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Abstract: The finite element method has been used to predict the creep rupture parameter, C*-Integral of 
flat T-section bar subjected to loaded projection and remote loading with a crack or crack-like flaw 
introduced in the fillet (i.e., high stress) region of the component. In this study, a new dimensionless 
creeping crack configuration factor, Q* has been introduced. Power low creeping finite element analyses 
have been performed and the results are presented in the form of Q* for a wide range of components and 
crack geometric parameters. These parameters are chosen to be representative of typical practical situations 
and have been determined from evidence presented in the open literature. The extensive range of Q* 
obtained from the analyses are then used to obtain equivalent prediction equations using a statistical 
multiple non-linear regression model. The predictive equations for Q*, which are based on the elastic stress 
concentration factor, can also be used easily to calculate the C*-Integral values for extensive range of 
geometric parameters. The C*-Integral values obtained from predictive equations were also compared with 
those obtained from Reference Stress Method (RSM). Finally, creep zone growth behavior was studied in 
the component during transient time. 
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INTRODUCTION 
 
 Projections on plates, bars and tubes are often used 
as a means of transmitting axial load between two 
components, e.g., T-shaped flat bars, shouldered 
plates/shafts/tubes, wide grooves, filleted transitions 
and many other geometric shapes with similar stress 
concentration features. For remote loading conditions, 
the point of application of the load is usually far 
removed  from  the  region  of  stress  concentration 
(Fig. 1a) and does not influence that local stress field. 
However, when the load or the reaction of the loading 
is applied at or near to the region of high stress 
gradient, such as for these 'loaded projections', the C*-
Integral can be significantly higher than for the 
equivalent remote loading case (Fig. 1b). This is 
because there is both a tensile component and a bending 
component of load at the projection, as illustrated in 
Fig. 1c. Crack failure is a major consideration in 
mechanical design. Nearly all crack failures initiate at 
stress concentration features, i.e. at the point of highest 
stress. In general, the initial crack (or any crack like 
flaw, void, defect, etc.) will develop in three stages, as 
presented in reference[1], namely initiation, propagation 
and fracture. Crack initiation is analyzed at the 
microscopic level, while for crack propagation the 

continuum mechanics approach based on a macroscopic 
scale is used. The rupture fracture parameters in a 
remotely loaded cracked component is controlled by the 
notch radius, r, plate length, l, crack length, a and the 
remotely applied load, P, as shown in Fig. 1a, for 
cracked components with loaded projections the 
projection length, h and the combined effect of tensile 
and bending loading also affect the C*-Integral or any 
fracture parameters, as illustrated in Fig. 1b and c.  
 In order to predict the strength of the cracked 
component, the crack growth rate and the critical crack 
size, in high temperature situation, an accurate value for 
C*-Integral along the crack front has to be known. 
Many experimental, numerical and analytical solutions 
for the three basic stress intensity factors Ki (i = I, II, 
III) have been deduced for varying crack sizes for 
relatively simplistic structures with simple loading 
conditions. Paris and Sih[2] present a comprehensive 
handbook of such results. 
 In addition, crack tip stress fields have previously 
been studied and data on elastic stress intensity factors 
are readily available[3]. Also, the crack tip stress 
solution for flanked notches[4]. J-Integral and stress 
concentration factor for T-sections were also reported[5]. 
 However, in a high temperature situation with time 
the stress in the vicinity of the crack begins to relax due 
to creep deformation and the size of the relaxation (or 
creep) zone increases with time if the crack  is  assumed 
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(a) 'Remotely' loaded cracked component 
 
 
 
 
 
 
 
 
 
 
 
(b) Cracked component with loaded projection and 
 
 
 
 
 
 
 
