
American Journal of Applied Sciences 5 (7): 829-834, 2008 
ISSN 1546-9239 
© 2008 Science Publications 

Corresponding Author: Ahmed Sharieh, Department of Computer Science, The University of Jordan, Amman 11942, Jordan 
829 

 
A Dynamic Resource Synchronizer Mutual Exclusion Algorithm for 

Wired/Wireless Distributed Systems 
 

Ahmed Sharieh, Mariam Itriq and Wafa Dbabat 
Department of Computer Science, The University of Jordan, Amman 11942, Jordan 

 
Abstract: A mobile host has small memory, relatively slow processor, low power batteries, and 
communicate over low bandwidth wireless communication links. Existing mutual exclusion algorithms 
for distributed systems are not enough for mobile systems because of several limitations. In this study, a 
mutual exclusion algorithm that is more suitable for mobile computer systems is developed. The 
algorithm tends to minimize the number of messages needed to be transmitted in the system, by 
reducing the number of sites involved in the mutual exclusion decision, and reducing the amount of 
storage needed at different sites of the system.  
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INTRODUCTION 

 
 A mobile computing system is a distributed system 
consisting of a number of mobiles and fixed processing 
units. A distributed application consists of a collection 
of processes executing on a set of computers in the 
mobile system. The sites do not share any memory and 
communicate completely by message passing. The 
wireless communication channels used by the mobile 
system have a lower bandwidth than the wired 
communication links. Any distributed mutual exclusion 
algorithm should take this constraint into 
consideration[1,7,9]. 
 Distributed mutual exclusion is an important 
activity that is required to coordinate access to shared 
resources (usually called critical sections CS) in a 
distributed system. A set of n processors synchronize 
their access to a shared resource by requesting an 
exclusive privilege to access the resource. 
 The privilege is sometimes represented as a token, 
where access to the token can represent the ownership 
of the shared resource. Another method for accessing 
the shared resource is by requesting to and granting by 
a central coordinator. Access to the CS can also be 
based upon the idea of broadcasting and timestamps in 
networks that supports broadcasting[15]. 
 In a distributed system, the design of a mutual 
exclusion algorithm consists of defining the protocols 
used to coordinate access to a shared object. A 
distributed algorithm for mutual exclusion is 
characterized by: all processes having an equal amount 
of information, and all processes making a decision 
based on local information[15]. 

 Many distributed algorithms for mutual exclusion 
have been proposed. In Lamport's algorithm[9], each 
process has a queue. A process that wants to execute a 
critical section broadcasts a request message with a 
time-stamp. The return of time-stamped 
acknowledgements allows it to check whether a process 
has invoked the critical section earlier than itself. 
 Several algorithms reducing the number of 
messages were presented in Ricart and Agrawala[12], 
Carvalho and Roucairol[3]. The number of messages 
was proportional with the number of processors-which, 
and is denoted by N. The algorithm presented by 
Chandy and Misra[4] (in which the permission is in the 
form of a fork) is the most efficient of the three in terms 
of message complexity per resource. Maekawa[10] 
introduced the notion of arbitrating processes. A 
process wishing resource access must obtain the 
permission from a fixed set of �N arbitrating processes. 
Each arbitrating process gives permission on behalf of 
itself and (�N-1) other processes. Kumar[8] presents a 
quorum consensus algorithm that requires O(�N) 
messages per request. 
 A solution for the above limitations needs to 
consider the following assumptions and conditions for 
the distributed environment: 
 
• All nodes in the system are assigned unique 

identification numbers from 1 to N 
• There is only one requesting process executing at 

each node. Mutual exclusion is implemented at the 
node level 

• Processes are competing for a single resource 
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Fig. 1: System model[1] 
 
Table 1: Underling communications network properties 
Property Meaning 
Message delivery Messages are not lost or altered and are 
guaranteed. correctly delivered to their destination in a 
 finite amount of time. 
Message-order Messages are delivered in the order they are  
Preservation. sent. There is no message overtaking. 
Message transfer Messages reach their destination in a finite  
delays are finite, but amount of time, but the time of arrival is 
unpredictable. variable. 
The topology of the Nodes know the physical layout of all nodes in  
network is known. the system and know how to communicate with 
 each other under wireless environments. 
 
