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Abstract: Elastoplastic bending of a sandwich beam with a rigid compressible filler on an elastic base 
has been studied. To describe kinematics of asymmetrical across thickness pack in the bearing layers 
the Bernoulli hypotheses have been accepted. Displacements in the filler vary linearly over thickness. 
The distributed superficial loading simulates the hydrostatic effect of the ambient liquid. The reaction 
of the base is described by Winkler’s model. A system of equilibrium equations for displacements has 
been obtained and solved. The numerical results for a sandwich metal-polymer-metal beam are cited. 
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INTRODUCTION 
 
 The sandwich structures turn to be most rational in 
conditions of bending strains, i.e. they are most close to 
optimal ones from the viewpoint of involving minimum 
weight aspect under given strength and stiffness limits. 
They have found wide application in intensively 
developing fields of construction and industry (aviation, 
rocket production, transport machinery, reactor 
instrumentation). The static and dynamic strains in the 
thermal force fields of three-layered elements whose 
structure is unconjugated to the elastic base have been 
studied elsewhere[1,2,4,6-9].  
 The present research sets forth the results of the 
bending problem of a sandwich beam propping against 
an elastic base.  
 
Statement and solution of the problem: A three-layer 
asymmetric in thickness rod with compressible filler is 
considered. Its external bearing layers are made of 
elastoplastic material and the filler is of nonlinearly 
elastic one. To describe kinematics of the pack the 
following suppositions are accepted: Bernoulli’s 
hypotheses are met in the bearing layers and the exact 
relations of the theory of elasticity with linear 
approximation of transitions of its points from 
coordinate z are valid in the rigid filler. The conditions 
of continuity of transitions are used on the contact 
boundaries. The materials of the bearing layers are 
incompressible in transversal direction; the contraction 
and small strains in the filler are considered.  
 Frame x, y, z is related to the median plane of the 
filler. Flexures and longitudinal transitions of median 
surfaces of the bearing layers are designated through wk 
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Fig. 1: Analytical model of sandwich beam on an 

elastic foundation 
 
(x) and uk(x); hk - thickness the of k-th layer,  h3 = 2� (k 
= 1, 2, 3 - number of the layer); b0 - rod width. The 
distributed superficial loading q(x) simulates the 
hydrostatic effect of the ambient liquid. It is applied to 
the exterior plane of the first layer (fig. 1). On the lower 
surface of the second bearing layer the response of the 
foundation qR(x) operates. 
 Longitudinal and cross transitions in layers u(k)(x, 
z) and w(k)(x, z) are expressed through four required 
functions w1(x), u1(x), w2(x) and u2(x):  
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 Here, z - distance from the considered filament to the median plane of the filler; the comma in the superscript 
index designates operation of derivation on the coordinate following it.  
 The components of the strain tensor in the layers will be obtained using Cauchy’s relations and expression (1): 
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 Spherical and deviator parts of the strain tensor in the considered case will be the following ( ijijij� εδ−ε= ; i, 

j = x, y, z): 
 
  (k) (k ) (k) (k) (3) (3) (3) (3) (3) (3)1 2 1 2 1

x x x x z x x z3 3 3 3 3;� (k 1,2); ( ); �ε = ε = ε = ε = ε + ε = ε − ε     (3) 
 
 Let us introduce the interior strains and moments: 
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where, (k)

xσ (3)
xzσ , (3)

zσ - components of the strain tensor; integrals are taken over thickness of the k-th layer, l0-width of 
the rod. 
 Equilibrium Eq. of the considered rod follow a variational principle of Lagrange[3]: 
 
  ��e - ��i = 0,             (5) 
 
where, ��e-variation of the work of exterior forces; ��I -variation of the work of interior forces of elasticity;  
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 The basic physical Eq. of Ilyushin's theory of small elastoplastic[5] deformations are used for the rod layers. In 
the deviator-spherical form they are as follows: 
 
  (k) (k) (k ) (k) (k) (k)

ij k u ij ks 2G (1 ( ))� , 3K ,(k 1, 2 , 3; i, j x, y,z)= − ω ε σ = ε = =  (7) 
 
 Here (k) (k)

ijs , σ  - deviator and spherical parts of stress tensor; (k) (k )
ij� , ε  - deviator and spherical parts of strain 

tensor (2); (k)
iε  -deformation intensity in k-th layer,  
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(k) (k)
i( )ω ε  - at k = 1, 2 they are the functions of 