(c) Tension and bending effects associated with loaded 
projections 
 
Fig. 1: Typical example of a loaded projection and 

remote loading 
 
to remain stationary. Neither K nor J-Integral is 
expected to uniquely characterize the crack tip stress 
relaxation (or redistribution) behavior within the creep 
zone because creep deformation is not admitted in their 
formulation. So using C*-Integral in creep situation 
were recommended. 
 To simplify the estimation of C*-Integral in 
different components many ways have been 
recommended. For example determination of fracture 
mechanics parameters J and C* by finite element and 
reference stress methods for a semi-elliptical flaw in a 
plate were reported[6]. Also relevance of plastic limit 
loads to reference stress approach for surface cracked 
cylinder problems were reported[7]. In addition, creep 
crack initiation and creep crack growth assessments in 
welded structures have been studied[8]. All previously 
published papers for estimation of the C*-Integral 

values are based on reference stress or limit load 
approaches. These methods are known as "simplified 
methods", which are able to estimate the C*-Integral 
values very conservatively. These methods should also 
be supported by a finite element analysis in order to 
calculate the reference stress or limit load value. 
However, in this study by the analogy with the J-
Integral, a new relation for the C*-Integral has been 
suggested. For this purpose, a new dimensionless 
creeping crack configuration factor, Q*, has been 
defined in analogy with fracture crack configuration 
factor, Q, as follows: 
                      ( )0J f Q, ,a,E= σ  (1) 

                     ( )* *
0C f Q , ,a,n= σ  (2) 

Where �0 and a are nominal stress and crack length, 
respectively. E and n are material modulus of elasticity 
and material creep properties, respetively. 
 In this study at first linear elastic finite element 
analyses have been performed and elastic stress 
concentration factor obtained for a wide range of 
components without crack. Then power low creeping 
finite element analyses have been performed and the 
result are presented in the form of Q* for a wide range 
of components, having different stress concentration 
factors, crack lengths and material creep properties at 
different temperature. The extensive range of elastic 
stress concentration factors and Q* obtained from the 
FE analysis for different crack lengths and material 
creep properties, are then used to obtain equivalent 
prediction equations using a statistical multiple non-
linear regression model[9]. The accuracy of this model is 
measured using a multiple coefficient of determination, 
R2 where 0�R2

�1. This coefficient is found to be 
greater than or equal to 0.98 for all cases considered in 
this study, demonstrating the quality of the model fit to 
the data. These equations can be used to obtain C* 
values that are based on the elastic stress concentration 
factor for the geometries and material properties being 
considered. Thus, a direct link is provided between the 
stress concentration factor (which can be easily 
determined either from the predictive equations 
presented here or via elastic finite element analysis) and 
C*-Integral, which normally require the use of 
complicated power low creeping fracture mechanics 
analysis. 
 

GEOMETRY, LOADING AND 
BOUNDARY CONDITIONS 

 
 For loaded projection conditions four dimensions 
are used to define the geometry, as shown in Fig. 2. 
They  are  the projection length, h, the projection width, 
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Fig. 2: Component geometry with loaded projection condition 
 
w, the plate width, d and the fillet radius, r. Three non-
dimensional parameters are formed by normalizing with 
respect to the plate width, d, i.e. h/d, w/d and r/d. 
 The range of dimensions selected for the 
parametric study is consistent with the geometric cases 
covered by Engineering Sciences Data Unit (ESDU) 
data item 69020[10] and is considered to present a range 
of practical interest. The selected ranges 
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 The plate length, L, is long enough to ensure that 
uniform stress distribution is achieved away from the 
fillet. A plane stress assumption (i.e., thin plate) is 
made for all geometries considered. 
 In remote loading, the loading condition consists of 
a remotely applied axial stress, �0, reacted by a uniform 
pressure, P, across the entire upper section of the 
projection as shown in Fig. 3. The loaded projection 
condition consists of a remotely applied axial stress, �0, 
reacted by a uniform pressure, P, across the entire flat 
section of the shoulder as shown in Fig. 2. The flat 
section of the shoulder has a width, b, where 
 

