| and lastly the proposed Share 
Measure of Risk (SR) as we define below, are linear 
functions of X and Y which X+Y = TR = NR+OR: 
 

OR (X Y) | X Y | 2min(X,Y)
SR

TR (X Y) (X Y)
+ − −= = =

+ +
 

 
 Following Bahiraie et al.[7], we can construct a two 
dimensional box that encapsulates all of these variables 
for n years. The dimensions of the risk box are 

generated by the maximum value of either Xi and Yi 
value during the period of study. From the definition of 
TR, NR, OR, SR, we obtain: 
 

( )

( )

i ii i i

i i

i

i

i i

max(NR ) max X Y max(max X min Y ,

max Y min X ) m

max(OR ) 2max (min(X ,Y ) 2m

maxSR 1

= − ≤ −

− ≤

= ≤

⇒ ≤

  

 
 Each respective risk box will have sides equal to 
max(Xi) if for i∈t then max(Xi)>max(Yi) or max(Yi) if 
otherwise. Our exposition of the dimensions of the box 
is as follows which confirms the elasticity and unit-free 
nature of SR measure: 
 
Locus of EQUI TR: A 45° line from the origin bisects 
the box into two equal triangles. This positive slope 
diagonal is the  locus  of  balanced  risk  where X = Y, 
TR equals OR, SR equals unity and NR equals zero. 
This is the risk components' axis of asymmetry[26]. 
 The two triangular planes in the box consists of an 
upper triangle containing coordinate points (Xi, Yi) 
where Xi>Yi in and points Yi>Xi in the lower triangle. 
A fix value TR = TR* implies = TR*-Y. Comparing 
with y = mx + c, we have the gradient m equals minus 
unity. Hence, locus of EQUI TR is perpendicular to the 
axis of asymmetry. 
 
Locus of EQUI NR: Recall that Net Risk NR = |X-Y|. 
The line 45° line, Y-X = NR* so X = Y-NR*, which 
also slopes upward at 45°, meeting the (horizontal) Y 
axis at NR*. Above the 45° line through the origin we 
have another segment of same contour, namely the line 
Y-X = NR* or X = Y+NR*. These two 45° lines from 
the contour are corresponding to NR*. Increasing the 
value of constant NR* moves both segments higher up 
their respective axis, away from the central NR* line: 
 

X Y∀ =  then NR = 0 
X Y∀ >  then NR X Y X Y= − = −  i.e., x =Y+NR 

X Y∀ <  then NR X Y Y X= − = −  i.e., X Y NR= −  
 
 Increasing the value of constant NR* moves both 
segments higher up their respective axis, away from the 
central NR* line. Comparing with y = mx + c, we have 
for  a  net  book  value,  m = 1 with a vertical intercept 
c = NR. Since the central line balanced is the axis of 
symmetry for NR, m = 1 and c = NR (Fig. 5). 
Consequently, locus of EQUI NR values is 

perpendicular to lines of EQUI TR (TR
NR

1
m

m

−= ). 
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Fig. 5: Total risk isoclines 
 
Locus  of  EQUI OR:  Recall  that  overlapping   risk 
OR = 2 min(X,Y), below the central 45o line, OR = 2X 
that remains  constant for constant X. Above the line 
OR = 2Y which remains constant for constant Y. 
 
∀X = Y ⇒ OR = (X+Y) = TR 
∀X >Y ⇒ OR = (X+Y) – (X–Y) = 2Y 
∀X <Y ⇒ OR = (X+Y) – (X–Y) = 2X 
 
 Thus the EQUI corresponding to constant 
overlapping risk OR* is L-shaped (Fig. 6), the kink 
occurring along the central 45° line. As OR* increases, 
the kink moves up the line, away from the origin.  
 
