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Abstract: While in multi-periodic inventory control problems the usual assumption are that the orders 
are placed at the beginning of each period (periodic review) or depending on the inventory level they 
can happen at any time (continuous review), in this research, we relax these assumptions and assume 
that the periods between two replenishments of the products are independent and identically distributed 
random variables. Furthermore, assuming the purchasing price are triangular fuzzy variables, the 
quantities of the orders are of integer-type and that there are space, budget and service level 
constraints, incremental discount is considered to purchase products and a combination of back-order 
and lost-sales are taken into account for the shortages. We show that the model of this problem is a 
fuzzy mixed-integer nonlinear programming type and in order to solve it, a hybrid method of fuzzy 
simulation and genetic algorithm approach is used. At the end, a numerical example is given to 
demonstrate the applicability of the proposed methodology in real world inventory control problems. 
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INTRODUCTION 
 
 In multi-periodic inventory control models, the 
continuous review and the periodic review are the 
major vastly used policies. However, the underlying 
assumptions of the proposed models restrict their 
correct usage and utilization in real-world 
environments. In continuous review policy, the user has 
the freedom to act at anytime and replenish orders 
based upon the available inventory level. While in the 
periodic review policy, the user is allowed to replenish 
the orders only in specific and predetermined times. 
 The multi-periodic inventory control problems 
have been investigated in depth in different research. 
Chiang[1] considered a periodic review model in which 
the period is partly long. The important aspect of his 
study was to introduce emergency orders to prevent 
shortages. He employed a dynamic programming 
approach to model the problem. Mohebbi and Posner[2] 
investigated an inventory system with periodic review, 
multiple replenishment and multi-level delivery. They 
assumed that the stochastic demand followed Poisson 
distribution, shortages were allowed and that the lost 
sale policy could be employed. Feng and Rao[3] 
considered a (R, nT) model in which in the first level a 

stochastic demand entered the system and the total 
unsatisfied demand were back-ordered at the second 
level. Ouyang and Chuang[4] investigated a (R, T) 
model in which the period-length and lead-time were 
the decision variables, demand was a random variable 
and the service level was a constraint. Chiang[5] 
analyzed a periodic review problem in two cases of 
back-order and lost sales and employed the (R, T) 
policy. Qu et al.[6] investigated a transportation model 
integrated with an inventory model with a periodic 
review policy. Eynan and Kropp[7] have propounded the 
assumption of stochastic demand and variant 
warehousing costs on a periodic review system, while 
assuming nonzero lead-time and safety stock. Bylka[8] 
investigated a model with constraints on the amounts of 
orders and back-order shortages in which the lead-time 
was constant and demand was stochastic and 
Mohebbi[9] considered demand a compound Poisson 
random variable. Furthermore, Taleizadeh et al.[10] 
investigated a stochastic replenishment multi-product 
inventory system and proposed two models for two 
cases of uniform and exponential distribution of the 
time between two replenishments. They showed that the 
models were of integer non-linear type and proposed a 
simulation annealing algorithm to solve them. 
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 In the literature review of the fuzzy inventory 
models, Hsieh[11] introduced two models with fuzzy 
parameters for crisp and fuzzy production quantities. In 
Roy et al.[12] research an inventory model for a 
deteriorating item with stock dependent demand was 
developed under two storage facilities over a random 
planning horizon. Then, for the crisp deterioration rate 
on one hand, the expected profit was derived and 
maximized via Genetic Algorithm (GA). On the other 
hand, when deterioration rate was imprecise, the 
optimistic/pessimistic equivalent of fuzzy objective 
function was obtained using possibility/necessity 
measure of fuzzy event. Yao et al.[13] considered an 
inventory problem without backorder where both the 
order and the total demand quantities were triangular 
fuzzy numbers. Das et al.[14] formulated multi-item 
stochastic and fuzzy-stochastic inventory problems 
under   total   budgetary   and   space    constraints. 
Chang et al.[15] investigated the fuzzy problems of the 
mixture inventory systems involving variable lead-time 
with backorders and lost sales. In order to maximize the 
average profit, Mandal and Roy[16] formulated a multi-
item displayed inventory problem under shelf-space 
constraint in a fuzzy environment. In another research 
in this area, Maiti and Maiti[17] developed a multi-item 
inventory model with two-storage facilities and 
advertisement where the price and displayed inventory 
level-dependent demand, the purchase cost, the 
investment amount and storehouse capacity were 
imprecise. The problem was formulated as a 
single/multi-objective programming problem under 
fuzzy constraint. Liu[18] developed a solution method to 
derive  the  fuzzy profit of the inventory model when 
the demand quantity and the unit cost were fuzzy 
numbers.  
 Five main specifications of the proposed model of 
this research that have led to its novelty are the 
stochastic period length, the allowance of multi-
products multi-constraint, the purchasing price being 
fuzzy variable, incorporating discounts to purchase 
products and the fact that the decision variables are 
integer. By deploying these conditions simultaneously, 
the problem becomes more realistic and the created 
model is different from the other models in the periodic 
review literature.  
 