                     ( )1
b w d r

2
= − −  (3) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3: Component geometry with remote loading 

condition 
 
 In addition, the nominal stress in the plate is given 
by 
 

                0

2pb w r
p( 2 1)

d d d
σ = = − −  (4) 

 
 The nominal stress, �0, for remote loading 
condition can be written as: 
 

                          0

w
p

d
σ =  (5) 
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 A range of crack lengths, a, is considered on the 
basis of the observations of surface cracks in fractured 
standard NDT (nondestructive testing) test 
specimens[11], i.e., a = 0.5-2.5 mm. Many engineering 
components contain, or are assumed to contain, such 
cracks for life assessment purposes at the design stage. 
Such cracks may grow owing to fatigue, corrosion, 
creep, etc.  
 

FINITE ELEMENT ANALYSIS OF 
THE CRACKED COMPONENTS 

 
 Finite element predictions have been obtained 
using the Power law creeping fracture mechanics 
facilities within the ABAQUS[12] suite of programs. 
Six- and eight-noded, reduced integration, plane stress, 
triangular and quadrilateral elements were used with the 
crack tip singularity represented by collapsing one side 
of a quadrilateral to form a triangular element so that 
there are three points in crack tip. 
 A typical finite element mesh is shown in Fig. 4. 
Due to lack of creep crack study in T-section 
component at first, some elastic finite element analyses 
have been done and the results were compared with 
data available[5]. 
 This comparison confirmed that the level of mesh 
refinement and the use of the crack tip elements in 
current study would provide accuracy to within ±3%. 
 Values for Young's modulus, density and Poisson's 
ratio of 209 GPa, 7840 kg m�

3 and 0.3, respectively has 
been used throughout the analysis. In creep situation, 
Strain was assumed to obey Bailey-Norton creep law. 
 
Table 1: Material creep properties and rupture stress for rene 80  
1150 930 650 T(°C) 
16.272�10�3 6.37�10�5 1.855�10�6 

( )n

1
A

Mpa hr

� �
� �
� �
� �

 

1.43 4.6 2.54 n 
165 170 175 �R (Mpa) 

 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4: Typical finite element mesh 
                           nAε = σ�  (6) 

 The material creep properties for rene 80, are listed 
in Table 1. 
 

RESULTS 
 
C*-Integral values: The C*-Integral values have been 
obtained using a numerical procedure based on the 
Virtual Crack Extension Method (VCEM) suggested by 
Landes and Begley[13], as follows: 
 

               
0* i

i

u
C w dy T ds

x
∗

Γ

∂� �= − � �∂� �
�

�
 (7) 

 
Where 
 

                         y*
ij ij0

W d
ε

= σ ε�
�

�  (8) 

 
� is a line contour shown in Fig. 5 taken 
counterclockwise from the lower crack surface to the 
upper crack surface. W* is the strain energy rate density 
associated with the point stress, �ij and strain rate ij.ε�  Ti 

is the traction vector defined by the outward normal, nj, 
along �. 
 Here, the VCEM procedure incorporated in the 
ABAQUS[12] finite element program has been used to 
calculate the C*-Integral values. It has been shown in[14] 
that the value of C* is independent of the path � if the 
path originates at any point on the lower crack surface 
and goes counter clockwise and ends at any point on the 
upper crack surface.  
 In order to validate FEM predictions, C*-Integral 
values have been obtained using three separate contours 
around the crack tip, which are shown in Fig. 5 for a 
typical geometry. All contour integrals generally 
showed  good  path  independence,  as  illustrated  in  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 5: C*-Integral contour paths 
 

contour 1
contour 2

contour 3
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Table 2: Normalized C*-Integrals for typical contour paths 
1 2 3 Contour 
0.986 0.995 1 C* Normalized 

 
Table 2 where the C* values are normalized with 
respect to the value for the outermost contour 3. 
Consequently, the values for contour 3 were used 
throughout this study. 
 
