
American Journal of Applied Sciences 5 (7): 777-782, 2008
ISSN 1546-9239
© 2008 Science Publications

Corresponding Author: Shakir M. Hussain, Faculty of CSIT, Applied Science University, P.O. Box 22, Amman 11931, Jordan
777

A Password-Based Key Derivation Algorithm Using the KBRP Method

1Shakir M. Hussain and 2Hussein Al-Bahadili

1Faculty of CSIT, Applied Science University, P.O. Box 22, Amman 11931, Jordan
2Faculty of Information Systems and Technology,

Arab Academy for Banking and Financial Sciences, P.O. Box 13190, Amman 11942, Jordan

Abstract: This study presents a new efficient password-based strong key derivation algorithm using
the key based random permutation the KBRP method. The algorithm consists of five steps, the first
three steps are similar to those formed the KBRP method. The last two steps are added to derive a key
and to ensure that the derived key has all the characteristics of a strong key. In order to demonstrate the
efficiency of the algorithm, a number of keys are derived using various passwords of different content
and length. The features of the derived keys show a good agreement with all characteristics of strong
keys. In addition, they are compared with features of keys generated using the WLAN strong key
generator v2.2 by Warewolf Labs.

Key words: Key derivation, key generation, strong key, random permutation, Key Based Random

Permutation (KBRP), key authentication, password authentication, key exchange

INTRODUCTION

 Key derivation is the process of generating one or
more keys for cryptography and authentication, where a
key is a sequence of characters that controls the process
of a cryptographic or authentication algorithm[1,2].
Strong key derivation has become a primary concern in
wireless network in order to provide secure
communication in a hostile environment. For example,
Diffie-Hellman based key exchanges establish a secure
communication channel between two parties by
securely negotiating a large random element in a given
cyclic group, called master secret. Then, this secret is
used to derive keys for encrypting and authenticating
data[3]. These keys must be bit-strings of some specific
length uniformly distributed and used as input
parameters to symmetric ciphers (for privacy), message
authentication codes (for authentication) and pseudo-
random functions (for expansion of a seed into a longer
bit-string)[4].
 There are a number of approaches that have been
developed for strong key derivation such as: functional
based[5,6,2], biometric based[7,8,9] and voice based[10,11,12].
The functional based key derivation approach is often
used to derive one or more keys from a common secret
value (password); therefore, it may be referred to as a
password-based key derivation[2].
 For strong cryptography, keys need to be carefully
selected and must acquire some special characteristics,
such as[2,7,13]:

• The key size must be long enough so that it can not

be easily broken
• The key should have the highest possible entropy

(close to unity)
• Run length should be less than eight bits

(a character word length)
• Bits are randomly distributed throughout the key

sequence
• No particular pattern can be recognized throughout

the key sequence

 Hash function and pseudorandom function are
widely used for key derivation. These two functional
approaches are used in PBKDF1 and PBKDF2,
respectively. PBKDF2 is recommended for new
applications while PBKDF1 is included only for
compatibility with existing applications and is not
recommended for new applications (Kal 00). A wired
equivalent privacy or wireless encryption protocol
(WEP) is another functional approach that is developed
to provide security for wireless networks. However, a
number of techniques and programs are now available
that can crack a WEP key in less than a minute. Despite
that a wireless strong key generator has been developed
to enhance wireless security such as the WLAN strong
key generator v2.2 by Warewolf Labs[14].
 In this study a new efficient password-based key
derivation algorithm is proposed for a strong key
derivation, regardless of the password elements and