• At any time, each process initiates at most one 

outstanding request for mutual exclusion 
 
 Also, the aspects as shown in Table 1 about the 
reliability of the underlying communications network 
should be considered. 
 As we mentioned previously, the mobile systems 
have special constraints that cannot be captured by 
traditional distributed systems. These constraints are 
memory limitations, limited battery life, and working 
under low bandwidth. 
 In this paper,  the proposed algorithm takes in 
consideration these constraints  based on  the same 
system model used in[1] as shown in Fig. 1. A host that 
can move while retaining its network connections is a 
MobileHhost (MH). The infrastructure machines that 
communicate directly with the mobile hosts are called 
Mobile Support Stations (MSS). A cell is a logical or 
geographical coverage area under an MSS. All MHs 
that have identified themselves with a particular MSS, 
are considered to be local to the MSS.  
 An MH can directly communicate with an MSS 
(and vice versa) only if the MH is physically located 

within the cell serviced by the MSS, and each MH 
belongs to only one cell at a time.  
 In method section, we present two versions of the 
proposed algorithm. In the discussion, we show how the 
new algorithm guarantees mutual exclusion, and derive 
the algorithm message complexity. Finally, in 
conclusion section, we present conclusions and 
remarks. 
 

MATERIALS AND METHODS 
 
 Based on the above system model, we propose a 
new algorithm for distributed mutual exclusion- which 
can be used in mobile computing environments. We 
refer to it as Dynamic Resource Synchronizer (DRS) 
algorithm, because the node that manages the critical 
section “synchronizer” is dynamically changed 
according to certain criteria that reduce message traffic 
among the nodes. 
 Assume that the system consists of n independent 
mobile nodes labeled (N0, N1, …, Nn). These nodes 
communicate by a message passing over a wireless 
network. Assumptions on the mobile nodes and the 
network are: 
 
• The nodes have unique node identifiers, (i.e. node i 

have identifier Ni) 
• A node failure does not occur 
• Communication links are bi-directional and First In 

First Out priority 
• Communication links failures are predictable-

providing a reliable communication 
• A partition in network does not occur 
 
 Each node in the system is assumed to be running 
an application whose states are partitioned into four 
states: WAITING, CRITICAL, SYNCHRONIZER and 
REMINDER. In the WAITING state, the node has 
requested access to the CS. In the CRITICAL state, the 
node is executing the CS. In the SYNCHRONIZER 
state, the node is currently responsible for handling 
mutual exclusion access to the CS. There is one and 
only one node in this state in the system at any moment. 
Initially one node is set to this state. A node exits the 
SYNCHRONIZER state if any other node exits CS. In 
the REMINDER state, the node is neither requesting 
nor executing the CS. All nodes are initialized to this 
state. Nodes are in the system cycle through 
REMINDER to WAITING to CRITICAL to 
REMINDER to SYNCHRONIZER state. Other nodes 
do not need to stop executing while one is in a 
CRITICAL state.  
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Table 2: Major data structures used in DRS 
Data  
structure Description 
Status Indicates the state of a node. 
Next Pointer to the process next in the logical ring. Processes 
 are connected to each other forming a logical ring. 
Queue Pointer to the process next in the waiting queue. This 
 pointer is set to nil if the process is the one at the end of  
 the queue or if it is not involved in the queue. 
Busy A Boolean flag used only by the SYNCHRONIZER. It  
 is set to TRUE if and only if any node in the system is 
 currently in CRITICAL state. Initially this is FALSE in  
 all nodes. 
Synch Address of the current SYNCHRONIZER node. 
Critical Address of the node currently in the CRITICAL state. 
 The node uses this variable when it is in the 
 SYNCHRONIZER state. 