Stress concentration factor: The elastic stress 
concentration factor is defined as a geometric 
correction factor, which is a function of three non-
dimensional parameters h/d, w/d and r/d, as follows: 
 

                 t

h w r
K f , ,

d d d
� �= � �
� �

 (9) 

 
 To determined stress concentration factor Kt in a 
T-section component subjected to loaded projection the 
following relation ship was reported[5], using a 
statistical multiple nonlinear regression model: 
 

           
( ) ( )
( )

( ) ( ) ( )

2.11 1.44

0.92

t 1.68 0.25 0.49

0.91 h / d 0.26 w / d

0.57 r / d 0.14
k

h / d w / d r / d

+ −

+
=  (10)  

 
 In a similar way to[5], the following equation is 
derived for the stress concentration factor of a T-section 
component under remote loading condition: 
 

   

1.517 1.083

t 0.383 0.758

w r
0.842 1.06 0.941

d dk
w r

1.083 1.164
d d

� � � �+ × + ×� � � �
� � � �=

� � � �× + ×� � � �
� � � �

 (11) 

 
 The accuracy of this equation has been assessed 
using a multiple coefficient of determination[9], R2, 
where 0�R2

�1. This coefficient was found to be 
approximately 0.984, which demonstrates the accuracy 
of model fit to the data. As it is evident the projection 
length, h, does not appear in Eq. 11 so it does not effect 
kt (or C*).  
 
Crack location and inclination: Five components 
under remote and projection loading have been 
considered in this study that are shown in Table 3 and 4 
for loaded projection and remote loading. kt changes for 
these components from minimum to maximum amount. 
FE analysis have shown that the maximum C*-Integral 
value, depending of the geometry and loading 
condition, corresponded to a crack emanating from a 

point around the fillet �max, as shown in Fig. 2 and 
Table 3, 4. 
 
Table 3: Geometries used in loaded projection condition 

maxα  maxψ  tk  w
d

 h
d

 r
d

 Geometry No. 

30 30 2.78 0.20 3.0 3.00 1 
55 55 7.29 0.07 2.7 0.80 2 
55 55 10.46 0.09 2.5 0.50 3 
55 55 13.54 0.06 2.8 0.52 4 
55 55 16.69 0.05 3.0 0.50 5 
 
Table 4: Geometries used in remote loading condition 

maxα  maxψ  tk  r
d

 w
d

 Geometry No. 

0 20 1.84 0.2 1.5 1 
55 27 2.99 0.09 2.5 2 
55 20 3.26 0.07 2.7 3 
60 30 3.41 0.06 2.8 4 
60 45 3.67 0.05 3.0 5 

 
 Also to determine the inclination of the crack to 
the transverse direction �, maximum, C* values in 
different directions were calculated and the results are 
shown in Table 3 and 4. 
 Figure 6 and 7 show variation in C*-integral with 
direction of crack for projection and remote loading 
respectively. In projection loading condition the results 
show that in the range of 40°<�70° C* values are very 
close together and variation in � does not have an 
important effect on C* values. and for 20°<�<90° 
maximum error is about 25%.  
 In remote condition the results show that in the 
range of 0°<�<90° maximum error is about 28%. It is 
clear from above results that considering a constant 
direction of crack are conservative and useful for other 
directions of crack under any loading condition. 
 
Analytical equation for C*-Integral: 
 The J-Integral is usually written as: 

                       
2
IK

J
E

=  (12) 

Where 
                    I C 0K F a= σ π  (13) 
Where FC is the crack configuration factor that is 
function of geometry. Substitution of Eq. 13 into 12 
gives: 

                      
2

2c
0

F
J a

E
π= σ  (14) 

Or in a simple form: 
 
                        2

0J Q a= σ  (15) 
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Fig. 6: Variation in C*-integral  with  direction  of 

crack  for  projection  loading  Geometry  No. 5. 
A = 0.5 mm, d = 20 mm, T = 1150°C 