A BRIEF BACKGROUND IN FUZZY 
ENVIRONMENT 

 
 In this research, we adopt the concepts of the 
credibility theory including possibility, necessity and 
credibility of fuzzy event and the expected value of a 
fuzzy variable defined as[19]: 

Definition 1: Let ξ be a fuzzy variable with the 
membership function µ(x). Then the possibility, 
necessity and credibility measure of the fuzzy event ξ≥r 
can be represented, respectively, by: 
 
   { }

u r
Pos r sup (u)

≥
ξ > = µ   (1) 

 
   { }

u r
Nec r 1 sup (u)

<
ξ ≥ = − µ   (2) 

 

  { } { } { }1
Cr r Pos r Nec r

2
ξ ≥ = � ξ ≥ + ξ ≥ �� �   (3) 

 
Definition 2: The expected value of a fuzzy variable is 
defined as: 
 

  [ ] { } { }
0

0

E Cr r dr Cr r dr
∞

−∞

ξ = ξ ≥ − ξ ≤� �   (4) 

 
Definition 3: The optimistic function of α is defined as: 
 
 { }sup ( ) sup r Cr r    ,   (0,1]� �ξ α = ξ ≥ ≥ α α ∈� �   (5) 

 
PROBLEM DEFINITION 

 
 Consider a periodic inventory control model for 
one provider in which the times required to order each 
of several available products are stochastic in nature. 
Let the time-periods between two product-
replenishments be identical and independent random 
variables; the purchasing price of the products to be 
triangular fuzzy variables, the demands are crisp and in 
case of shortage, a fraction are considered back-order 
and a fraction as lost-sale. The costs associated with the 
inventory control system are holding (a percentage of 
the purchasing cost), back-order, lost-sales and 
purchasing costs. Furthermore, the incremental discount 
policy is used, the service level of each product, 
warehouse space and budget are considered constraints 
of the problem and the decision variables are integer 
digits. We need to identify the inventory levels in each 
cycle such that the expected profit is maximized.  
 

PROBLEM MODELING 
 
 For the problem at hand, since the time-periods 
between two replenishments are independent random 
variables, in order to maximize the expected profit of 
the planning horizon we need to consider only one 
period. Furthermore, since we assumed that the costs 
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associated with the inventory control system are 
holding and shortage (back-order and lost-sale), we 
need to calculate the expected inventory level and the 
expected required storage space in each period. Before 
doing this, let us define the parameters and the variables 
of the model.  
 
The  parameters and the variables of the model: For 
i = 1,2,…,n, let us define the parameters and the 
variables of the model as: 
 
Ri: The inventory level of the ith product 

Ti: A random variable denoting the time-period 
between two replenishments (cycle length) of 
the ith product 

FTi(ti): The Probability density function of Ti 
qij: The jth discount point for the ith product 
Wi: The crisp purchasing cost per unit of the ith 

product without discount 
Wij: The crisp purchasing cost per unit of the ith 

product at the jth discount point 

ijW� : The fuzzy purchasing cost per unit of the ith 
product at the jth discount point 

iW : The weighted expected purchasing cost of 
the ith product 

FIi: A fraction of the purchasing cost of the ith 
product used to calculate its holding cost 

hi: The holding cost per unit inventory of the ith 
product in each period 

ih′ : The crisp holding cost per unit inventory of 

the ith product in each period ( i i ih FI * W′ = ) 
�

ih′ : The fuzzy holding cost per unit inventory of 

the ith product in each period ( �i i ih FI * W′ = ) 
Qij: The order quantity of the ith product at the jth 

discount price 
πi: The back-order cost per unit demand of the 

ith product 
iπ̂ : The shortage cost for each unit of lost sale of 

the ith product 
Pi: The sale price per unit of the ith product 
Di: The constant demand rate of the ith product 
SLi: The lower limit of the service level for the ith 

product 
tDi: The time at which the inventory level of the 

ith product reaches zero 
βi: The percentage of unsatisfied demands of the 

ith product that is back-ordered 
Ii: The expected amount of the ith product 

inventory per cycle 

Li: The expected amount of the ith product lost-
sale in each cycle. 