Proposed share measure of risk and locus of EQUI 
SR: Consider our proposed unit-free share measure of 

risk 
( )2min X,Y

SR
X Y

=
+

, the followings are obtained: 

 

• Below the line, Y>X and thus 
2X

SR
X Y

=
+

. The 

EQUI corresponding to a constant value SR* is 
defined by the relation SR*(X+Y) = 2B, which can 

be solved for X to yield 
*

*

SR
X

2 SR
Y=

−
. Thus this 

segment of the EQUI is a ray from the origin with 

constant slope 
*

*

SR

2 SR
γ =

−
. Since 0≤SR≤1, we have 

0≤γ≤1, showing that the ray passes between the 
central 45° line and the horizontal axis 

• Above the central 45° line on the other hand we 

have
2Y

SR
X Y

=
+

. Given a constant value SR* we 

obtain X = γ−1Y, whose slope γ−1 satisfies 1≤γ−1<∝ 

 
 
Fig. 6: Net risk isoclines 
 

 
 
Fig. 7: Overlapping risk isoclines 
 
 Thus the EQUI corresponding to a particular value 
SR* consists of two rays in the positive quadrant 
meeting at the origin, with slopes γ and γ−1. In Fig. 8 
these rays are shown as OC and OB. Note that the 
symmetry of the diagram about the central 45° line 
implies that the angles θ1 and θ2 are equal. 
 In Fig. 7, relationships between the four risks 
measures and slopesγ and γ−1, consider rays OB and OC 
subtending the angles θ1, θ2 measured from the 
symmetry axis. Let A, B, C and D represent points on 
the risk plane with A, B and C sharing equal total risk 
values, TR*. In addition, B, C and D share equal OR 
values, OR*: 
 

OA TR *=  and 
defn

TR * OR * NR* AB− = =  
 
Hence: 
 

defn defn

1 1
AB AB TR * OR * OR *

tan tan 1
OA OA TR * TR *

1 SR *
−θ = θ = = −= = −

1SR* 1 tan⇒ = − θ  
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Fig. 8: Share risk isoclines  
 
 These will confirm that SR values are constant 
along any ray from origin and the two extreme case the 
two extreme cases are (i) θ1 = θ2 = 45°, in which case 
SR = 0 and either the Y value or the X value is zero and 
(ii) θ1 = θ2 =0, in which case SR = 1 and X = Y.  
 

RESULTS 
 
Data collection: The database used in our illustrative 
empirical study consists of 200 Malaysian companies 
from Kuala Lumpur Stock Exchange (KLSE) which 60 
companies went bankrupt and 140 companies are non-
bankrupt companies from the same period of listing. 
 
Variables: In this study on the basis of the financial 
ratios successfully identified by past studies and 
availability, 40 indices have been built by using 
balance-sheet data. 
 
Significance mean test: Ratios and significances on 
mean differences for each group is tested and presented 
in Table 1. These indices reflect different aspects of 
firm structure and performance and have been 
calculated as one-year ratios prior to bankruptcy. 
 
Genetic programming: variable selection using 
Genetic Programming (GP) is to illustrate that this 
new transformation will produce more accurate 
prediction statistically and can be used as an 
alternative for common ratios. Following recent 
research by Etemadi et al.[11] we tested these selected 
variables with Genetic Programming (GP) to obtain 
fitness function tree and to illustrate that this new 
transformation will predict more accurate and can be 
used as an alternative for  common ratios even with GP. 

 
 

 
 

 
 