 
Table 3: Types of messages and events used in DRS 
Message Description 
REQUEST(r,c) A message sent by a REMINDER node r, that is 
 wishing to be in CRITICAL state, to c. 
GRANT(s,q) A message sent by the SYNCHRONIZER s to the  
 next process q in queue. 
RELEASE(s,c) A message sent by the CRITICAL c to the  
 SYNCHRONIZER s when exiting the CS. 
YAS(w,a,s) A message sent by the current SYNCHRONIZER s  
(You Are to transfer the synchronization state to new node w. 
synchronizer) 
ADD(q,s) A message sent by the SYNCHRONIZER s to add 
 a new node q to the queue. 
GHANGE(c,s) A message sent by the SYNCHRONIZER s to the 
 CRITICAL c to inform it of the SYNCHRONIZER 
 state transfer. 

 
 The major data structures used by the DRS 
algorithm are shown in Table 2. There are six types of 
messages for communication in the system, as shown in 
Table 3. 
 The DSR algorithm for mutual exclusion is event-
driven. An event at a node consists of receiving a 
message from another node-or input-from the 
application on the node to request or release the CS. 
Modules are assumed to be executed automatically. 
 
Rule 1 (Requesting the CS): When a node wishes to 
enter the CS, it checks status .If it is at the REMINDER 
state, it prepares a REQUEST message containing it’s 
address and sends it to next and sets the status to 
WAITING. The requesting node has no idea of who is 
the current synchronizer. If status is SYNCHRONIZER 
and busy is FALSE, it sends a YAS message to next, 
changes it’s status to CRITICAL and enters the CS. If 
status is SYNCHRONIZER and busy is TRUE, then 
another node is currently at the CS. Thus, the 
SYNCHRONIZER adds itself to the end of the queue, 
sends a YAS message to next and finally changes its 
status to WAITING.  

Rule 2 (handling a REQUEST message): When a 
REQUEST message arrives at a node, it checks its 
status. If it is not SYNCHRONIZER it simply forwards 
the message to next. If the state is SYNCHRONIZER, 
the node checks busy; if another node is currently using 
the CS, the SYNCHRONIZER adds the requesting 
node to the end of the queue. To add a node to the end 
of the queue, the SYNCHRONIZER checks its queue 
pointer. If it is not nil, a message is prepared with the 
address of the requesting node and sent to the node in 
queue. Then, queue is set to the address of the 
requesting process, else, the address of the requesting 
process is stored in queue.  If there isn’t any node that 
is currently CRITICAL (busy is FLASE and status is 
SYNCHRONIZER), a GRANT message is sent to the 
requesting node, the address of the requesting node is 
stored in critical and busy is set to TRUE. 
 
Rule 3 (handling a GRANT message): when a node 
receives a GRANT message from the 
SYNCHRONIZER, it sets the status to CRITICAL; 
enters the CS, and saves the address of 
SYNCHRONIZER in synch. 
 
Rule 4 (exiting the CS): when a node exits the CS, it 
sends a RELEASE message to the SYNCHRONIZER 
(using the address stored in synch). Then it changes its 
status to REMINDER. 
 
Rule 5 (handling a RELEASE message): when the 
SYNCHRONIZER receives a RELEASE message, it 
changes its status to REMINDER, sets busy to FALSE, 
and sends a YAS message to the node that completed 
the CS (i.e. node from which it received the RELEASE 
message). Together with the message, the 
SYNCHRONIZER sends the address of the node 
currently at the end of the queue (current contents of 
queue), sending a nil if there is not any nodes currently 
in the queue. 
 
Rule 6 (handling a YAS message): when a node 
receives  a YAS message-if it is not in the REMINDER 
state-it forwards the message to next, and sends a 
CHANGE message containing next to critical(note that 
it knows critical from the YAS message). However, if 
the node is currently in the REMINDER state, it should 
handle the message. First, it changes its status to 
SYNCHRONIZER. Then, the node checks the contents 
of queue; if it is not nil a GRANT message is sent to the 
node in queue and busy is set to TRUE. After that, the 
node stores the address attached with the message in 
queue. 
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Rule 7 (Handling an ADD message): When a node 
receives an ADD message, it stores the address in the 
message in a queue. The ADD message is used in Rule 
1and in Rule 2  when there is a node at the CS. 
 