Bi: The expected amount of the ith product back-
order in each cycle 

Qi: The expected amount of the ith product order 
in each cycle 

fi: The required warehouse space per unit of the 
ith product 

F: Total available warehouse space 
TB: Total available budget 
Chi: The expected holding cost per cycle of the ith 

product. 
Cbi: The expected shortage cost in back-order 

state of the ith product 

ilC : The expected shortage cost in lost-sale state 

of the ith product 
Cpi: The expected purchase cost of the ith product 
ri: The expected revenue obtained from sales 
Z(R, W, h)�� : The expected profit obtained in each cycle 
 
 For sake of simplicity, we first consider a single-
product problem in which the purchasing prices and 
holding costs are crisp and there is no discount. Then, 
we are devoted for a single-product problem with 
incremental and total discount policies, respectively. 
We discuss the cases in which the demands are fuzzy 
random variables. Finally, we extend the single-product 
to the multi-product modeling. However, let us 
introduce the pictorial representation of the single-
product problem. 
 
Inventory diagram: According to Ertogal and 
Rahim[20] and considering the fact that the time-periods 
between replenishments are stochastic variables, two 
cases may occur. In the first case the time-period 
between replenishments is less than the amount of time 
required for the inventory level to reach zero (Fig. 1) 
and in the second case, it is greater (Fig. 2).  
 
Single product model-back order and lost sales 
cases: In this section, we first model the costs, the 
profit and the constraint of a single-product inventory 
problem with crisp demand where there is no discount 
on purchasing products. The replenishments are 
stochastic and back-order and lost-sales are allowed. 
 
Calculating the costs and the profit: In order to 
calculate the expected profit in each cycle, we need to 
evaluate all of the terms in Eq. 6[20]: 
 

  i i i ii i p h b l i i

i i i i i i i i

Z r C C C C P Q

ˆW Q h I B L

= − − − − =

− − − π − π
  (6) 
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Fig. 1: Presenting the inventory cycle when 
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Fig. 2: Presenting the inventory cycle when 

i iD i Maxt T T< ≤  
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Fig. 3: Presenting shortages in two cases of back order 

and lost sales 
 
 Based on Fig. 3, Li, Bi, Ii and Qi are evaluated by 
the following equations: 

Maxi

i i i

Di

T

i i i i i T i i D i Max

t

L (1 ) (D T R )f (t )dt ;    t T T= − β − < ≤�   (7) 

 
MAxi

i i i

Di

T

i i i i i T i i D i Max

t

B (D T R )f (t )dt ;    t T T= β − < <�   (8) 

 
D Maxi i

i i

Min Di i

t T
2 2

i i i
i i i T i i T i i

i
T t

D T R
I R T f (t )dt f (t )dt

2 2D

� � � �
= − +� 	 � 	� 	 � 	


 � 
 �
� �   (9) 

 

 

( )

( )( )

Di

i

Mini

Maxi

i

Di

t

i i i T i i

T

T

i i i i T i i

t

Q D T f (t )dt

R D T R f (t )dt

=

+ + β −

�

�

 (10) 

 
Presenting the constraints: As the total available 
warehouse   space  is   F,   the   space   required   for 
each  unit   of   the  ith product is fi and the inventory 
level of the ith product is Ri, the space constraint will 
be: 
 
     i if R F≤  (11) 

 
 Since the total available budget is TB, the cost for 
each unit of product is W and the order quantity is Q, 
the budget constraint is: 
 
     i iWQ TB≤  (12) 

 
 Knowing that the shortages only occur when the 
cycle time is more than tDi and that the lower limit for 
the service level is SLi, then: 
 

  ( )
Maxi

i i

i

i

T

i D T i i i
R
D

P T t f (t )dt 1 SL> = ≤ −�  (13) 

 
 In short, the complete mathematical model of the 
single product inventory problem with crisp demand 
and no discount is:   
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( ) ( )

( )

i
Maxi

i
i ii

Mini
i

i
Maxi

i
i ii

Mini
i

Maxi

ii

i

R
T

D
i i i i i T i i i i i i i T i iR

T
D

R 2 2T
i i iD

i i i T i i T i iR
T iD

T

i i i i i T i iR
D

Max Z (P W ) D T f (t )dt R (D T R ) f (t )dt

D T R
h R T f (t )dt f (t )dt

2 2D

D T R f (t )dt

� �
� = − + + β −
� 
� � �

� �� �� − − +� 	� 	� 

 �� � �

�
−π β − −

�

� �

� �

� ( )

( )