 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 7: Variation in C*-integral with direction of crack 

for remote loading Geometry No. 4 a = 0.5 mm, 
d = 20 mm, T = 1150°C 

 
Where Q is called fracture configuration factor. A 
similar equation for C*-Integral has been proposed. It 
was consider that the relation between C* and nominal 
stress in creep range is not linear. Keeping all the 
parameters constant and changing the values of nominal 
stress, it has been shown that the relation between C* 
and nominal stress as follows: 
                           * n 1

0C +∝σ  (16) 
 
Where n is creep exponent. Therefore the relation 
between C* and nominal stress depends on creep 
behavior of material.  
 By the analogy with the stress intensity factor and 
considering the above relation, the following equation 
for C* has been defined as:  
 

            
n*

* 0 0

T R

Q a
C

t 0.001
� �σ σ= � �× σ� �

 (17) 

Where, Q* is a non-dimensional parameter which is 
function of geometry and creep behavior of material 
and �0 is nominal stress, �R is rupture stress of material, 
tT is transition time and a is crack length. 
 In this study the average rupture stress (�R = 170 
MPa) and transition time (tT) equal 1000 h has been 
used for the analysis. Using C*-Integral values Q* 
values have been obtained using Eq. 17 (i.e., 
normalizing). Using statistical multiple non-linear 
regression, to obtain a more accurate equation, the data 
were divided into 2 section based on material creep 
properties. In projection loading Q* for 1.43�n<2.54 
are defined as: 
 

   

( )

( )

( )
( )

0.898
2.343

t
*

0.898
1.057

t

3.894 2

2.027

a
1.749 0.720 k

dQ
a

11.979 1.638 k
d

n 2.587 10

n 2.011

− −

� �+ × ×� �
� �=

� �� �× + ×� �� �� �� �� �

− ×

−

 (18) 

 
 The accuracy of Eq. 18 has been measured by 
means of a multiple coefficient of determination, R2, 
where 0�R2

�1, this coefficient was found to be R2 = 
0.992.  
 For projection loading and 2.54�n�4.6 Q* is 
defined as: 
 

    

( )

( )

( )
( )

0.547
4.1633 7

t
*

1.277
2.6822

t

1.096

2.295

a
15.717 10 3.606 10 k

dQ
a

1.331 10 2.366 k
d

n 2.766

n 0.797

−
− −

−−

� �× + × � �
� �=

� �� �− × +� �� �� �� �� �

−

+

 (19) 

 
 Multiple coefficient of determination was found to 
be R2 = 0.989 for this equation.  
 In remote loading Q* for 1.43�n<2.54 are defined 
as: 
 

 ( ) ( )
( )

10.814 3.486 25
t*

0.530 2.352

n 3.757 104.783 10 k
Q

n 2.191a
d

− −− − ××
=

−� �
� �
� �

 (20) 

 
 Multiple coefficient of determination was found to 
be R2 = 0.98 for this equation. Q* for 2.54�n�4.6 are 
defined as: 

  ( ) ( )
( )

23.29 1.1512
t*

0.427 3.363

n 2.9062.108 10 k
Q

n 3.77a
d

− −×
=

+� �
� �
� �

 (21) 
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Fig. 8: Variation in C*-integral with crack length for loaded projection Geometry No. 5 d = 60 mm, T = 930°C, �0 = 

0.1 Mpa 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 9: Variation in C*-integral with crack length for remote loading Geometry No. 5 d = 60 mm, T = 930°C, �0 = 

0.1 Mpa 
 
 Multiple coefficient of determination was found to 
be R2 = 0.984 for this equation. 
 In all the above cases multiple coefficient of 
determination were higher than 0.98 which suggests a 
high level of accuracy of fit between the prediction 
equation and finite element data. 
 The variation in C* obtained from Eq. 17 and 
directly from the finite element results, with respect to 
crack length are plotted in Fig. 8 and 9 for loaded 
projection and remote loading condition respectively. 

