
American Journal of Applied Sciences 5 (12): 1622-1629, 2008
ISSN 1546-9239
© 2008 Science Publications

Corresponding Author: R.A. Khan, Department of IT, Babasaheb Bhimrao Ambedkar University, Lucknow, UP, India
1622

Secured Requirement Specification Framework (SRSF)

1R.A. Khan and 2K. Mustafa

1Department of IT, Babasaheb Bhimrao Ambedkar University, Lucknow, UP, India
2Department of Computer Science, Jamia Millia Islamia, New Delhi, India

Abstract: Generally, software engineers are poorly trained to elicit, analyze and specify security
requirements, often confusing them with the architectural security mechanisms that are traditionally
used to fulfill them. One of the most ignored parts of a security-enhanced software development
lifecycle is the security requirements engineering process. Security should begin at the requirements
level and must cover both overt functional security and emergent characteristics. A critical review of
literature on the attempts in this regard reveals that there is no standard framework or model available
for delivering secured software requirement specification. This study presents a framework for the
security requirement specification called Secured Requirement Specification Framework (SRSF),
which is prescriptive in nature.

Key words: Software security, security requirement, risk analysis, use cases, abuse cases, secure

software development life cycle

INTRODUCTION

 Security is important in all aspects of life and the
increasing pervasiveness and capability of information
technology makes IT infrastructure security
increasingly so[1]. The continual and increasing
publicity given to failures of IT security demonstrate
the importance of developing and assuring software to
appropriate levels of security. The problem with most
software today is that it contains numerous flaws and
errors that are often located and exploited by attackers
to compromise the software’s security and other
required properties. An article by C. Mann ‘Why is
Software So Bad’, concludes that bad habits and
inadequate software life cycle processes have led to the
development of poor software[2]. No doubt, there is
advancement in the software engineering process and
tools, but the literature survey reveals that the progress
in improving the quality of software is still lagging[3].
This assessment can be made with respect to security
by answering the question why is software so insecure
and vulnerable?
 Secure software is software that is able to resist
most attacks, tolerate the majority of attacks it cannot
resist and recover quickly with a minimum of damage
from the very few attacks it cannot tolerate. Secure
software cannot be intentionally subverted or forced to
fail. It remains dependable in spite of intentional efforts
to compromise that dependability[4]. Software security
matters because so many critical functions have come

to be completely dependent on software. This makes
software a very high-value target for attackers, whose
motives may be malicious, criminal, adversarial, or
terrorist. What makes it so easy for attackers to target
software is the virtually guaranteed presence of
vulnerabilities, which can be exploited to violate one or
more of the software’s security properties, or to force
the software into an insecure state[4]. Most of the
successful attacks on software result from successful
targeting and exploitation of known but non-patched
vulnerabilities or unintentional misconfiguration[4].
 Development of high assurance security software
requires knowledge and techniques not commonly
taught to or practiced by most software developers. The
lack of rigor and discipline in the software development
process, driven by the focus on short time-to-market,
performance and functionality, has produced rampant
security vulnerabilities that gravely affect a large range
of computing environments, from small deeply
embedded safety applications to large enterprise
software platforms[6].
 In the traditional software development lifecycle
(SDLC), security is often an afterthought and security
estimation and prediction efforts are delayed until after
the software has been developed. Vulnerabilities are an
emergent property of software which appears
throughout the development phases. Therefore, it is
highly desirable to adopt a ‘before, during and after’
approach of software security to software development
process[7]. A life cycle process that includes security

Am. J. Applied Sci., 5 (12): 1622-1629, 2008

 1623

assurance is needed for improving the overall security
of software[3].
 Requirements engineering is critical to the success
of any major development project. Several efforts have
been made to prove that requirements engineering
defects cost 10 to 200 times as much to correct once
fielded than if they were detected during requirements
development[4]. It is also proven by the researchers and
industry personals that reworking requirements defects
on most software development projects costs 40 to 50%
of total project effort and the percent age of defects
originating during requirements engineering is
estimated at more than 50%. The total percent age of
project budget due to requirements defects is 25 to
40%[4]. The need to consider security from the ground
up is a fundamental tenet of secure software
development. While many development projects
produce next versions that build on previous releases,
the requirements phase offers the best opportunity to
build secure software. Therefore, it is highly desirable
to define security requirements during software
requirement specification.