Rule 8 (Handling a CHANGE message): when a node 
receives a CHANGE message, it overwrites its synch to 
the address in the message. 
 The rules of the Dynamic Synchronizer Algorithm 
are shown in Fig. 2. 
 An   illustration   of the algorithm is depicted in 
Fig. 3. Snapshots of the state of the system during 
algorithm execution are shown, with time increasing 
from 3(A) to 3(F). The logical ring connections (next) 
are shown as dashed lines connecting circular nodes. 
 In Fig. 3A, node N1 is initially SYNCHRONIZER 
and all other nodes are in REMINDER state. Node N2 
will send a REQUEST message that will follow the 
logical ring from N2 to N3 to N4 and then to the 
SYNCHRONIZER (N1). When the SYNCHRONIZER 
receives the REQUEST message, it will check busy. 
Since there isn’t any node currently CRITICAL, it 
sends a GRANT message to node N2 , this in turn 
changes it’s state to CRITICAL and enters the CS as in 
Fig. 3B. 
 Figure 3C shows the system state after node N3 has 
sent a REQUEST message. Since one node (node N2) is 
currently CRITICAL, the SYNCHRONIZER will add 
node N3 to the queue by sending N3’s address to N2 in 
an ADD message The SYNCHRONIZER will store 
N3’s address in it’s queue pointer. 
 In Fig. 3D the SYNCHRONIZER has received a 
REQUEST message from node N5. Since queue is not 
nil, the SYNCHRONIZER will add node N5 to the 
queue and sends an ADD message containing it’s 
address to N3 (node at the end of the queue). This in 
turn stores that address in its queue pointer. The 
SYNCHRONIZER will also change its end of queue 
pointer by storing N5’s address in its queue pointer.  
 Figure 3E depicts the system after node N2 has 
finished the CS; sent a RELEASE message to 
SYNCHRONIZER, and changed its status to 
REMINDER. In Fig. 3F, after SYNCHRONIZER 
received the RELEASE message, it will send a YAS 
message to N2. The address of N5 (current content of 
queue pointer in SYNCHRONIZER which points to the 
node at the end of queue) will be attached with the 
message. Then the SYNCHRONIZER will change its 
status to REMINDER. When node N2 receives the YAS 
message, it will change its status to SYNCHRONIZER, 
send a GRANT message to current content of it’s queue 
pointer (node N3), and store the address attached with 
the YAS message in queue. Now N3’s status changed to  

Rule 1: When a node Ni requests access to the CS:
if status = REMINDER.

             REQUEST(next, Ni).
             status = WAITING.
if status = SYNCHRONIZER and busy = FALSE

YAS(next, Ni, Ni).
status = CRITICAL.

if status = SYNCHRONIZER and busy = TRUE
ADD(queue, Ni).
YAS(next, critical, Ni).
status = WAITING.

Rule 2: When a REQUEST(Nj, Ni) is received by a node Nj:
if status ≠ SYNCHRONIZER, REQUEST(next, Ni).
if status = SYNCHRONIZER and busy = FALSE.

GRANT(Ni, Nj).
critical = Ni.
queue = Ni.
busy = TRUE.

if status = SYNCHRONIZER and busy = TRUE.
ADD(queue, Ni).
queue = Ni.

Rule 3: When a GRANT(Ni, Nj) is received, from SYNCHRONIZER, by node Ni:
 synch = Nj.
 status = CRITICAL.

Rule 4: When a node Ni exits the CS:
RELEASE(synch, Ni).
status = REMINDER.

Rule 5: When a node Nj receives RELEASE(Nj, Ni):
YAS(Ni, nil , queue).
status = REMINDER.
busy = FALSE.