Maxi

ii

i

D Maxi i

i i
Min Di i

Maxi

i i

i

i

T

i i i i i T i iR
D

i i

t T

i i i T i i i i i i i T i i
T t

T

i D T i i i
R
D

i

ˆ(1 ) D T R f (t )dt

s.t.:

f R F

W D T f (t )dt (R (D T R ))f (t )dt TB

P T t f (t )dt 1 SL

R 0 and Integer

� ��
� �− β π −� �
� ��� �

≤

� �
+ + β − ≤� 

� � �

> = ≤ −

≥

�

� �

�
 (14) 

 
 Single product model-back ordered and lost sales cases with discount: In this section, we assume that an 
incremental discount policy is applicable to purchase the product. In incremental discount policy, the purchasing 
cost for each unit of the ith product depends on its order quantity and is assumed to be: 
 

      

i1 i1

i2 i1 i2
i

iT iT i

W 0 Q q

W q Q q
W

W q Q

< ≤�
� < ≤�=�
�
� ≤�

� �
 (15) 

 
 The purchasing cost associated with this policy is calculated as follows: 
 

     i

i1 i i i1

i1 i1 i2 i i1 i1 i i2
p

i1 i1 i2 i2 i1 iT i iT 1 iT i

W Q 0 Q q

W q W (Q q ) q Q q
C

W q W (q q ) W (Q q ) q Q−

< ≤�
� + − < ≤�= �
�
� + − + + − ≤�

� �

�

 (16) 

 
where, for j = 1,2,…,T, qij and Wij are the discount points and the purchasing costs for each unit of the ith product 
that corresponds to the jth discount break point, respectively.  
 In order to include the discount policy in the inventory model, using Eq. 16, the purchasing cost will be 
modelled as: 
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( ) ( )

ip i1 i1 i2 i2 iT iT

i i1 i2 iT

i1 i2 i1 i1 i1

i2 i1 i3 i2 i2 i1 i2

iT iT

i1 i2 iT

ij

C W Q W Q ... W Q

Q Q Q ... Q

q Y Q q Y

q q Y Q q q Y

0 Q MY M  is a large digit

Y Y Y  

Y 0,1;  j 1, 2,...,T

= + + +

= + + +

≤ ≤

− ≤ ≤ −

≤ ≤

≥ ≥ ≥

= =

�

�

 (17) 

 
 By this modeling, the inventory model of the single 
product problem with incremental discount policy 
becomes: 
 

( )

( )

i

i
i

Mini

Mazi

ii

i

i

i
i

Mini

Maxi

ii

i

T

i i i i i i i i i ij ij
j 1

R
D

i i T i i
T

T

i i i i i T i iR
D

R 2
i iD

i i T i i
T

i 2T
i

T i iR
iD

ˆMax Z P Q h I B L W Q

D T f (t )dt

P

R (D T R ) f (t )dt

D T
R T f (t )dt

2
h

R
f (t )dt

2D

=

′′= − − π − π −

� �
� 
� 
� 
� 
+ + β −� 
� � �

� �� �
� −� 	� 	� 
 �� ′′−
�
+�
�
� �

�

�

�

�

�

( )

( )

( )

Maxi

ii

i

Maxi

ii

i

Maxi

ii

i

T

i i i i i T i iR
D

TT

i i i i i T i i ij ijR
j 1D

i i
T

ij ij
j 1

T

T i i iR
D

i i1 i2 iT

i1 i2 i1 i1 i1

i2 i1 i3 i2

D T R f (t )dt

ˆ (1 ) D T R f (t )dt W Q

s.t.:
f R F

W Q TB

f (t )dt 1 SL

Q Q Q ... Q

q Y Q q Y

q q Y Q

=

=





� �
� −π β −
� 
� � �

�
�−π − β − −
�
��

≤

≤

≤ −

= + + +
≤ ≤

− ≤ ≤

�

��

�

�

( )i2 i1 i2

iT iT

i1 i2 iT

ij

i

q q Y

0 Q MY M is a large digit

Y Y Y  

Y 0,1;  j 1,2,...,T

R 0 and Integer

−

≤ ≤
≥ ≥ ≥
= =

≥

�

�

 (18) 

 Single-product model with discount, fuzzy 
purchasing and holding costs: The single-product 
inventory model with crisp purchasing and holding cost 
and incremental discount of (18) can be easily extended 
to single product models with fuzzy purchasing and 
holding cost as follows: 
 

� �

( )