SECURITY DEVELOPMENT LIFE CYCLE

 Applications developed with security in mind are
safer than those where security is an afterthought[9].
Researchers and practitioners working in the area of
Software Security Engineering have focused on using
so-called best practices in the software lifecycle. These
are the security-enhanced software development
methodology which provides an integrated framework,
or in some instances, phase-by-phase guidance for
promoting security-enhanced development of software
throughout the life cycle phases.
 Secure software development is the term largely
associated with the process of producing reliable,
stable, bug and vulnerability free software. There are a
number of ways that this can be undertaken within
traditional application development, but the most
common procedures involve phased security
assessments and reviews that encompass knowledge
share; design and implementation assessment and
regular security health checks. There are several
reasons why organizations choose to follow a secure
software development program including the
followings[27]:

• Mitigating of the risk of a serious application flaw

exposing the organization or its data
• Providing a better quality in the completed product

or service, thereby reducing any risk of liability or
negative publicity

• Reducing IT security costs after implementation
and ultimately provides a better return on IT
security investment

• Improving maintenance time by reducing the effort
needed to fix bugs after delivery

• Improving productivity and allocating resource.
Less development work is required to engineer
solutions to problems identified early. Their root
causes may be determined, resolved and adapted to
prevent reoccurrence

• Shortening delivery times by reducing the time
spent in the integration and system test/debug
phases

• Therefore, a Secure Development Process should
be integrated with all phases of the software
development lifecycle. It ensures that security is a
consideration at all stages of software development
lifecycle, from requirement analysis through design
and implementation to deployment in production
environments

• Application security and insecurity, is a rapidly
evolving area. In order to successfully integrate
security to the development process a
comprehensive understanding of the potential
issues and failures is required, together with
intrinsic knowledge of the existing development
processes

• Literature survey reveals that much work has been
done in developing such a methodology[14-21].
Following section describes security enhanced
software development methodologies proposed by
various researchers and practitioners

Microsoft’s framework (SDL): Microsoft developed a
trustworthy computing Security Development Life
Cycle (SDL) in 2002 during its security pushes. The
framework encompasses the addition of a series of
security-focused activities and deliverables to each of
the phases of Microsoft's software development
process. The entire product team focuses on updating
the product’s threat models, performing code reviews
and security testing and revising documentation. The
major objective of the proposed framework was to
confibbrm the validity of the product’s security
architecture documentation through a focused, intensive
effort, uncovering any deviation of the product from
that architecture and identify and remediate any
residual security vulnerabilities. The framework
comprises activities that would normally be distributed
across multiple SDLC phases into a single relatively
short time period.

Am. J. Applied Sci., 5 (12): 1622-1629, 2008

 1624

Oracle’s framework (OSSA): Like Microsoft, Oracle
Corporation has made an extensive effort in developing
a framework for secured software development.
Oracle’s product development and maintenance process
includes a comprehensive set of security assurance
mechanisms and processes. The goals of these
processes are to improve the strength of security
mechanisms and reduce the likelihood of security flaws
in products. Collectively these assurance mechanisms
and processes are known as Oracle Software Security
Assurance (OSSA).

Comprehensive, Lightweight Application Security
Process (CLASP): John Viega, chief security architect
and vice president of McAfee, Inc, made an effort in
developing a framework for secured software
development in 2004[14]. He developed a
Comprehensive, Lightweight Application Security
Process (CLASP) to insert security methodologies into
each phase of software development life cycle. CLASP
provides a well-organized and structured approach to
moving security concerns into the early stages of
software development life cycle, whenever possible.
CLASP consists a set of 30 process pieces that can be
integrated into any software development process. It
takes a prescriptive approach and documents activities
that organization should be doing and finally provides
an extensive wealth of security resource that make
implementing those activities reasonable.

Gary McGraw’s approach: Gary McGraw describes
Seven Touch points for Software Security in his book
Software Security: Building Security In[22]. This is
nothing but a lightweight best practice to be applied to
various software development artifacts. This set of
software security best practices referred to as touch
points. Putting software security into practice requires
making some changes to the way organizations build
software. These security best practices have their basis
in good software engineering and involve explicitly
pondering the security situation throughout the software
life cycle.

TSP-secure: The SEI’s Team Software Process (TSP)
provides a framework, a set of processes and
disciplined methods for applying software engineering
principles at the team and individual level[23]. TSP for
Secure Software Development (TSP-Secure) extends
the TSP to focus more directly on the security of
software applications. The TSP-Secure framework is a
joint effort of the SEI’s TSP initiative and CERT
program. The principal goal of this framework is to
develop a TSP- based method that can predictably
produce secure software.