Rule 6: When a node Nj receives YAS(Nj, Ni, Nk):
if status ≠ REMINDER.

forward YAS(next, Ni, Nk)to next.
CHANGE(Ni, next).

if status = REMINDER.
status = SYNCHRONIZER.
if queue ≠ nil

GRANT(queue, Nj).
busy = TRUE.
queue = Nk.

Rule 7: When a node Ni receives an ADD(Ni, Nj):
      queue = Nj.

Rule 8: When a node Ni  receives CHANGE(Ni, Nj).
synch = Nj.  

 
Fig. 2: Rules used by the dynamic synchronizer 

algorithm 
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CRITICAL and the system have a new 
SYNCHRONIZER (node N2). 
 A slightly different version of the DSR algorithm is 
presented. This version of the algorithm takes into 
consideration the fact that it is not desirable in a 
dynamic system for the same node to be in the 
SYNCHRONIZER state for a long time, in order to 
insure fairness in the system. Using this version, the 
SYNCHRONIZER state will circulate among all the 
nodes in the system and none of the nodes will remain 
in SYNCHRONIZER state forever. In this algorithm, a 
node exits the SYNCHRONIZER state either if any 
other node exits the CS, or its quantum time is finished. 
A node that frequently enters the CS will have higher 
probability to be in the SYNCHRONIZER state. 
 A new data structure called timer needs to be 
maintained by the SYNCHRONIZER. Assuming T is 
the maximum period of time a node may stays in 
SYNCHRONIZER state, some handling events will be 
altered, and new events will occur. This version 
complies with the rules: Rule 1 to Rule 8 for the first 
version. Rule 6 is modified as follows. 
 
Rule 6 (handling a YAS message): as stated before, 
plus the timer is set to T 
 
Rule 9 (expiration of timer): if the node is in the 
SYNCHRONIZER state and the timer value becomes 
zero, the node prepares a YAS message and sends it to 
next, attached with the message the address of the node 
at the end of the queue. A nil address is attached if there 
isn’t any node currently in the queue. A critical is also 
attached. Then, it stores next in a CHANGE message 
and sends it to the critical. After that, it changes its 
status to REMINDER. Rule 9 is added to check the 
expiration of the quantum time. 
According to previous changes, the rules of the 
algorithm (DRS) will be modified. 
 

RESULTS AND DISCUSSION 
 
 We are concern to prove three conditions: the 
mutual exclusion is satisfied; using DRS will not lead 
to deadlock or starvation. 
 To show that the algorithm achieves mutual 
exclusion, we have to show that two or more nodes can 
never execute the CS simultaneously. That is, one node 
exits the CS before any other node can enter the CS. 
This will be shown by contradiction. 
 Assume that two nodes Ni and Nj are executing the 
CS simultaneously. This means that both nodes have 
received a GRANT message from the 
SYNCHRONIZER node.  But, according to our 