 
Comparison of C*-Integral values: It is recognized 
by present authors that the method of calculation C* 
based on reference stress is not necessarily very 
accurate, but in comparison with other methods it is 
very  fast  and  relatively  reliable. the following 
equation can be employed for determining approximate 
estimate: 
                  ( )2* c

ref ref refC K /= σ ε σ�  (22) 



Journal Name 
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Table 5: comparison of C* values obtained from FEM and Reference Stress Method �0 = 0.1 d  =  60  mm 
 Loading Crack length Temperature C* (Mpa.m h�1) C* (Mpa.m h�1) Geometry 
Deviation condition a (mm) (°C) (RSM) Eq. 17 No. 
13% Projection 2 1150 2.479�10�3 2.194�10�3 1 
9% Projection 0.5 930 8.482�10�6 7.74�10�6 3 
18% Projection 2.5 650 2.742�10�5 2.328�10�5 5 
15% Remote 1.5 930 2.278�10�6 1.984�10�6 3 
5/16% Remote 1.2 1150 2.794�10�2 2.398�10�2 4 
14% Remote 0.8 650 2.747�10�6 2.41�10�6 5 

 
Where c

refε� is the total rate of strain obtained from the 
material stress–strain properties at the reference stress 
and K is stress intensity factor and �ref is reference 
stress and it can be determined from limit analysis or 
numerical methods[15,16]. When limit analysis is 
employed, for a component subjected to a load P, the 
reference stress it is given by: 

                    ref y
LC

P
P

σ = σ  (23) 

 
Where �y is the material yield stress and PLC the 
corresponding collapse load of the cracked component 
that have been obtained by FEM. The relationship 
between strain rate and stress is as follow:z 
 
                       c n

ref refAε = σ�  (24) 
 
 The results were compared for six different 
components that are shown in Table 5. It is seen that the 
agreement between two approaches is reasonably good. 
As it is seen, the RSM is a simplified method so the 
results obtained from this method are an over estimate. 
 

TRANSITION TIME 
 
 Riedel and Rice in their original analyses presented 
a concept of transition time, Tt They defined the 
transition time as the time when the small-scale-creep 
stress fields equal the extensive steady-state creep fields 
characterized by C*.  
 In order to make sure that transition time has 
passed, finite element analyses have been done for 1000 
hours. Nonetheless, to examine the accuracy of this 
time, the results in different times were examined and 
as was expected, it did not change after a certain time 
long before 1000 h. Figure 10 and 11 shows the 
transition time for different components and loading 
conditions. 
 In order to show all the results in one graph the 
vertical axis is normalized by C* (i.e., the final constant 
answer) and the horizontal axis are normalized by 
transition time. As it is seen components that have a 
higher stress concentration factor, passes transition time 

 
 
 
 
 
 
 
 
 
 
 
 
Fig. 10: The variation of normalized C(t) integral with 

respect to normalized time for loaded 
projection condition and for a = 0.5 mm, p = 
0.1 Mpa, T = 650°C 

 
 
 
 
 
 
 
 
 
 
 
 
Fig. 11: The variation of normalized C(t) integral with 

respect to normalized time for r condition and 
for a = 0.5 mm, p = 0.1 Mpa, T = 650°C 

 
faster than components with lower stress concentration 
factor and components subjected to projection loading, 
have shorter transition time than components subjected 
to remote loading. 
 

CREEP ZONE SIZE 
 
 Riedel and Rice[17] arbitrarily defined the creep 
zone boundary as the locus of points where time-
dependent effective creep strains equal the 
instantaneous effective elastic strains in the cracked 
body. 
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Fig. 12: A typical creep zone growth in component 

subjected to projection loading 
 
 Generally, the creep zone starts at some points 
with high stress concentration factor and growths to 
cover all the body. For a components subjected to 
projection loading the creep zone growth is shown in 
three steps in Fig. 12. It is seen that the creep zone 
starts at five high stress points (i.e. crack tip, fillets, etc) 
that have maximum stress concentration in the body, 
then it covers all of the body. 
 For component subjected to remote loading the 
creep zone growth is shown in four steps in Fig. 13. It is 
clear that the creep zone starts at the fillets and then it 
carries on in to the flat part. The creep zone covers the 
projection part in two steps. 
 