Secure Software Development Model (SSDM): It has
been observed that producing secure software requires
integrating Software Engineering (SE) process with
Security Engineering[17]. Simon Adesina Sodiya, a
researcher at the Nigerian University of Agriculture
developed a Secure Software Development Model
(SSDM), which integrates security engineering with
software engineering so as to ensure effective
production of secure software products[2,12]. SSDM is a
unified model that combines some existing software
security techniques. It is structured towards developing
secure software. The model shows clearly how software
development should be linked to security engineering in
order to come up with the secured software.

AEGIS: Developing a secure software system is a
complex and time-consuming process that seeks to
accommodate frequently competing factors, such as
functionality, scalability, simplicity, time-to-market,
etc. Appropriate and Effective Guidance for
Information Security (AEGIS) is a software
development process to develop secure and usable
software system. AEGIS is formulated to be a
lightweight process that can fit into any software
development process. It was integrated into an
incremental development process[16].

Rational unified process-secure: The Rational Unified
Process (RUP) is one of the most popular and complete
process models being used by developers in recent
years. Most of the guidelines and activities in this
process model is based on software engineering related
standards that have been proposed by ISO and IEEE.
This process model is extended to be used in
developing secure software systems by researchers at
Amirkabir University of Technology (Tehran
Polytechnic)[24,25] and named as RUPSec. Requirement
Discipline of RUP is extended to improve RUP for
developing secure software systems. These extensions
are adding and integrating a number of Activities, Roles
and Artifacts to RUP in order to capture, document and
model threats and security requirements of system[24].
 Clear and stepwise activities are introduced to
developers to assure that security requirements are
captured and modeled. These models are used in
design, implementation and test activities[24]. The major
objective of the RUPSec is to define a software process
model in which security requirements are considered in
all development phases of a computer-based system:
business modeling, requirements, analysis and design,
implementation and testing.

Am. J. Applied Sci., 5 (12): 1622-1629, 2008

 1625

Table 1: Activities to be carried out for Securing the Requirement Phase
Microsoft SDL Oracle Secure Software Assurance CLASP McGraw’s 7 Touch points TSP-Secure
Review, recommend and Ensure developers are security aware; Specify operational Develop security requirement Design security
ensures for security team plans; Ensure security standards exist environment Perform specification Build specifications
Identifies critical objectives; and documented; Ensure security security analysis of abuse cases Identify assets
Identify security feature tools and libraries are available. requirements Detail Develop use
requirements; Conduct risk misuse cases cases and abuse
analysis of requirements cases

Security extension to MBASE: Model-Based
Architecting and Software Engineering (MBASE) is a
set of guidelines that describe software engineering
techniques for the creation and integration of
development models for a software project. The models
to be integrated extend beyond Product (development)
models such as object oriented analysis and design
models and traditional requirements models, to include
Process models such as lifecycle and risk models,
Property models such as cost and schedule and most
notably success models such as business-case analysis
and stakeholder win-win. MBASE was originally
introduced by the University of Southern California’s
(USC) Centre for Software Engineering in 1999.
MBASE is comprehensive and risk driven approach,
which combines various models and demonstrate their
capabilities and feasibility, but so far lacks specific
guidelines for developing a secure system

Secure software engineering: Secure software
engineering (S2e), a process-oriented approach to
software development, improves secure software and
reduces attack surfaces and vulnerability entry points.
In secure software engineering a predictable,
manageable process replaces ad-hoc penetrate and
patch methodologies[25,26]. Its techniques are tailored to
each project are phased in gradually. Therefore,
provision is there to adopt all or parts of the secure
software engineering approach, depending on its
needs[26]. The basic objective of S2e is to significantly
reduce the number of vulnerabilities in the software that
results. S2e is also intended to benchmark using a
CMM such as ISO/IEC 21827 SSE-CMM[25]. Secure
software engineering dramatically improves software
quality by respecting security aspects and reduces post-
release maintenance and service costs. It is built upon
security and antisecurity experts’ knowledge