algorithm, a GRANT massage is sent in two cases: 
either by the SYNCHRONIZER when it receives a 
REQUEST message and busy is FALSE (Rule 2), or by 
a node that receives a YAS message from the 
SYNCHRONIZER after it exits the CS (Rule 4, Rule 5 
and Rule 6). It is clear that in both cases only one 
GRANT message is sent and that message is sent when 
busy = FALSE (no other process is currently in the CS). 
As a result, mutual exclusion is reserved. 
 The system of nodes is said to be deadlocked when 
no requesting node can ever proceed to critical section. 
This can occur as consequence for any of the following 
situations: either, no node is SYNCHRONIZER or 
SYNCHRONIZER node is not aware that other nodes 
have requested the critical section. 
 As we assumed in the algorithm, one node must be 
initiated as SYNCHRONIZER. During the time the 
algorithm is working, Rule 1, 5 and 6 manage the YAS 
message that is used to transfer the synchronization 
state from one node to another. 
 Rule 2 shows how the SYNCHRONIZER becomes 
aware when other nodes require the grant to enter the 
critical section. It either stores the address of requesting 
node in its queue or sends it to the node in its queue 
when busy is true; which is in turn serves the waiting 
nodes based on Rule 6, 7 and 8. In Summary, the DRS 
algorithm is deadlock free. 
 Starvation occurs when few sites repeatedly 
execute their CS while other sites wait indefinitely for 
their turns to do so. It means that there exists a node 
(call it Ni) that can enter the CS two or more times 
while another node in the WAITING state (call it Nj) 
and cannot enter the CS at all. According to Rule 5, 
when a node Ni exits the CS, it changes it’s state to 
REMINDER, to enter the CS again it must send a 
REQUEST message. Using Rule 2, if there is any other 
node in the WAITING state (node Nj), node Ni will be 
added to the end of the queue after node Nj. So, node Nj 
will enter the CS before node Ni. Accordingly, there is 
no starvation. 
 The number of messages generated-per critical 
section invocation-has traditionally evaluated the 
performance of most distributed mutual exclusion 
algorithms. Also, a useful mutual exclusion algorithm is 
characterized as fair to all nodes in the distributed 
system; being starvation-free, and deadlock-free[2,13]. 
 The DRS algorithm results in a substantial 
reduction in message traffic generated due to executing 
the CS. The number of messages incurred is much 
lower than in some other algorithms according to 
system assumptions that were previously illustrated. 
 The best-case performance happens when the 
synchronizer is the immediate neighbor to the sender 
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from the direction of sending, and no one is waiting for 
the resource. In this case, the number of messages to 
enter and exit CS is 1(REQUEST) + 1(GRANT) + 1 
(RELEASE). This is a constant value of 3 messages. 
The waiting time in queue in this case = 0. 
 The worst- case performance happens when the 
synchronizer is in the far middle of the ring (longest 
path node), and all other processors want the resource 
(waiting in queue) and each one of them will use the 
resource for the longest possible time (max resource 
use). Thus, the number of messages to enter and exit CS 
is 1(REQUEST)*(n/2) + (n-1) (GRANT)*(n-1)/2 + (n-
1)(RELEASE)*(n-1)/2, which is O(n2). 
 The waiting time in queue is (n-1)*(max time for 
allocating the resource), where n is the number of 
processors. This is O(n). 
 The average case performance depends upon the 
synchronizer location according to the request node. If 
you assume all nodes have the same chance to be 
synchronizer at any time, then each node has the 
probability (1/n) to be synchronizer and its location can 
be:  the immediate neighbor to the sender or the next 
one, or the far middle in the ring. Then, the number of 
messages are 3,6,…,3*(n/2-1)   respectively. So, the 
average   number   of messages   equals to 
(1/n)*�(3*i),I = 1,2,… (n/2)-1 and i is node location. 
Which ≅ 3(n/2-1). The waiting time equals to the 
average use time of the resource. 
 

CONCLUSION 
 
 The design of algorithms for distributed systems 
and their communication costs have been based on the 
assumptions that do not take into consideration the 
special characteristics of mobile systems such as low 
bandwidth, limited storage, and constrained energy 
consumption. This makes existing algorithms no longer 
valid for mobile systems. 
 This work focuses on the mutual exclusion 
problem for mobile systems. A system model for the 
mobile computing environment is first presented 
combined with the general principle for structuring 
algorithms for mobile systems. This differs from token-
based algorithms since a token is not used at all, which 
means there is no token lost problem. 
 A new algorithm is developed to achieve mutual 
exclusion in distributed systems is explained (first 
version). The first version of the algorithm is then 
updated to a (second version) that takes into 
consideration the energy savings of mobile hosts. 
Finally, this work shows how the algorithms are 
adapted to work in mobile system environments. 
 Starting from the fact that the distributed 
algorithms are more sensitive to crashes than 

centralized ones, we are working in a new version for 
this algorithm that can work in fault-tolerant systems-
even if there are frequent crashes. 
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