Fig. 9: The best GP model obtained for SR method 
 
In the final regressions with fewer significant variables 
in different classification trees where as expected and 
we observed that different variables were identified as 
significant indicators for each procedure from the 
selected list. For implementing GP process and 
developing bankruptcy model, GeneXproTools 
software version 4.1 was used. Crossover and mutation 
operators were set as 0.44 and 0.05 respectively. 
 Figure 9 and 10 show the best GP model obtained 
for each approach. These models have been divided in 
three sub-trees which each tree representing a Gene 
meaning the model is a chromosome consisting of tree 
genes. Sum of the returns of sub-trees for a firm 
should be compared with “Rounding Threshold” for 
determining the class of the firm. From the 
classification sub-trees depicted in Fig. 9, decision 
trees for SR approach with 95% accuracy rate 
obtained.  
 From the classification sub-trees in Fig. 10, 
decision trees for common ratios approach with 89% 
accuracy level. Variables, which are found significant 
in each sub-trees are represented in Table 2.
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Table 1: Variables used and comparison of means in two groups 
 Original ratios   Transformed ratios 
 --------------------------------------------------------------------------- ------------------------------------------------------------------------- 
Definition Means of non-bankrupt Means of bankrupt TEGM Means of non-bankrupt Means of bankrupt TEGM 
of variables companies companies  (Sig level) companies companies (Sig level) 
EAIT/TA 0.21985 0.05165 0.00000 1.39008 1.47417 0.02500 
TD/SE 2.32591 2.99969 0.05100 0.17897 0.33310 0.04300 
R/S 0.53916 0.01808 0.00000 1.29721 1.49609 0.02300 
TD/TA 0.64600 0.78450 0.01100 1.17700 1.10775 0.00000 
CL/SE 2.07355 2.60760 0.87400 0.13713 0.28837 0.21100 
CL/TD 0.87258 0.83419 0.23400 1.06371 1.08290 0.32300 
OA/TA 0.54037 0.62549 0.20100 1.22981 1.18725 0.08300 
R/S 0.64792 0.40207 0.44500 1.28176 1.31233 0.52700 
R/Inv 64191.96287 60.03362 0.00000 1.00444 1.12682 0.00000 
SE/TD 0.81727 0.33380 0.00000 1.17897 1.33310 0.02500 
E/TA 0.37868 0.24421 0.04100 1.31066 1.37789 0.00000 
CA/CL 1.37059 1.13940 0.56700 0.07046 0.03709 0.00000 
QA/CL 0.88108 0.49283 0.00200 1.14017 1.25456 0.31100 
QA//CA 0.59121 0.44456 0.00100 1.20439 1.27772 0.00000 
NFA/TA 0.22169 0.22309 0.97600 1.38916 1.38846 0.00500 
WC/TA 0.11022 0.06320 0.69600 1.44489 1.46840 0.31300 
CL/TA 0.56389 0.65641 0.00000 1.21806 1.17179 0.00000 
POC/SE 0.53201 0.57998 0.19900 1.23447 1.10467 0.00800 
RE/TA 0.06492 -0.02391 0.00000 1.46754 1.51196 0.07800 
EAIT/SE 0.53080 0.17283 0.41000 1.24864 1.46834 0.00000 
EAIT/S 0.27192 -0.04296 0.00000 1.36405 1.50608 0.00000 
EBIT/TA 0.17862 0.00639 0.00000 1.41069 1.49680 0.00000 
D/EAIT 2.02476 0.92434 0.31100 1.11523 0.24383 0.07200 
OI/S 0.28441 -0.01012 0.00000 1.35780 1.49572 0.87400 
MVE/TA 0.04992 0.05746 0.00800 1.47504 1.47127 0.00600 
EBIT/IE 4496.20577 -43.01149 0.00000 0.59907 0.55253 0.21300 
OI/TA 0.19620 0.02240 0.00000 1.40190 1.48880 0.10700 
Ca/S 0.18568 0.05238 0.00000 1.43579 1.47381 0.00000  
GP/S 0.35047 0.09577 0.00000 1.32476 1.45211 0.21400 
S/SE 3.01240 3.06662 0.07200 0.20837 0.29016 0.84400 
S/NFA 10.53526 5.98830 0.89300 0.33491 0.31069 0.03400 
S/CA 1.37378 1.07683 0.00600 0.06508 0.00171 0.00000 
S/WC 14.68814 5.10868 0.21300 0.40842 0.44656 0.00800 
S/TA 0.88013 0.75620 0.10700 1.08629 1.12527 0.00200 
S/Ca 37.35053 121.39542 0.00500 0.43579 0.47381 0.00000 
IE/GP -0.32201 -1.87164 0.08700 1.57508 1.60523 0.40500 
Ca/CL 0.17422 0.05219 0.00200 1.41614 1.47391 0.29200 
Ca/TA 0.08993 0.03416 0.00900 1.45503 1.48292 0.02300 
S/GP 4.81397 24.35715 0.00000 0.32476 0.45211 0.12500 
BVD/MVE 81.75837 73.27468 0.03200 0.46128 0.46254 0.04300 
BVD: Book Value of Dept. ; CA: Current assets; EAIT: Earning After Income and Taxes; GP: Gross Profit; Inv: Inventory; MVE: Marked Value 
of Equity; NI: Net Income; OI: Operational Income; QA: Quick Assets; RE: Retained Earnings; SC: Stock Capital; TA: Total Assets; Ca: Cash 
Flow; CL: Current Liabilities; EBIT: Earnings Before Interest And Taxes; IE: Interest Expenses; LA: Liquid Assets; NFA: Net Fixed Assets; OA: 
Operating Asset; POC: Paid On Capital; R: Receivables; S: Sales; SE: Shareholders’ Equity; TEGM: Test of Equity of Group Mean 
 