SECURITY AT SOFTWARE REQUIREMENT
SPECIFICATION

 Developing secure software is a complex and time-
consuming process that seeks to accommodate
frequently competing factors including functionality,
scalability, simplicity, time-to-market, etc. Software

engineering research has recently focused on improving
the modeling abilities in terms of non-functional
requirements such as stability[10], performance[11], fault
tolerance[12] and security[13].
 One of the most ignored parts of a security-
enhanced software development lifecycle is the security
requirements engineering process. Unfortunately,
security is assumed to be a technical issue and therefore
best handled during architecture and design or, better
still, during implementation. Since software
requirements are often written by non-technical
business analysts, this is a common conclusion[8].
Software that does not have its requirements elicited,
enumerated and well-documented will most likely is of
low quality. It is important to have a clear idea of
secured requirements to build a good threat model. An
extensive literature survey reveals that a lot of work has
already been done on how to effectively elicit, validate
and document software requirements, which may be
extended to include security at requirement
specification[8].
 Security should begin at the requirements level and
must cover both overt functional security and emergent
characteristics. One way to cover the emergent security
space is to build abuse cases. Similar to use cases,
abuse cases describe a system’s behavior under attack,
providing explicit coverage of what should be
protected, from whom and for how long. Table 1
describes the activities proposed by various researchers
and practitioners in the requirement phase of the
software development life cycle to come up with the
secured requirement.

THE FRAMEWORK

 Literature survey reveals that security mechanism
should be implemented at the user interface level as
well as at the application-under-development level. At
the user interface level security mechanism started with
an analysis of user’s security requirements. In order to
accomplish the goal of the theme on security at
requirement phase, following objectives are set forth:

• To ensure that users and client applications are

identified and identities are properly verified

Am. J. Applied Sci., 5 (12): 1622-1629, 2008

 1626

• To ensure that users and client applications can
only access data and services for which they have
been properly authorized

• To detect intrusion attempts by unauthorized users
and client applications

• To ensure that the unauthorized malicious
programs (e.g., viruses) do not infect the
application or component.

• To ensure that communications and data are not
intentionally corrupted

• To ensure that parties to interactions with the
application or component cannot later repudiate
those interactions.

• To ensure that confidential communications and
data are kept private

• To enable security personnel to audit the status and
usage of the security mechanisms

• To ensure that applications and centers survive
attack, possibly in degraded mode

• To ensure that centers and their components and
personnel are protected against destruction,
damage, theft, or surreptitious replacement (e.g.,
due to vandalism, sabotage, or terrorism)

• To ensure that system maintenance does not
unintentionally disrupt the security mechanisms of
the application, component, or center

 Taking into account the objectives discussed above
a roadmap or framework for developing secured
software specification, an integrated and prescriptive
framework SRSF is hereby proposed. SRSF has been
attempted to be highly implementable and prescriptive
in nature. It has been structured into a hierarchical
description including premises, generic guidelines and
secured requirement specification process to be
followed in order as follows.

Premises: The following premises have been
considered when the proposed framework is being used
to develop a secured software requirement
specification:

• There is no universally agreed-upon definition for

each of high-level security requirement attributes
• The set of security attributes used in the

development of the framework has been defined
operationally in the context

• A common set of features for the desired
requirement specification may be used to form the
basis for its development

• The recourse optimization in SDLC depends on the
early use of procedure for requirement

specification and uncovering of vulnerabilities as
far as possible

• The approach to risk estimate should be more
applicable to identifying low security software than
the highly secured code

Generic guidelines: The guidelines before following
the process to develop the secured software
specification may be listed as follows:

• Assure compliance/ adherence to collect a

generally-accepted set of characteristics that good
requirements possess

• Identify and persist with all the security-specific
issues involved in requirements engineering

• Identify policies and standards as a source of
software security requirement

• Assure to control somehow all the extraneous and
intervening factors that may affect the outcome
based prediction

Requirement specification development process: The
development process of the security requirement is
comprised of five phases together with prescriptive
steps for each and has been depicted pictorially in
SRSF, Fig. 1. Such a framework has been proposed on

Fig. 1: Secured Requirement Specification Framework

(SRSF)

Am. J. Applied Sci., 5 (12): 1622-1629, 2008

 1627

the basis of integral and basic components for designing
secured requirement specification. The first phase starts
with the identifying functional and non-functional
requirements. Identifying security goals for the desired
specification is treated as an important task and has
been putforth as a second phase, followed by the phases
termed as perform security analysis of requirement,
validation and testing, review and revision and
packaging. An attempt has been made to symbolically
represent the spirit of developing the secured
requirement specification make the framework
prescriptive in nature followed by a brief description of
each o f the phases comprising the depicted steps in the
special reference to development of the same.