( )

i

i
i

Mini

Maxi

ii

i

i

i
i

Mini

Maxi

ii

i

T

i i i i i i i i i i i ij ij
j 1

R
D

i i T i i
T

i T

i i i i i T i iR
D

R 2
i iD

i i T i i
T

i 2T
i

T i iR
iD

ˆMax Z(R ,W ,h ) P Q h I B L W Q

D T f (t )dt

P

R (D T R ) f (t )dt

D T
R T f (t )dt

2
h

R
f (t )dt

2D

=

′ ′= − − π − π −

� �
� +
� 
� =
� 

+ β −� 
� 
� �

� �
−� 	

� 	

 �′′−

+

�

�

�

�

� �

�

( )

( )

Maxi

ii

i

Maxi

ii

i

Maxi

ii

i

T

i i i i i T i iR
D

TT

i i i i i T i i ij ijR
j 1D

i i
T

ij ij
j 1

T

T i i iR
D

i i1 i2 iT

i1 i2 i1 i1 i1

D T R f (t )dt

ˆ (1 ) D T R f (t )dt W Q

s.t:
f R F

W Q TB

f (t )dt 1 SL

Q Q Q ... Q

q Y Q q Y

=

=

� �
� 
� 
� 
� 
� 
� 
� �

� �
� − π β −
� 
� � �

�
�− π − β − −
�
��

≤

≤

≤ −

= + + +
≤ ≤

�

�

��

�

�

�

�

i2 i1 i3 i2 i2 i1 i2

iT iT

i1 i2 iT

ij

i

(q q )Y Q (q q )Y

0 Q MY M is a large digit

Y Y Y  

Y 0,1

R 0 , Integer

− ≤ ≤ −

≤ ≤
≥ ≥ ≥
=

≥

�

�

 (19) 
 
 In the next section, we extend the models in (19) to 
multi-product models. 
 
Multi-product models: The single-product inventory 
models  of  (19)  can  be  easily  extended  to  a multiple
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product. In these models, we consider two probability density functions for Ti as follow: 
 

Ti follows a uniform distribution: In this case the probability density function of Ti is 
i

i i

T i
max min

1
f (t )

T T
=

−
. 

Accordingly, (19) will change to (20) as: 
 

   

�
�

�

�

i i

i

i i

i i i

i i

n
3i

i i i i2
i Max Mini 1

n
i i i Max i i i i 2

i
i Max Mini 1

2n
i i Max i Min i i i i Max

i
Max Mini 1

i

h
Max Z(R ,W ,h ) R

6D (T T )

ˆ(1 )p h T (1 )
R

2D (T T )

ˆ2p (1 )T h T 2( (1 ))T
R

2(T T )

3p

=

=

=

� �′
� ′ =
� −� �

� �′− β + + π β + π − β
� −

−� � �

� �′− β + + π β + π − β
� +

−� 
� �

+

�

�

�

�

i i i i

i i

i

i i

2 2 3 2n n T
i i Max Min i Min i i i i i Max i

ij ij
Max Mini 1 i 1 j 1

n T

ij ij
i 1 j 1

n

i i
i 1

i Max i
i

i Max Min

2
i i i

ˆD ( T T ) h T D 3( (1 ))T D
W Q

6(T T )

s.t.:

W Q TB

f R F

D T R
1 SL i : i 1,2,...,n

D (T T )

( 1)R (2D T

= = =

= =

=

� �′′β − − − π β + π − β
� −

−� 
� �

≤

≤

−
≤ − ∀ =

−

β − +

� ��

��

�

�
�

�

( ) ( )

i i i

i i

j j

2 2 2
Max i i i Max Min i

i Max Min

T

ij
j 1

1j 2 j 1j 1j 1j

ij i 1, j ij ij ij i 1, j i 1, j j

n j n j

(1 ))R ( T T )D

2D (T T )

Q    i,    i 1,2,...,n

q Y Q q Y    j,    j 1,2,...,T

q q Y Q q q Y i , i 2,...,n 1   j,    j 1,2,...,T

0 Q MY    

=

− − −

− β + β −
−

= ∀ =

≤ ≤ ∀ =

− ≤ ≤ − ∀ = − ∀ =

≤ ≤

�

j1j 2 j n j

ij

i

j,    j 1,2,...,T,   M is a large digit

Y Y Y    j,    j 1,2, ,T

Y 0,1   j,    j 1,2, T,    i,    i 1,2, ,n

R 0 , Integer i : i 1,2,...,n

∀ =

≥ ≥ ≥ ∀ =

= ∀ = ∀ =

≥ ∀ =

� �

� �

 (20) 

 
TI follows an exponential distribution: If Ti follows an exponential distribution with parameter iλ , then the 

probability density function of Ti will be i i
i

T
T i if (t ) e−λ= λ . In this case, the model is shown in (21) as: 
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�

� �

i
i

i

i
i

i

i
i

i

n R
Di i i i i

i i i i
ii 1

n n n TR
Di i i i i i

ij ij2
iii 1 i 1 i 1 j 1

n T

ij ij
i 1 j 1

n

i i
i 1

R
D

i

ˆ(p )(1 )
Max : Z(R ,W ,h ) D e

h D p D h R
(1 e ) W Q

s.t.:

W Q TB

f R F

e 1 SL i : i

� �λ−� 	� 	
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D
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− λ� 	� 	

 �

=
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i

..,T

0 Q MY    j,    j 1,2,...,T   and M is a large digit

Y Y Y    j,    j 1,2, ,T

Y 0,1   j,    j 1,2, T,    i,    i 1,2, ,n

R 0 , Integer i : i 1,2,...,n

≤ ≤ ∀ =

≥ ≥ ≥ ∀ =

= ∀ = ∀ =

≥ ∀ =

� �

� �

 (21) 

 
 In the next section, we will introduce a hybrid 
intelligent algorithm to solve the model. 
 

A HYBRID INTELLIGENT ALGORITHM 
 
 Since the models in (20) and (21) are fuzzy mixed 
integer-nonlinear in nature, reaching an analytical 
solution (if any) to the problem is difficult[21]. In order 
to solve the model under different criteria, we develop a 
hybrid intelligent algorithm of fuzzy simulation and 
genetic algorithm. 
 
Fuzzy simulation: In order to estimate the uncertain 
purchasing price and holding cost of the fuzzy model, 
since the holding cost is a function of its corresponding 
purchasing cost, an estimate of the former cost will 
provide an estimate of the latter cost. As a result, in the 
simulation technique used for the estimation, denoting 

ijW�  by ( )ij 1j 2 j njW W , W ,...,W=� � � � , µ as the membership 

function of W�  and µij are the membership functions of 

ijW� , we randomly generate ijkW  from the α-level sets 

of  fuzzy  variables  ijW� ,  i = 1,2,…,n, j = 1,2,…,T and 

k = 1,2,…,K as jk 1jk 2 jk njkW (W ,W , ,W )= �  and 

jk 1 1jk 2 2 jk n njk(W ) (W ) (W ) , , (W )µ = µ ∧ µ ∧ ∧µ� , where α 

is a sufficiently small positive number. 
 Based on the definition in Eq. 11, the expected 
value of the fuzzy variable is: 
 

 
{ }

{ }
0

0

E Z(R,W,h) Cr Z(R,W,h) r dr

Cr Z(R,W,h) r dr

+∞

−∞

� � = ≥� �

− ≤

�

�

� �� �

��

 (22) 

 
 Then, provided O is sufficiently large, for any 
number { }r 0, Cr Z(R, W,h) r≥ ≥��  can be estimated by: 

 

{ }
{ }

{ }
k

k 1,2,...,O

k
k 1,2,...,O

Max Z(R,W,h) r
1

Cr Z(R, W,h) r
2 1 Max Z(R,W,h) r

=

=

� �µ ≥
� 	
� 	≥ =
� 	+ − µ <� 	

 �

��

��

��

 (23) 
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and for any number { }r 0, Cr Z(R,W,h) r< ≤��  can be 

estimated by: 
 

{ }
{ }

{ }
k

k 1,2,...,O

k
k 1,2,...,O

Max Z(R,W,h) r
1

Cr Z(R, W,h) r
2 1 Max Z(R,W,h) r

=

=

� �µ ≤
� 	
� 	≤ =
� 	+ − µ >� 	

 �

��

��

��

 (24) 

 
 However, the procedure of estimating Z(R,W,h)��  in 
(23) and (24) is shown in algorithm (1). 
 
• Set E = 0 
• Randomly generate ijkW  from �-level sets of fuzzy 

variables ijW�  and set jk 1jk 2 jk njkW (W ,W , ,W )= �  

Set a = j1 j2 jOZ(R,W ,h) Z(R,W ,h) Z(R,W ,h)∧ ∧ ∧� � �� � �� , 

b = j1 j2 jOZ(R,W ,h) Z(R,W ,h) Z(R,W ,h)∨ ∨ ∨� � �� � ��  
• Randomly generate r from Uniform [a,b] 
• If { }r 0,  then E E Cr Z(R,W,h) r≥ ← + ≥�� , otherwise, 

{ }E E Cr Z(R, W,h) r← − ≤��  

• Repeat 4 and 5 for O times 

• Calculate b a
E(Z(R, W,h)) a 0 b 0 E *

O
−= ∨ + ∧ +��  

 
Algorithm (1): Estimating Z(R,W,h)�� . 
 