Table 2: Predictors used by Gp 

Under SR method  Under original ratios 

T1C0 -4.22037 T1C1 -5.57389 
TIC1 1.28492 T2C0 4.37029 
T2C0 -1.98109 T3C1 -2.49165 
T2C1 3.37945 
T3C0 4.36542 
T3C1 -2.31471 
d1 R/S d0 R/S 
d2 SE/TD d1 SE/TD 
d3 QA/CA d3 QA/CA 
d4 POC/SE d5 OI/S 
d5 OI/TA d6 OI/TA 

The representation of a solution for the problem 
provided by the GP algorithm is in the form of decision 
sub-tree. Each node of this tree is a function node 
taking one of the values from the set +, -, *, ^, EXP and 
etc. Some of operators which were used in our study are 
shown in Table 3. For decision making of whether a 
firm is bankrupt or non-bankrupt through the genetic 
programming decision tree, a benchmark value of 0.5 is 
used. If the value for specific training or test firm is 
greater or equals 0.5, then this firm is marked as 
“bankrupt firm”. If the value of the GP model for a 
training or test firm is less than 0.5, then this firm is 
classified as “non-bankrupt firm”. 
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Fig. 10: The best GP model obtained for original ratios 
 
Table 3: Function nodes reported in decision trees in Fig. 9 and 10 
Representation Name Representation Name 
+ Addition Exp Exponential 
- Subtraction E ℮ 
* Multiplication Pi Π 
/ Division Log Logarithmic 
Sin Sine Asin Arcsine 
Cos Cosine Acos Arccosine 
Tan Tangent Atan Arctangent 
Cot Cotangent Acot Arc cotangent 
Sec Secant Asinh Arcsine hyperbolic 
Csc Cosecant Acosh Arccosine  
   hyperbolic 
Sinh Sine hyperbolic Atanh Arctangent  
   hyperbolic 
Cosh Cosine hyperbolic Acoth Arc cotangent  
   hyperbolic 
Acsch Arc cosecant Csch Cosecant 
 Hyperbolic  hyperbolic 
Asech Arc secant Sech Secant hyperbolic 
 hyperbolic 
4RT X^1/4 X3 X^3 
5RT X^1/5 X4 X^4 

 
Table 4: Possible classification response 
Symbol Actual Prediction 
11 1: Dsitress 1: Dsitress 
10 1: Dsitress 0: Non-distress 
01 0: Non-distress 1: Dsitress 
00 0: Non-distress 0: Non-distress 

 
Misclassification cost: An alternative to error rate is a 
misclassification cost which is simply a number that is 
assigned as a penalty for making a particular type of a 
mistake. An average cost of misclassification can be 
obtained by weighing each of the costs by the respective 
error rate. Computationally this means that errors are 
converted into costs by multiplying an error by its 
misclassification cost. In Table 4 possible classifications 
and misclassifications are shown and Table 5 shows the 
comparison accuracy by each classification model 
respect to different data representations. 

Table 5: Comparison accuracy of GP trees 
Items Original ratios SR method 
11 51 56 
10 9 4 
00 127 134 
01 13 6 
Total accuracy (%) 89 95 

 
Table 6: The transformed ratios still outperform original ratios 
Items Original ratios (%) SR method (%) 
1 93.94 96.97 
2 100.00 100.00 
3 84.85 90.91 
4 100.00 100.00 
5 75.76 96.97 
Average 90.91 96.97 
SE 10.49 3.71 

 
 Table 5, exhibits the summarized accuracy level 
for GP procedures and clearly the results improved 
under data transformation procedure. Due to better 
performance observation of this new transformation, 
data set is not collected form particular industry type or 
similar firm size or any outlier deletion applied. Thus, 
our process is free of any potential explanatory effect 
errors, which may caused by independent variable’s 
distribution Deakin[9]. 
 