Identify functional and non-functional requirement:
One of the foremost tasks of this comprehensive
problem-solving activity is to identify the functional
and non-functional requirements. This phase will elicit
the application goals and quality goals. System context
will be designed. Revision of the identified functional
and non-functional requirement will be based on the
review of the same. Importance of this phase lies in the
fact it serves as the basis for evolving initial set of
specifications to subsequent phases of development.

Identify security goals: There are five general steps
required to identify the security goals including
identification of security specification issues,
identification of the assets, development of asset
compromise cases, identification of the security
objectives and validation of security goals against
assets, threats and application goals. The result is a set
of security goals, which are validated by ensuring that
the business goals remain satisfied.

Perform security analysis of requirement: Before
performing a security analysis, one must understand
what is to be built. This task should involve reviewing
all existing high-level system documentation. If other
documentation such as user manuals and architectural
documentation exists, it is advisable to review that
material as well. This phase comprises of the sub
activities including identification of security
requirements, ensuring developers security awareness,
identification of global security policy, conducting risk
analysis of requirement.

Validate and test: Common wisdom, intuition,
speculation and proof of concepts may not be reliable
sources of credible knowledge, hence it is necessary to
place the specified requirement under testing. Testing is
one of the best empirical research strategies, performed

through quantitative analysis of experimental data on
implementation. Testing is crucial for the success of
any software measurement project. This phase
comprises of assuring theoretical basis, performing
expert review and examination observation, designing
viable experiment, performing pre-tryout and tryout and
analyzing the result and finalizing the specification.

Review and revision: This phase is informal and has
been placed as the fifth phase with free-to-enter at any
of the earlier phases. Basic idea of such a prescription is
to have adequate enough exposure and then turn back
for better review, in the light of all the previous phases.
However, informal reviews and revisions may be
carried out at any of the stages in the requirement
specification development process.

Packaging: This phase is the last and conclusive phase
of the specification development process. During this
phase the developed requirement specification is
prepared with the needed accessories to become a
ready-to-use product, like any other usable product.

VALIDATION OF THE
FRAMEWORK

 A key verification step for the framework
described in this paper is the ability to show that the
system can satisfy the security requirements. An
experimental tryouts and statistical analyses at a large
scale with typical representative samples may be
needed to standardize the framework. More
developmental activities using the framework may be
carried out by the researchers and practitioners. Review
of already developed or underdevelopment requirement
specification may be guided by the framework and this
framework may form the basis for the development of
better-refined roadmap.

CONCLUSION

 Application designed with security in mind is safer
than those where security is an afterthought.
Traditionally, security issues are first considered during
the Design phase of the software development life cycle
once the software requirement specification has been
frozen. This paper has presented a prescriptive
framework for security requirement specification
comprising of six steps including identification of
functional and non-functional requirement, identifying
security goals, performing security analysis of
requirement, validation and testing, review and revision
and packaging. The developed framework may be used

Am. J. Applied Sci., 5 (12): 1622-1629, 2008

 1628

to ensure the software requirement specification
contains the security specifications which helps
improve the security of application and reduce the cost
of re-work later.

REFERENCES

1. U.S. Department of Homeland Security, The

National Strategy to Secure Cyberspace, February
2003.

2. Mann, C., 2002. Why Software Is so Bad, Technol.
Rev. (July/August).

3. David P. Gilliam, Thomas L. Wolfe, Josef S.
Sherif, 2003. Software security checklist for the
software life cycle, proceedings of the twelfth
IEEE international workshops on enabling
technologies: Infrastructure for collaborative
enterprises (WETICE’03) IEEE.

4. Nancy R. Mead, 2007. How to compare the
security quality requirements engineering
(SQUARE) method with other methods, technical
note, CMU/SEI-2007-TN-021.

5. Security In The Software Lifecycle, Making
Software Development Processes-and Software
Produced by Them-More Secure, Department of
Homeland Security, DRAFT Version 1.1 - July
2006.

6. Irvine, C.E., T.E. Levin, T.D. Nguyen and
G.W. Dinolt, 2004. The trusted computing
exemplar project. Proceedings of the 2004 IEEE
Systems. Man and cybernetics information
assurance workshop, West Point, NY, pp: 109-115.

7. Elfriede Dustin
<http://www.devsource.com/author_bio/0,1908,a=
6041,00.asp>, The Secure Software Development
Lifecycle, November 11, 2006.
http://www.devsource.com/article2/0,1895,205599
3,00.asp

8. Rudolph Araujo, Security Requirements
Engineering: A Road Map, Security
Feature (July 2007)
http://www.softwaremag.com/L.cfm?Doc = 1067-
7/2007.