Am. J. Applied Sci., 5 (7): 777-782, 2008

 778

length. The algorithm utilizes the Key Based Random
Permutation (KBRP) method in[15]. In order to ensure
that the binary sequence generated is hard to predict,
first, an important modification is introduced to the last
step in KBRP, namely the fill () step. Second, two
further steps are added to the KBRP method to derive a
strong key.
 The modified KBRP method assures that the key
derived is of highest possible entropy (close to unity,
since the number of 0’s and 1’s are only differing by 1).
But the derived key may not provide an adequate run
length for 0’s and 1’s. Therefore, in order to satisfy a
suitable run length (RL) of 0’s and 1’s, we march
through the derived key and every time the run length is
greater than RL, then the last bit in RL is replaced with
the subsequent bit that represents its complement.
 This algorithm ensures even with weak password, a
strong key can be derived to satisfy the characteristics
mentioned above. So that user can still use their favorite
password set without affecting the key strength.
 The features of the keys generated using the
proposed algorithm are evaluated, analyzed and
compared with the results obtained from the WLAN
strong key generator v2.2 by Wareworlf Labs. The
features evaluation process is done by comparing the
entropy of the derived key, maximum run length of 0's
and 1's and the average run length.

LITERATURE REVIEW

 A number of key derivation approaches have been
developed throughout the years, such as: functional
based[2,5,6], biometric based[7,8,9] and voice based[10,11,12].
 B. Kaliski[2] proposed a functional based approach
to derive a key from a password and other parameters
such as a salt value and an iteration count. He
developed two functions for key derivation, namely,
PBKDF1 and PBKDF2. PBKDF2 is recommended for
new applications; PBKDF1 is included only for
compatibility with existing applications and is not
recommended for new applications.
 He defined four steps in his key derivation
functions. These are: (1) select a salt value and an
iteration count, (2) select a length in octets for the
derived key, (3) apply the key derivation function to the
password, the salt, the iteration count and the key
length to produce a derived key and (4) output the
derived key. In this approach, many numbers of keys
may be derived from a password by varying the salt.
 Costanzo[7] proposed a biometric key derivation
approach for generating a cryptographic key from an
individual’s biometric for use in proven symmetric
cipher algorithms. The proposed approach uses a

method referred to as Biometric Aggregation. In this
approach, the encryption process begins with the
acquisition of the required biometric samples. Features
and parameters are extracted from these samples and
used to derive a biometric key that can be used to
encrypt a plaintext message and its header information.
During the decryption process, acquisition of additional
biometric samples from which the same features and
parameters are extracted and used to produce a “noisy”
key as done in the encryption process. Next, a small set
of permutations of the “noisy” key are computed. These
keys are used to decrypt the header information and
determine the validity of the key. If the header is
determined to be valid, then the rest of the message is
decrypted. The proposed approach eliminates the need
for biometric matching algorithms, reduces the cost
associated with lost keys and addresses non-repudiation
issues.
 Monrose et al.[11,12] developed a technique to
reliably generate a cryptographic key from a user’s
voice while speaking a password. The key resists
cryptanalysis even against an attacker who captures all
system information related to generating or verifying
the cryptographic key. Moreover, the technique is
sufficiently robust to enable the user to reliably
regenerate the key by uttering the password again. They
described an empirical evaluation of their technique
using 250 utterances recorded from 50 users.
 Teoh[9] proposed a novel two-stage technique to
generate personalized cryptographic keys from the face
biometric, which offers the inextricably link to its
owner. At the first stage, integral transform of biometric
input is to discretise to produce a set of bit
representation with a set of tokenised pseudorandom
number, coined as FaceHash. In the second stage,
FaceHash is then securely reduced to a single
cryptographic key via Shamir secret-sharing. Tokenised
FaceHashing is rigorously protective of the face data,
with security comparable to cryptographic hashing of
token and knowledge key-factor. The key is constructed
to resist cryptanalysis even against an adversary who
captures the user device or the feature descriptor.
 Peyravian et al.[16] used either a ‘user Identifier’
(userID) or information that may be used to identify the
individual such as a user's biometric data. These data
can be the user's fingerprints, hand geometry, iris
pattern, or any other suitable biometric identification.
Then such user ID-based or biometric-based key or
random number generated based on their algorithms
may be used in asymmetric-key cryptographic systems
(such as the RSA) or the symmetric-key cryptographic
systems (such as the DES).