Genetic algorithm: The main information unit of any 
living organism is the gene, which is a part of a 
chromosome that determines specific characteristics 
such as eye-color, complexion, hair-color, etc. The 
fundamental principal of Genetic Algorithms (GA) first 
was introduced by Holland[22]. Since then many 
researchers have applied and expanded this concept in 
different fields of study. Genetic algorithm was inspired 
by the concept of survival of the fittest. In genetic 
algorithms, the optimal solution is the winner of the 
genetic game and any potential solution is assumed to 
be a creature that is determined by different parameters. 
These parameters are considered as genes of 
chromosomes that could be assumed to be binary 
strings. In this algorithm, the better chromosome is the 
one that is nearer to the optimal solution. In applied 
applications of genetic algorithms, populations of 
chromosomes are created randomly. The number of 
these populations is different in each problem. Some 
hints about choosing the proper number of population 
exist in different reports by Man et al.[23].  
 Genetic algorithms imitate the evolutionary process 
of species that reproduce. They therefore do not operate 

on a single current solution, but on a set of current 
solutions called population. New candidates for the 
solution are generated with a mechanism called 
crossover that combines part of the genetic patrimony 
of each parent and then applies a random mutation. If 
the new individual, called child or offspring, inherits 
good characteristics from his parents the probability of 
its survival increases. This process will continue until a 
stopping criterion is satisfied. Then, the best offspring 
is chosen as a near optimum solution.  
 In this research, the chromosomes are strings of the 
inventory levels of the products (Ri). Each population 
or generation of chromosomes has the same size which 
is well-known as the population size and is denoted by 
N. If N is relatively small, then a small search space 
will be investigated and the GA algorithm will be very 
slow. In this research, 10, 100 and 500 are chosen as 
different population sizes. In a crossover operation, it is 
necessary to mate pairs of chromosomes to create 
offspring. There are three types of crossover operations: 
single-point, multi-point and uniform[21]. In this 
research, we employ the single-point crossover that is 
applied to parent chromosomes with the possibility of 
Pc = 0.8, 0.85 and 0.9. Mutation is the second operation 
in a GA method for exploring new solutions and it 
operates on each of the chromosomes resulted from the 
crossover operation. In mutation, we replace a gene 
with a randomly selected number within the boundaries 
of the parameter[21]. We create a random number RN 
between (0,1) for each gene. If RN is less than a 
predetermined mutation probability Pm, then the 
mutation occur in the gene. Otherwise, the mutation 
operation is not performed in that gene. More precisely, 
assume that for a specific gene such as aj in a 
chromosome Rj the generated random number is less 
than Pm and hence the gene is selected for mutation. 
Then, we change the value of aj to the new value *

ja  

according to Eq. 25 and 26, randomly and with the 
same probability: 
 

  *
j j j j

i
a a (u a ) r (1 )

max gen
= + − × × −  (25) 

 

  *
j j j j

i
a a (a l ) r (1 )

max gen
= − − × × −  (26) 

 
where, lj and uj are the lower and upper limits of the 
specified gene, r is a uniform random variable between 
0 and 1, i is the number of current generation and max 
gen is the maximum number of generations. Note that 
the value of aj is transferred to its right or left randomly 
by Eq. 25 and 26 respectively and r is this percentage. 
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Furthermore, i
1

max gen
− is an index with a value close 

to one in the first generation and close to zero in the last 
generation that makes large mutations in the early 
generations and almost no mutation in the last 
generations. In this research, 0.076, 0.098 and 0.1 are 
employed as different values of the Pm parameter. 
Furthermore, Algorithm (1) of section 5.1 is used to 
evaluate the objective function of this research. 
 The last step in a GA method is to check if the 
algorithm has found a solution that is good enough to 
meet the user’s expectations. Stopping criteria is a set 
of conditions such that when satisfied a good solution is 
obtained. Different criteria used in literature are as 
follows: (1) Stopping of the algorithm after a specific 
number of generations, (2) no improvement in the 
objective function and (3) Reaching a specific value of 
the objective function. In this research, we stop when a 
predetermined number of consecutive generations is 
reached. The number of sequential generations depends 
on the specified problem and the expectations of the 
user. 
 In short, the steps involved in the hybrid method of 
fuzzy simulation and GA algorithm used in this 
research are: 
 
• Setting the parameters Pc, Pm and N 
• Initializing the population randomly 
• Evaluating the objective function for all 

chromosomes based on Algorithm (1) 
• Selecting individual for mating pool 
• Applying the crossover operation for each pair of 

chromosomes with probability Pc 

• Applying mutation operation for each chromosome 
with probability Pm 

• Replacing the current population by the resulting 
mating pool 

• Evaluating the objective function 
• If stopping criteria is met, then stop. Otherwise, go 

to step 5 
 
 In order to demonstrate the proposed Hybrid 
intelligent algorithm and evaluate its performance, in 
the next section we bring a numerical example used in 
Ertogal and Rahim[20]. In this example, two cases of the 
uniform and the exponential distributions for the time-
period between two replenishments are investigated. 
 