9. Roshan Chandran, Security at Software
Requirement Specification, AUGUST 2004.
http://Palisade.Plynt.Com/Issues/2004aug/Security-
Requirements/

10. Jazayeri, M., 2002. On Architectural Stability and
Evolution. Reliable Software Technologies-Ada-
Europe, Vienna, Austria, pp: 17-21.
http://www.infosys.tuwien.ac.at/Staff/mj/papers/ar
chstab.pdf

11. Denaro, G., A. Polini and W. Emmerich, 2004.
Performance testing of distributed component
architectures. Beydeda, S. and V. Gruhn (Eds.).
Building Quality into COTS Components-Testing
and Debugging. Springer.
http://www.cs.ucl.ac.uk/staff/w.emmerich/publicati
ons/BeyadaGruhn/PerformanceTesting.pdf

12. Guerra, P.A.D.C., C. Rubira and R. de Lemos,
2003. A Fault-Tolerant Software Architecture for
Component-Based Systems. Lecture Notes in
Computer Science. 2677: 129-149. Springer.

13. Jürjens, J., 2003. UMLsec: Extending UML for
Secure Systems Development. LNCS.

14. Oracle Software Security Assurance [web page]
(Redwood Shores, CA: Oracle Corporation).
http://www.oracle.com/security/software-security-
assurance.html

15. James, W. Over (CMU SEI), TSP for Secure
Systems Development (presentation at CMU SEI,
Pittsburgh, PA). http://www.sei.cmu.edu/tsp/tsp-
secure-presentation/

16. Ivan Flechais, Cecilia Mascolo and M. Angela
Sasse, 2006. Integrating Security and Usability into
the Requirements and Design Process, Proceedings
of the Second International Conference on Global
E-Security, London, UK,
http://www.softeng.ox.ac.uk/personal/Ivan.Flechais
/downloads/icges.pdf

17. Sodiya, Adesina Simon, Onashoga, Sadia
Adebukola, Ajayi, Olutayo Bamidele. Towards
building secure software systems, Proceedings of
Issues in Informing Science and Information
Technology; 2006 June 25-28; Salford, Greater
Manchester, England. Vol. 3. http://
informingscience.org/proceedings/InSITE2006/IISI
TSodi143.pdf

18. Mohammad Zulkernine and Sheikh Iqbal Ahamed,
2006. Software Security Engineering: Toward
Unifying Software Engineering and Security
Engineering, chap. XIV in Enterprise Information
Systems Assurance and System Security:
Managerial and Technical Issues, Merrill
Warkentin and B. Rayford Vaughn, (Eds.).
(Hershey, PA: Idea Group Publishing).

19. Royce, Managing the Development of Large
Software Systems, op cit.

20. Dan Wu, Ivana Naeymi-Rad and Ed Colbert
(University of Southern California), Extending
MBASE to Support the Development of Secure
Systems, in Proceedings of the Software Process
Workshop, Beijing, China, May 25-27, 2005.
www.cnsqa.com/cnsqa/jsp/html/spw/download/Co
py%20of%20MBASE_Sec_Ext_danwu_abstract%
5B1%5D.v1.revisedv2.1.pdf

Am. J. Applied Sci., 5 (12): 1622-1629, 2008

 1629

21. Secure Software Engineering portal.
http://www.secure-software-engineering.com/

22. Gary McGraw, 2006. Software Security: Building
Security In, Addison Wesley.

23. Humphrey, Watts S., 2002. Winning with
Software: An Executive Strategy. Boston, MA:
Addison Wesley, (ISBN 0201776391).

24. Reza, M., A. Shirazi, P. Jaferian, G. Elahi, H.
Baghi and B. Sadeghian, 2005. RUPSec: An
Extension on RUP for Developing Secure Systems-
Requirements Discipline, Proceedings of World
Academy of Science, Engineering and Technology
Vol. 4: ISSN 1307-6884, pp: 208-212.

25. Software Security Assurance, 2007. State-of-the-
Art Report (SOAR) Information Assurance
Technology Analysis Center (IATAC) Data and
Analysis Center for Software (DACS) Joint
endeavor by IATAC with DACS.

26. Thorsten Schneider, 2006. Secure Software
Engineering Processes: Improving the Software
Development Life Cycle to Combat Vulnerability,
sqp VOL. 9, NO. 1/©, ASQ, pp: 4-13.

27. Glyn Geoghegan, 2004. Secure Development
Framework, A Corsaire White Paper.