Am. J. Applied Sci., 5 (7): 777-782, 2008

 779

THE PROPOSED KEY DERIVATION
ALGORITHM

 Here we present a description of the proposed key
derivation algorithm. It utilizes the KBRP method[15];
therefore, we first provide a brief description of this
method followed by a detail implementation of the
proposed algorithm.

KBRP METHOD

 Key Based Random Permutation (KBRP) is a
method that generates one permutation of size N out of
N! permutations[15]. This permutation is generated from
a certain key (password) by considering all elements of
the password in the generation process. The
permutation is stored in one-dimensional array, P, of
size N. The KBRP method consists of three consecutive
steps: init (), eliminate () and fill ().
 The first step, init (), initializes an array of size N
with elements from the given password. It takes the
ASCII code of each element in the password and
storing them in the array consecutively. If the password
provides less than N elements, the unfilled elements are
derived by adding two consecutive values, starting at
the first element of the array until all unfilled elements
are set to values. Finally, the mod operation with
respect to N+1 is calculated for each element, so that all
values are set within the range 1 to N.
 The second step, eliminate (), is to eliminate the
similar values by replacing them with zero and keep
only one value out of these similar values. Last step, fill
(), is to replace all zero values with values in the range
1 to N that are not exist in the array. The resulted array
is now representing the permutation.

THE PASSWORD-BASED KEY DERIVATION
ALGORITHM

 The proposed algorithm consists of five steps.
These are: init (), eliminate (), fill (), derive () and
certify (). The first three steps are similar to those in the
KBRP method explained above.
 The forth step, derive (), derives the key from the
permutation P generated from the KBRP method by
performing mod 2 operation for each element in P. This
ensures that each element in P will have either 0 or 1
and the number of 0's and 1's are even, since N is
always an even number. To satisfy one of the
requirements of a strong key by do not use an equal
number of 0’s and 1’s, we invert one or more bits of the
same value. These bits can be selected randomly or
according to a particular procedure. However, in our

P: array holds permutation with
Values 1 to N
KEY: key (string of bits) of size N
For (i = 1 to N)
 KEY[i] = P[i] MOD 2
KEY[P[1]] = NOT KEY [P[1]]

Fig. 1: Algorithm for the derive() step

KEY: key (string of bits) of size N.
RL: run length set to 4
Bits0: counter holds consecutive 0 bits
Bits1: counter holds consecutive 1 bits
while KEY contain run length > RL

set Bits0, Bits1 to 0
count Bits0 in KEY
count Bits1 in KEY
if (Bits0 > RL)

swap one 0 bit with the first following
1 bit in KEY

set Bits0 to 0
if (Bits1 > RL)

swap one 1 bit with the first following
0 bit in KEY

set Bits1 to 0

Fig. 2: Algorithm for the certify() step

algorithm, in order to obtain the highest acceptable
entropy (close to unity), only one bit is complimented.
This bit is chosen according to the value of the element
number one in the permutation array, so that the derived
key depends on the password elements entered and
different keys can be derived depending on the position
of inverted bit. The drive () step is performed to ensure
that bits are randomly distributed throughout the binary
key sequence.
 Figure 1 outlines the procedure of the key
derivation step. However, this step will not ensure that
the derived key satisfies the run length requirement for
a strong key. For this reason, we use step 5 to certify
the key.
 The fifth step, certify (), takes the outcome of the
forth step and check the run length for the two binary
digits 0 and 1 to make sure that the run length for each
of them is not more than a particular value, r. To
achieve this objective without varying the entropy, the
binary sequence is checked and once the run length
equal to r, the rth+1 bit is swapped with its next
complement bit (here we use r = 4). Fig. 2, shows the
algorithm for the certify () step.