Ilyushin’s plasticity, in the case (k) (k)
i yε ≤ ε  it is necessary 

to accept them equal to zero; (k)
yε  - yield point of the 

materials of the bearing layers; (3) (3)
i( )ω ε  - the universal 

function describing physical nonlinearity of the filler 
and �(3) ≡  0 at (3) (3)

i sε ≤ ε ; (3)
sε  -physical nonlinearity 

threshold of the material of the filler; k kG , K  - shift 
and volumetric deformation modules.  
 Let us consider a method of solving the boundary 
value problem. Proceeding from relations (7), we shall 
select the elastic (with index «0») and nonlinear (with 
index «�») members in the stress tensor: 
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 For the considered three-layer rod, in view of 
formulas for the deviator and the spherical part of the 
strain tensor (3), we shall have: 
 in the bearing layers 
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in the filler 
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Here, (k)ω ≡ (k) (k)

i( )ω ε  - universal functions of nonlinearity of materials of the layers defined experimentally; 
4

k k k3K K G+ = + ; 2
k k k3K K G− = − .  

 After similar (9) manipulations with interior strains (4), we get: 
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 The basic (with index «0») and additional (with index «�») components in the interior strains (10) are 
calculated by the following formulas:  
 in the bearing layers 
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in the filler 
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 To correlate the response and the flexure, a well-known Winkler’s model is used, according to which  
 
  R 0 2q w= κ    (11) 
 
 where, �0 -stiffness coefficient of the elastic foundation and the response of the foundation is always directed  to 
the side opposite to the flexure. 
 After substitution in (5) the values of (6), using expressions (8)-(11), we shall have a system of four nonlinear 
differential Eq. in an iterative aspect  
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 where ai. (i =1, …, 17) -the factors expressed through volumetric and shift module of elasticity of the materials 
Kk, Gk and geometrical parameters of the rod layers; 
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 Let us accept the condition of a simply supported rod on the end faces on motionless in space rigid supports. 
The boundary conditions in sections x = 0; l (l-rod length) in transitions take the following form: 
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x xxw u , w , 0 k 1, 2= = = =    (13) 

 
 where, k-number of the bearing layer, n-number of 
linear approximation. 
 Let us assume the solution of a system of 
differential Eq. (12) in the form of expansions in 
trigonometric series, which automatically satisfy 
boundary conditions of resting on a rigid support (13):  
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 where n

1mU , n
2mU , n

1mW , n
2mW  - unknown amplitudes 

of displacements on the n-th step.  
 Let us present transversal loading q(x) and 
additional «exterior» strains in the form of expansions 
in the following series:  
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 After substitution of displacements (14) and 
loadings (15) in (12) we receive the following system 
of linear algebraic Eq.s for required amplitudes of 
transitions n

1mU , n
2mU , n

2mW :  
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 Here, parameters bi are expressed through factors 
and depend on parameter m.  
 We shall obtain amplitudes U1m, U2m, W1m, W2m by 
having solved system (16). Further, by formulas (14) 
the required functions are calculated. Transitions in the 
bearing layers and the filler are found by relations (1), 
deformations by Eq. (2) and strains by Eq. (7).  

RESULTS AND DISCUSSION 
 
 The present research of deformation was conducted 
for a three-layer rod formed of materials D16� - Teflon 
- D16�. All transitions and linear sizes of the rod are 
referred to its length l. The rated stiffness factors 
correspond to weak (�0 = 1), on the average (� 0 = 100) 
and rather rigid (� 0 = 105 MPa/m) foundations. 
Geometrical parameters of the rod layers: h1 = 0,04, h2 
= 0,02, h3 = 0,18, l = 1. Loading is regularly distributed 
along the whole length of the rod and presses it into the 
elastic foundation. Its magnitude was selected 
according to a rigidity of the foundation so that 
nonlinear properties of materials of the layers were 
exhibited sufficiently, but deformations remained small, 
i.e. within the limits of the accepted model. 
 Figure 2 a and b illustrates the process of 
convergence of the method of elastic solutions at 
bending of elastoplastic three-layer rod on the 
foundation with �0 = 1 MPa/m at q = -6 MPa. The 
number of the curve in the figures corresponds to the 
number of iteration. The first approximation is the 
solution of the problem of the theory of elasticity; the 
second approximation differs from it on the average by 
11 %. At each subsequent iteration this difference 
decreases and the 7-th approximation, which is 
accepted for a required solution, differs from the 6-th 
one by less than 1 %. 
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Fig. 2: Process of convergence of the method of elastic 
solution for elastoplastic sandwich beam on the 
foundation of small rigidity 
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Fig. 3: Influence of physical nonlinearity of materials 

on flexures w1 and longitudinal displacements 
u1 in the first layer (foundation of average 
rigidity) 

