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Abstract: The geometric convergence ratio, the main focus of a discretized scheme for constrained 
quadratic control problem was examined. In order to allow for the numerical applications of the 
developed scheme, discretizing the time interval and using Euler’s scheme for its differential constraint 
obtained a finite dimensional approximation. Applying the penalty function method, an unconstrained 
problem was obtained on function minimization with bilinear form expression. This finally led to the 
construction of an operator. The Scheme was applied to a sampled problem and it exhibited geometric 
convergence ratio, α, in the open interval (0, 1) as depicted in column 6 of Table 1.  
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INTRODUCTION 
 
 In[1,2], the scheme establishing the solution of 
optimal control problems constrained by evolution 
equation of the delay type with matrix coefficients was 
presented, without addressing the geometric 
convergence ratio profile. Here, a class of optimal 
control problems constrained by ordinary differential 
equation with matrix coefficients is considered. 
Discretization of the generalized problem is obtained by 
discretizing its objective function and using[3] for its 
differential constraint. Using[4], a penalty function 
method is applied to convert the constrained problem 
into an unconstrained formulation problem. With this 
formulation, an associated control operator was 
constructed as in[2]. Here, again, we state the 
constructed operator as a consequence of a theorem in 
this paper to allow for brevity and compactness of the 
paper. Consequently, consideration of the convergence 
profile and the geometric convergence ratio profile as 
they relate to such class of problems is highlighted by a 
sample problem for the confirmation of the success of 
the scheme.  
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MATERIALS AND METHODS 
 
2.1 Discretization: By discretizing (1.1) and (1.2), we 

have ( ) ( ) ( )tCutAxtX +=
•
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X(0)=0 
We then have the discretized generalized problem in the 
form;  
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Penalty method’s application: Using the standard 
penalty function[4], we obtain the unconstrained 
problem 1 
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2.3. Theorem 1: The exact control operator G 
satisfying generalized problem 1 is given by 
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2.4. Remark 1: The scheme converges at the 4th 
iteration for each penalty parameter constant µ as 
depicted in Table 1 for the numerical calculation. 
 
Definition: Let {zn } be a sequence of vectors in a 
Hilbert Space H with limit z* in H such that  
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 Then {zn} is said to converge geometrically to z* 
with a convergence ratio y as reported by[5]. Here, we 
recall the various steps of the conjugate gradient 
algorithm that generates the convergent sequence {zn} 
of solutions of problem 1 according to[3]. The algorithm 
employs the explicit knowledge of the control operator 
G developed in theorem 1  
 
Step 1: Choose initial values for the conjugate descent 
algorithm ; 
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While the remaining members are computed as follows; 
 
Step 2: Update x0 and u0 such that  
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Step 3: Update gradient and descent directions with the 
updating rule   
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Where 
1,1, +•+• nn pandg  

are the gradient and descent direction at the (n+1) th 
iteration respectively and  
G is the control operator in theorem 1, 
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Assuming the following remarks, we state and prove 
the following theorem 2 
z* is the optimizer for problem 1 

The expression 
1**
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convergence ratio of the sequence )}({ tzn  in the 
Hilbert space H. 
In[6], a general quadratic functional in the Hilbert Space 
H to be minimized as  
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Thus end the analytic proof of the geometric 
convergence ratio. 
 

DATA AND ANALYSIS 
 
Hypothetical example: Now, we shall consider an 
example to test the efficiency of the developed scheme. 
 
Example 1:  

( ) ( )( )dttQututPxtxMin TT� +
1

0

)()(  

S
C

I-P
U

B
LIC

A
TIO

N
S Author M

anuscript



Am. J. Applied Sci., 5 (2): 89-92, 2008 
 

 92 

Table 1: Convergence profile and geometric ratio profile for example 
Penalty constant Number of iterations Objective function Constraint satisfaction  Penalty function Geometric ratio 
1 2 3 4 5 6 
µ=.0001 1 5 10 5.001 .9483081 
 2 3.6554451 7.115152 3.655163 .9363912 
 3 3.568452 7.05019 3.569159 .9266359 
 4 4.07852 8.54454 4.079097 .82418 
µ=.0002 1 5 10 5.001999 .952805 
 2 3.248526 5.669127 3.244966 .9430421 
 3 2.225528 3.799845 2.2262288 .9420196 
 4 1.931005 3.392155 1.931683 .8998834 
 5 2.364958 4.446056 2.3658446  
µ=.0003 1 5 10 5.003 .9514626 
 2 3.144416 5.39738 3.145815 .9357017 
 3 2.079541 3.393059 2.080559 .9305661 
 4 1.806033 2.9870036 2.08693 .8250323 
 5 2.323675 4.19311 2.324929  
µ=.0004 1 5 10 5.004001 .9524865 
 2 3.211735 5.59364 3.213973 .9386605 
 3 2.161946 3.662971 2.1634411 .9263953 
 4 1.8850631 3.207022 1.851913 .8250323 
µ=.0005 1 5 10 5.005001 .9516159 
 2 3.244694 5.681146 3.24535 .9415714 
 3 2.24664 3.78466 2.206568 .9281042 
 4 1.879938 3.31896 1.881597 .8084613 
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RESULTS 

 
 As seen in Table 1, column 3, the scheme shows a 
good convergence profile, particularly at the 3rd iteration 
for µ=.0001 and at the 4th iteration for .0002≤µ≤.0005, 
where the iterates are 3.568452, 1.931005, 1.808033, 
1.8850631, 1.879938 respectively. However, the first 
cycle at the 3rd iteration, is not comparable enough, since 
its iterate value 3.568452 is comparatively higher than any 
of the other cycles. 
Column 6 shows the geometric convergence ratio profile 
for each µ per cycle. It is seen that 
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depicted in the convergence ratio column 6 of Table 1.  
 For µ=.0001, the geometric ratio convergence starting 
at .9483081 and ending at .82418, shows values lying 
between 0 and 1. This characterizes a geometric ratio 
convergence. Similarly, this same trend holds for 

0005.0002. ≤≤ µ  in column 6 of Table 1. 
 

DISCUSSION 
 
 In this study, the scheme has demonstrated its objective 
having its geometric ratio convergence established between 0 
and 1 as seen in Table 1. Hence, its success and reliability as 

it relates to problems of this class in terms of convergence 
profile and geometric convergence ratio via this sampled 
problem is being demonstrated. 
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