Am. J. Applied Sci., 5 (7): 777-782, 2008

 780

Table 1: 40-bit derived keys for various passwords
Password 40-bit derived key
aaaa A892236DB6 6927545F71
KBRP 63276B3867 2B313E2650
1234 0DAF1EEF10 5A7934265E
computer C4B0891DDE 614D756356
success246 E2645E4C96 376930787E

Table 2: 104-bit derived keys for various passwords
Password 104-bit key
aaaa 0CCA7BB4F6C91ECD9B3712C224
 28296B476E5A5B39744B47657D
KBRP 631176F42B6CC6312B4927B776
 246370512A673F264A7C635649
1234 ED3DB0896112C22584769EEC3C
 4438206C2D7840522237672F5A
computer E9611286E4CAC75DB7878448D7
 772575313A7A4C45592E7D3773
cuccess246 F5BAC35137BA5132EC8C2A6566
 7E5E2341315E5628313768734A

Table 3: 128-bit derived keys for various passwords
Password 128-bit key
aaaa 49DA7BB4F776EC9EE6762264B0896110
 7A7B365F4E523A2A3E2032242B427746
KBRP 63223AE4753350A599772170E332EB5B
 3A6977547247717A575B623A20656835
1234 12DC2113152D3C4DA93DDBD34E9EF190
 55506D39522B2726673C237032375E3A
computer F4B0891DD556112C2E99C4B09BCED3DD
 2E31253644335157385D2D5A69302252
success246 EEBA5275B663512C21A3730C2D13ADAF
 6750655772476453712766455F7A7D66

Table 4: 232-bit derived keys for various passwords
Password 232-bit key
aaaa ED89D8791EC223C869EEDB8761627
 13D3B1B85E5844B0B8F113AEC3784
 525A72613B5D445F75597C6F57247
 3205D5F2451243A4771735F31623E
KBRP 632F32E72939EE8727263AF48F6A8
 EBD9C48E30DA786943846622E8D8C
 2C314C5A5A2C4A216B58466C55726
 35540245D6131437A584A7125652F
1234 EEE258422896113CB0896110A6D3D
 DE32D3DDA7BB7B31CC242F27B27BB
 4170242D665145287839484227476
 36A202B5E4E5330493C7A5F617749
computer 12225769EED3DDA7BB4F769EED3DD
 88E1371ECD8F4B0896112C2258448
 33346D41526F746B2B61493378512
 6655769474D6171335E3E2A733D5D
success246 F5BB7AC58BC31849D657A61911553
 573DE584498C8630CF76DACC642F3
 2246757C483C5F3C5B7A40767D3A7
 84E6E6D4D472D58366664294F5E74

ILLUSTRATIVE EXAMPLES

 The five steps forming the proposed algorithm are
implemented in a small code using C++ language. The
code takes as an input any character set (password) and
output a binary key that has all features of a strong key;
such a highest possible entropy, a run length of both 0's
and 1's is less than or equal to r (4<r<8). In addition, no
pattern can be recognized throughout the entire key and
a minimum number of repetitions are allowed for any
sub set of the binary sequence within the key. In
particular, the code calculates a number of parameters
such as: entropy of the key, the number of 0’s and 1’s
and the minimum, maximum and average run length for
both 0’s and 1’s.
 In order to demonstrate the efficiency of the new
algorithm in deriving strong keys, we present the results
for the key derived for five different initial passwords,
these are:

• Password of 4 similar letters (aaaa)
• Password of 4 different letters (KBRP)
• Password of 4 numeric values (1234)
• Password of 8 different letters (computer)
• Password of 10 different alphanumeric characters

(success246)

 The results for 40, 104, 128 and 232 bits key
lengths are presented in Table 1-4, respectively. The
derived keys are compared with those obtained from the
WLAN strong key generator program v2.2 by
Warewolf Labs[14] in Table 5-8.
 The results show that the keys derived using the
proposed algorithm always have the maximum
acceptable entropy, a controlled run length for both 0’s
and 1’s of not more than a particular value (in this case
r=4) for all key lengths and an acceptable average run
length. On the other hand, the tests show that for the
Warewolf program, the run length may be more than 8
for long keys.