 
Further check of convergence of the method has shown 
a steady approach to zero of the difference between the 
subsequent and previous approximations.  
 As a result, elastoplastic flexures of the bearing 
layers of the rod are approximately by 27% larger, than 
elastic ones, longitudinal transitions thus becoming less 
by 25%.  
 It is possible to judge about the influence of 
plasticity and physical nonlinearity of materials upon 
rated flexures w1 and longitudinal transitions u1 in the 
first layer with the help of Fig. 3 a and b: 1-elastic, 2 - 
elastoplastic rod (�0  = 100 MPa/m). At elastoplastic 
deformation the flexure increases by 59 % in 
comparison to the elastic, longitudinal displacements 
thus becoming twice as less. The magnitude of loading 
is q = -18 MPa. 
 In Fig. 4, the areas of nonlinear deformation in the 
rod layers (dark filling) on the foundation with average 
rigidity are shown. The filler is deformed till 83 % 
nonlinearly physically. The areas of plasticity in the 
bearing layers occupy on the average 35 % of the 
material volume. 
 Figure 5 illustrates the regions of nonlinear 
deformation in the layers of the rod (dark filling) 
propping against a highly rigid base. The whole filler 
undergoes physically nonlinear deformation. The 
regions of plasticity in the bearing layers occupy on the 
average 90% of the material volume. 
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Fig. 4: Zones of plasticity and physical nonlinearity of 

materials of layers (dark filling) on the 
foundation with average rigidity 
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Fig. 5: Zones of plasticity and physical nonlinearity of 

materials of the layers (dark filling) on a highly 
rigid base 
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Fig. 6: The distribution of the normal longitudinal 

stresses   σxx    in     the   median  cross-section 
(x = 0.5) 

 
 Let us consider the effect of plasticity and physical 
nonlinearity of the layers upon the stress state in the rod 
by taking a base of a mean rigidity with the modulus of 
subgrade reaction k0 = 100 MPa/m. Here and further, 
stress values in the external layers are related as q1 = 
109 and in the filler as q3 = 107 Pa. The distribution of 
the normal longitudinal stresses σxx in the median 
cross-section (x = 0.5) is shown in Fig. 6, where 1 - 
elastic,  2-elastoplastic   rods.    The   value   of   normal  
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Fig. 7: The distribution of normal stresses over the 

boundary planes of the first layer 
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Fig. 8: The distribution of normal stresses over the 

boundary planes of the second layer 
 
stresses in the bearing layers increases in modules by 
100 and 37%, respectively, when plasticity and 
nonlinearity of materials of the layers are taken into 
account. The maximal stresses in the filler vary but 
slightly and remain negative.  
 The distribution of normal stresses over the 
boundary planes of the first layer is illustrated in Fig. 7 
(stroked z = c + h1, without a stroke z = c): 1 - elastic, 2 
- elastoplastic rods. The stresses increase by 
approximately 110% if the plastic and physically 
nonlinear properties of materials of the layers over the 
external plane are taken into account. They are varying 
similarly though to a lesser degree in the splice with a 
filler - roughly by 30%. 
 Figure 8 shows distribution of stresses (2)

xxσ  over 
the boundary planes of the second bearing layer 
(primed z = -�, unprimed z = -� - h2). Numbering of the 
curves is the former. The image on the external surface 
of the layer is like the previous one, where the stresses 
augment by 90%. In the splice with the filler, the 
stresses increase by a factor of three.  
 Changes in the longitudinal (3)

xxσ  and transversal 
(3)
zzσ  stresses in the filler along the axis of the rod over 

the splice planes with the bearing layers is presented in  
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Fig. 9: Variations of longitudinal (3)

xxσ and transversal 
(3)
zzσ  stresses in filler along axis of the rod 

 
Fig. 9: a and b (unprimed z = -�, primed z = �): 1 -  
elastic, 2 - elastoplastic rods. The character of the 
changes in stresses remains intact on both planes when 
the plastic and physically nonlinear properties of the 
layer materials are taken into account. The local 
extremes in the median cross-section of the rod 
intensify. The stresses on the upper splice near the 
supports are positive, while in the central part they are 
negative. In the lower splice, the stresses are of a 
similar sign. 
 Consequently, the allowance for the plastic and 
physically nonlinear properties of materials of the 
layers in the mechanical-mathematical model renders 
more precise to the stress-strain state of the sandwich 
rod with compressible filler resting on an elastic base.  
 

CONCLUSIONS 
 
 Thus, the problem on bending of a sandwich beam 
resting on an elastic foundation has been stated and 
solved. As an example, the influence of plastic 
properties of materials of the layers upon and stress 
strain state of the beam has been for the foundation of 
average rigidity. Convergence of the method of elastic 
solutions has been investigated. 
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