K-fold cross validation: In order to confidently lesson 
the effects of biasness, we conduct the K-fold cross 
validation procedure. Each one of the subsets is then in 
turn as testing set after all other sets combined have 
been training set on which a tree has been built. This 
cross validation procedure allows mean error rates to be 
calculated which gives a useful insight into classifiers 
decision. This technique is simply k-fold cross 
validation whereby k is number of data instances. This 
has advantage of allowing the largest amount of 
training data to be used in each run and conversely 
means that the testing procedure is deterministic. With 
large data sets this is computationally infeasible 
however and in certain situations the deterministic 
nature of testing results in weir errors. Further, k-fold 
crosses validation primary method for estimating 
turning parameters, dividing the data into k equal parts. 
For each k = 1,2…, k fit the model with parameters to 
the other k-1 parts and the kth part as testing sample. In 
our experiment we set our sample to 5-fold accuracy 
results. Table 6 represents the comparison of 5-fold 
accuracy results. 
 Description results highlight the following 
evidences that under transformation process better 
classification accuracy results achieved. While the 
pattern of not only liquidity variation is alternatively 
favorable to active companies but also turnover indices 
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are higher for active firms. Assets to operating income 
ratio are higher for failed firms because of their reduced 
capital resources. Earning indices, display greater 
solvency for active firms, even though debts have 
increased for those firms with respect to go bankrupt. 
Operating structure ratios for active companies have a 
lower incidence of interest charges on sales and value 
added and higher depreciation charges over gross fixed 
assets for failed ones. Capitalization ratios clearly 
reflect the superior growth of active versus failed firms. 
Results suggest that some indicators like earnings to 
total debt traditionally considered in the empirical 
analysis but is not being significant in each of the three 
considered models. Profitability ratios emphasize the 
overall higher profitability of active enterprises. Finally, 
additional indices such as market share holders’ 
dividend, sale, return and operating assets are 
significantly higher for healthy companies. 

 
DISCUSSION 

 
 In this study we demonstrated the application of 
new graphical geometric approach for variable 
representation and data visualization. We believe that 
graphical analysis will have an increased importance as 
becoming more and more popular. On the other hand 
graphical ratio representation can facilitate the 
acceptance of prediction models in various areas, e.g., 
finance, medicine, sound and image processing. This 
will contribute to the development of those areas since 
better represent reality and provide higher forecasting 
accuracy. Within our new transformation methodology 
each company is described by a set of variables Xi, such 
transformed financial ratios instead of original ratios. 
Financial ratios, such as debt ratio (leverage) or 
interest coverage (earnings before interest and taxes) 
characterize different sides of company operation. 
They are constructed on the basis of balance sheets 
and income statements. We used 40 ratios (predictors) 
computed using the company statements from their 
corporate bankruptcy data base. The predictors and 
basic statistics are given in Table 1. Initially, an 
unknown classifier function f: x→y is estimated on a 
training set of companies (xi, yi), I = 2,…,n. The 
training sample classification regression represents 
prediction for companies which are unknown to be 
survived or gone bankrupt for testing sample.  
 

CONCLUSION 
 
 This study presented a complementary perspective 
on the study of risk and bankruptcy with use of 
financial ratios. In this study, a new dimension to risk 

measurement, bankruptcy and ratio transformation with 
the advent of the share risk was proposed. We briefly 
derived the respective properties of new risk approach 
components of which were over come of using common 
ratios limitations. Our simple methodology, called Risk 
Box index, provided a geometric illustration of our new 
proposed risk measure and transformation behavior. 
Our study employed 60 distressed companies with 
matched sample of another 140 non-failed companies 
listed in Kuala Lumpur Stock Exchange (KLSE). We 
found a rise in classification accuracy on application of 
this new independent variables transformation using 
Genetic Programming (GP). The Share Risk model 
(Risk Box) can be employed as a tool of analysis in 
providing a crucial first stage for analysing studies 
associated with changes in risk patterns, in particular 
those assumed to be linked with potential bankruptcies. 
The adaptability of our proposed methodology is 
emphasised by its applicability for any number of years 
on sectoral or cross-country studies on risk and 
bankruptcy studies.  
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