CONCLUSION

 This study presents a new functional password-
based strong key derivation algorithm using the key
based random permutation (KBRP) method. The KBRP
method consists of three computational steps (init (),
eliminate (0 and fill () steps) to generate a permutation
P of size N out of N! possible permutations. Two other
computational steps (derive () and certify () steps) are
added to process the outcome of the KBRP method to
derive a key that meets all the features of a strong key.
In particular, the derived key has a maximum

Am. J. Applied Sci., 5 (7): 777-782, 2008

 781

Table 5: A comparison between the proposed algorithm and the WLAN strong key generator v2.2 by Warewolf Labs for 40-bit key length
Password Entropy No of 0’s/1’s Max RL 0’s/1’s Ave RL 0’s/1’s
aaaa 0.9982 21/19 3/2 1.62/1.46
 0.9982 19/21 3/5 1.58/1.75
KBRP 0.9982 19/21 4/3 1.90/2.10
 0.9837 23/17 4/5 2.09/1.70
1234 0.9982 19/21 4/4 2.11/2.63
 1.0000 20/20 4/4 1.67/1.82
computer 0.9982 21/19 4/4 2.10/1.90
 1.0000 20/20 4/3 1.43/1.54
success246 0.9982 21/19 3/4 1.91/1.73
 0.9982 19/21 5/6 2.11/2.63

Table 6: A comparison between the proposed algorithm and the WLAN strong key generator v2.2 by Warewolf Labs for 104-bit key length
Password Entropy No of 0’s/1’s Max RL 0’s/1’s Ave RL 0’s/1’s
aaaa 0.9997 51/53 4/4 1.82/1.96
 0.9989 50/54 5/5 1.56/1.69
KBRP 0.9997 51/53 4/4 1.70/1.83
 0.9957 56/48 5/6 2.00/1.71
1234 0.9997 53/51 4/4 1.96/1.82
 0.9783 61/43 7/4 2.35/1.72
computer 0.9997 53/51 4/4 1.96/1.82
 0.9957 48/56 3/5 1.60/1.87
success246 0.9997 51/53 4/4 1.65/1.71
 0.9976 55/49 5/6 1.96/1.82

Table 7: A comparison between the proposed algorithm and the WLAN strong key generator v2.2 by Warewolf Labs for 232-bit key length
Password Entropy No. of 0’s/1’s Max RL 0’s/1’s Ave RL 0’s/1’s
aaaa 0.9998 51/53 4/4 1.85/1.97
 0.9984 67/61 7/5 1.97/1.85
KBRP 0.9998 65/63 4/4 1.81/1.75
 0.9998 65/63 6/4 1.76/1.70
1234 0.9998 65/63 4/4 1.88/1.85
 0.9984 67/61 6/4 1.86/1.74
computer 0.9998 63/65 4/4 1.82/1.84
 0.9857 73/55 6/3 1.87/1.45
success246 0.9998 63/65 4/4 1.75/1.76
 0.9984 61/67 5/5 1.65/1.86

Table 8: A comparison between the proposed algorithm and the WLAN strong key generator v2.2 by Warewolf Labs for 232-bit key length
Password Entropy No. of 0’s/1’s Max RL 0’s/1’s Ave RL 0’s/1’s
aaaa 0.99995 117/115 4/4 2.17/2.13
 0.99995 115/117 6/5 1.80/1.86
KBRP 0.99995 117/115 4/4 1.98/1.98
 0.98623 132/100 8/4 1.91/1.45
1234 0.99995 115/117 4/4 1.98/1.98
 0.98790 131/101 7/5 2.15/1.66
computer 0.99995 115/117 4/4 1.89/1.95
 1.00000 116/116 5/5 1.71/1.71
success246 0.99995 115/117 4/4 1.89/1.89
 0.99979 114/118 7/5 1.90/2.00

acceptable entropy, the number of 0’s and 1’s
may be set to differ by a specific value (in
this work it is set to differ by 1 only, a
controlled maximum run length for

both 0’s and 1’s and a satisfactory average run
length. These key features are validated against
key features generated using a standard WLAN
strong key generator v2.2 from Warewolf Labs.