VARIATION IN C* WITH THE RATIO h/d 
 
 The value of C*-Integral decreases with increase in 
ratio of h/d. up to a specific point after which any 
increase of h/d does not have any effect in C* values. In 
fact, this point is a threshold point. Actually, a designer 
should consider that after threshold point just the 
weight and volume of the component increase and it 
dose not help to decrease the C* values. Variation in C* 
with the ratio h/d is shown in Fig. 14. As it can be seen 
in the range of 0.5�h/d�1 this ratio has a high effect on 
C* values. However, in the range of 1<h/d�2 variation 
of h/d has a low effect on C* values which is the best 
range for designing a component. Finally, the point of 
h/d = 3 is the threshold point. 
 

VARIATION IN Q* WITH Kt 
 
 Knowledge of how Q* varies with Kt can help the 
designer to choose the best geometry. This variation is 
shown in Fig. 15-17 for projection loading. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 13: A typical Creep zone growth in component 

subjected to remote loading 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 14: Variation in C* with the ratio h/d for 

component subjected to projection loading p = 
0.1 Mpa, kt = 16.69, T = 1150°C, a = 0.5 mm 

 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 15: Variation of Q* with Kt in loaded projection 

condition for a/d = 0.042, n = 2.54 
  
 It is seen in Fig. 15 and 16 (i.e., 650 and 930°C) in 
range of 2.5�kt�10 increase of Kt has a small effect on 
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Q* value and is the best range for design. However, 
after  point  Kt =  12  the  designer   should   be   careful 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 16: Variation of Q* with Kt in loaded projection 

condition for a/d = 0.42, n = 4.6 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 17: Variation of Q* with Kt in loaded projection 

condition for a/d = 0.042, n = 1.43 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 18: Variation of Q* with Kt in remote loading 

condition. a/d = 0.042, n = 2.54 
 
because Q* values growth rapidly. It is clear that the 
behavior of Q* with variation of Kt in temperatures 650 
and 930°C are relatively the same. It is predictable that 

behavior of Q* between these two temperatures is 
similar. 
 Variation in Q* with Kt is shown in Fig. 18-20 for 
remote loading.  It  is  seen  in  all  temperatures  in  the 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 19: Variation of Q* with Kt in remote loading 

condition. a/d = 0.042, n = 4.6 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 20: Variation of Q* with Kt in remote loading 

condition. a/d = 0.042, n = 1.43 
 
range of 1.84�kt�3 increasing Kt has a small effect on 
Q* value and is the best range for design. However, 
after point Kt = 3 the designer should be careful 
because Q* values growth rapidly. The behavior of Q* 
with variation of Kt in three temperatures are relatively 
the same, it is predictable that behavior of Q* between 
these three temperatures is similar. 
 

CONCLUSIONS 
 
� C*-Integral values for components with loaded 

projection can be significantly higher than the 
corresponding values for remote loading. 

� Projection length, h, in remote loading condition 
does not have any important effect on C*-Integral 
values. 
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� Smaller fillet radius, r and projection length, h, 
cause higher C*. 

� Variation of crack direction, a, in range 20<a<90 
compare with maximum value of C*, cause an 
error around 30% in C*. 

� The relation between C* and nominal stress �0 had 
been determined as * n 1

0C +∝σ . 
� Higher stress concentration factor in component 

cause smaller transient time. 
� The point h/d = 3 is the threshold point, after this 

point an increase in the ratio h/d does not effect C* 
value. 

� The creep zone starts at some points with high 
stress concentration factor and growths to cover all 
the body. 

� In almost all cases the first 3/4 of determination 
range of Kt is useful for designing T-section 
component. 
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