NUMERICAL EXAMPLES 
 
 Consider a multi-product inventory control 
problem with eight products and general data given in 
Table 1. Table 2 shows the parameters of both the 
exponential and uniform distributions used for the time-
period between two replenishments. The total available 
warehouse space and total budget are F = 22000 and 
TB = 550000, respectively. Table 3 shows the best 
combination and different values of the GA parameters 
used to obtain the solution. In this research, all the 
possible combinations of the GA parameters (Pc, Pm and 
N) are employed and using the max(max) criterion the 
best combination of the parameters has been selected. 
Table 4 shows the best result for the uniform and 
exponential distributions. Furthermore, the convergence 
paths of the best result of the objective function values 
in different generations of the uniform and the 
exponential distributions are shown in Fig. 4 and 5, 
respectively. 

 
Table 1: General data 
Product 1 2 3 4 5 6 7 8 
FIi 0.05 0.05 0.05 0.05 0.03 0.03 0.03 0.03 
πi 5 5 5 5 5 5 5 5 

iπ̂  10 10 10 10 10 10 10 10 

βi 0.5 0.9 0.9 0.5 0.5 0.9 0.9 0.5 
fi 3 3 3 3 6 6 6 6 

i1W�  (65,70,75) (65,70,75) (65,70,75) (65,70,75) (65,70,75) (65,70,75) (65,70,75) (65,70,75) 

i2W�  i1W 10−�  i1W 10−�  i1W 10−�  i1W 10−�  i1W 10−�  i1W 10−�  i1W 10−�  i1W 10−�  

i3W�  i1W 20−�  i1W 20−�  i1W 20−�  i1W 20−�  i1W 20−�  i1W 20−�  i1W 20−�  i1W 20−�  

i4W�  i1W 30−�  i1W 30−�  i1W 30−�  i1W 30−�  i1W 30−�  i1W 30−�  i1W 30−�  i1W 30−�  

qi1 150 150 150 150 150 150 150 150 
qi2 250 250 250 250 150 150 150 150 
qi3 350 350 350 350 250 250 250 250 
SLi 0.5 0.6 0.6 0.5 0.5 0.6 0.6 0.5 
Pi 100 100 100 100 150 150 150 150 
Di 10 10 10 10 10 10 10 10 
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Table 2: Parameters of exponential and uniform distributions 
Product 1 2 3 4 5 6 7 8 
λi 1/30 1/30 1/60 1/60 1/30 1/30 1/60 1/60 

iMinT  20 20 50 50 20 20 50 50 

iMaxT  40 40 70 70 40 40 70 70 

 
Table 3: The parameters and the best combination of the GA method 
    The best combination for 
    ------------------------------ 
    Uniform Exponential 
Parameter Alternatives  distribution distribution 
Pc 0.80 0.85 0.9 0.85 0.9 
Pm 0.076 0.098 0.1 0.098 0.098 
N 10 100 500 100 500 
 
Table 4: The best result forRi 
 Product 
 ----------------------------------------------------- 
Distribution 1 2 3 4 5 6 7 8 Z(R, W, h)��  

Uniform 305 344 622 635 358 335 1358 662 869320 
Exponential 213 283 416 550 231 280 416 553 113310 
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Fig. 4: The convergence path of the best result in 

uniform example 
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Fig. 5: The convergence path of the best result in 

exponential example 

CONCLUSION AND RECOMMENDATIONS 
FOR FUTURE RESEARCH 

 
 In this research, a stochastic replenishment multi-
product inventory model with discount and fuzzy 
purchasing price and holding cost was investigated. 
Two mathematical modeling for two cases of uniform 
and exponential distribution of the time between two 
replenishments in case of incremental discount have 
been developed and shown to be fuzzy mixed integer-
nonlinear programming problems. Then, a hybrid 
intelligent algorithm (fuzzy simulation+GA) has been 
proposed to solve the fuzzy integer non-linear 
problems.  
 Some recommendations for future works are (1) 
considering demands as fuzzy or random variables, (2) 
employing a total discount policy and (3) applying 
some other meta-heuristic algorithms. 
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