Am. J. Applied Sci., 5 (7): 777-782, 2008

 782

ACKNOWLEDGEMENTS

 This study received financial support towards the
cost of its publication from the Deanship of Research
and Graduate Studies at Applied Science University,
Amman - Jordan.

REFERENCES

1. Chevassut, O., P.A. Fouque, P. Gaudry and

D. Pointcheval, 2005. Key Derivation and
Randomness Extraction.

2. Kaliski, B., 2000. Password-Based Cryptography
Specification Version 2. Network Working Group,
RFC 2898-PKCS#5,

 http://www.faqs.org/rfcs/rfc2898.html
3. Diffie, W. and M.E. Hellman, 1976. New

Directions in Cryptography. IEEE Transactions on
Information Theory, 22: 644-654.

4. Bellare, M., R. Canetti and H. Krawczyk, 1996.
Keying Hash Functions for Message
Authentication. In Crypto ’96, LNCS 1109,
Springer-Verlag, Berlin, pp: 1-15.

5. Dodis, W., R. Gennaro, J. Hastad, H. Krawczyk
and T. Rabin, 2004. Randomness Extraction and
Key Derivation Using the CBC, Cascade and
HMAC Modes. Proceedings of Crypto ’04, LNCS,
Springer-Verlag, Berlin, pp: 494-510.

6. Zorn, G., 2001. Deriving Keys for Use with
Microsoft Point-to-Point Encryption (MPPE).
Network Working Group.

7. Costanzo, C.R., 2004. Biometric Cryptography:
Key Generation Using Feature and Parametric
Aggregation. School of Engineering and Applied
Sciences, Department of Computer Science,
George Washington University.

8. Uludag, U., S. Pankanti, S. Prabhakar and A. Jain,
2004. Biometric Cryptosystems: Issues and
Challenges. Proceedings of the IEEE, Vol. 92.

9. Teoh, A.B., D.C. Ngo and A. Goh, 2004.
Personalised Cryptographic Key Generation Based
on FaceHashing. Computers and Security,
23: 606-614.

10. Monrose, F., M.K. Reiter, Q. Li, D. Lopresti
and C. Shih, 2002. Towards Voice Generated
Cryptographic Keys on Resource Constrained
Devices. Proceedings of the 11th USENIX Security
Symposium.

11. Monrose, F., M.K. Reiter, Q. Li and S. Wetzel,
2001. Cryptographic Key Generation From Voice.
Proceedings of the IEEE Conference on Security
and Privacy, USA.

12. Monrose, F., M.K. Reiter, Q. Li and S. Wetzel,
2001. Using Voice to Generate Cryptographic
Keys. Speech Recognition Workshop, Greece.

13. Roginsky, A., 2004. A New Method for Generating
RSA Keys. International Business Machines
Consulting Group.

14. Elliott, C., 2005. WLAN Strong Key Generator
v2.2 by Warewolf Labs. Warewolf Labs, Warewolf
Website.

15. Hussain, S.M. and N.M. A-Ajloni, 2006. Key Base
Random Permutation (KBRP). J. Computer Sci.,
2: 419-421.

16. Peyravian, M., S.M. Matyas, A. Roginsky and
N. Zunic, 1999. Generating User-Based
Cryptographic Keys and Random Numbers.
Computers and Security, 18: 619-626.

