
American Journal of Applied Sciences 5 (2): 158-164, 2008
ISSN 1546-9239
© 2008 Science Publications

Corresponding Author: Keivan Navi, Department of Electrical and Computer Engineering, Shahid Beheshti University,
P.O. Box 19839-63113, Velenjak, Evin, Tehran, Iran, Tel: +98-2129902286, Fax: +98-2122431804

158

Minimization of Multiple-Valued Decision Diagrams

Based on Matrix Computation

1 Omid Kavehie, 1 Keivan Navi, 1 Ebrahim Afjei and 1 Hamid Khorsand
1 Department of Electrical and Computer Engineering, Shahid Beheshti University,

Tehran, IRAN

Abstract: This paper proposes a new algorithm to simplify the multiple valued logic (MVL) decision
diagrams. This algorithm is based on a new level coupling rule. By changing the designer’s perspective
towards the design, this rule can make further simplification possible. In most of state of the art
designs, the decision diagram plays a serious role in the implementation of the logical functions. The
proposed algorithm uses the new level coupling rule and combines it with the existing ones, presenting
a new method in simplifying and implementing the basic decision diagram.

Keywords: Multiple-Valued Logic (MVL), Matrix Computation, Directed Acyclic Graph, Free

Decision Diagram (FDD), Ordered Decision Diagram (ODD) Design Automation.

INTERODUCTION

Using the decision diagram is a very efficient and
common method to illustrate the switching functions.
Additionally using this method compared to the other
methods has many advantages such as overall circuit
delay reduction, higher layout density, less power
dissipation and added logical flexibility [10]. This fact is
confirmed by widespread application of this trend in
different logic families. For example we can cite the
pull-down tree in DCVSL (Differential Cascade
Voltage Switch Logic), SSDL (Sample-Set Differential
Logic), ECDL (Enable/disable CMOS Differential
Logic), DCSL (Differential current switch logic), etc.
Another example is the realization of multiple valued
logic circuits, especially in current mode (BDDs, and
MDDs). The arrangement of the layout variables or
their ordering will affect the dimensions of the decision
diagram. Many different methods have been presented
to find the best ordering however the level coupling
method is a very efficient method and it can be used in
BDDs and MDDs [2,15,21].

In this method, the coupling method, achieving the
best ordering in the input variables (controls) is simply
accomplished by analyzing those specific diagrams
obtained by the coupling operations. This fact will help
to reduce time and operational complexity of the
proposed algorithm. This rule dose not influence the
simplification of the reduction tree directly, but by
changing the viewpoint of the designer it would
simplify further possibilities, in comparison to the
existing rules.

As mentioned above, the decision diagram defines
a graph based structure for representing radix2 and
higher radix. Numerous researches in simplification and
implementation of MVL decision diagram have been
conducted [1,3,9]. In[3] some of the well known
implementations of MDD have been considered as well

several methods to reduce dimensions of the decision
diagram (ROMDD). The realization of algorithms is
achieved by using the C programming language. In[5, 6

and 9], some of methods for realization of MVL decision
diagram are introduced, which are completely
encapsulated in the CAD package. In [1] a method has
been proposed in which the dimension reduction of
diagrams is achieved by using multiplexers and
combining the output terminals. In [7] one can observe
the different kinds of simplification and implementation
of radix 3 decision diagram. There is also a discussion
about the MVL decision diagram, which illustrates that
the number of nodes for function realization in a
defined radix has an exponential relation to the number
of variables, and the upper bound of this number is
analyzed.

In [4], a method called CDD (copy DD) is
introduced and initially its influence on size reduction
of the multi-terminal BDD is investigated and then its
simplifying domain in MDDs is expanded by
introducing CMDDs. Other method such as “sifting” [15]
is also proposed.

In this paper the required preliminaries to begin the
discussion is described and then the state of the art rules
are explained. Third section discusses the coupling rule
and its related algorithm for decision diagram and
realization of their current mode in radix2 (BDD) and
higher radixes (MDD). In the following section results
of some examples in different radixes are represented.
The penultimate section investigates the time
complexity of the mentioned algorithm and the final
section an overall conclusion with regard to the
obtained results is provided.

Open Access
Author Manuscript

S
C

I-P
U

B
LIC

A
TIO

N
S Author M

anuscript

Am. J. Applied Sci., 5 (2): 158-164, 2008

159

PRELIMINARIES

We assume that there is an r-valued function
0 1 1(, , ,)nf x x x −� in which ix can have any arbitrary

value from the set {0, 1, …, r-1}. In other words
function f is some form of Multiple-dimensional
(multiple-valued) to two-dimensional (two-valued)
domain assignment, { }: 0,1nf R →

where { }0,1,2, , 1R r= −� . These functions are presented
based on multiple value decision diagrams and using
DAG (Directed Acyclic Graph). In this graph every
node has r input terminals which are labeled 0, 1… r-1.
Every node has one output. The nodes including “0”
and “1” values are called “leaf”. An MDD is called
ordered if going from root to leaves, traveling through
every path and only one specific ordering of input
variables is seen. The ordered MDD is abbreviated as
OMDD. A reduced MDD is one in which there are no
nodes with inputs which are all connected to a single
node or leaf. Meanwhile the graph is not permitted to
have an isomorphic sub-graph (the second simplifying
rule) [7].

In this type of representation the minterms or a
product term (p) has two general forms. The first one is:

(1)

ix s are the function variables and Vi s are variable

values. We have { }0,1, , 1iv n= −�

where { }0,1, , 1i n= −� .
In other words, if the product term p is a

component of the product terms of f, then if
0 0 1 1 2 2 1 1, , , , n nx v x v x v x v− −= = = =� f will equal “1”.

Generally, a set of these product terms constitute the
function ()1 2, , , kf p p p=� � .

Another representation of p is:

(2)

This representation is also very descriptive. As an
example an MDD graph is illustrated in Fig. 1 which
represents function f, which is equal to

()3 3 3 3101 ,110 ,111 ,112f =� where n= 3 and r= 3. The

function F can be demonstrated as 1 0 1 1 1f A B C A B= + .
Before continuing the discussion on MDD we track

BDDs and their related implementation functions. The
structured BDD design method was expanded by
Pulfrey and Chu [21]. In this method the function table is

used to design a tree capable of realization of f and f .
This method allows the designer to construct some part
of the transistor making f and f in common. This fact
greatly helps the simplifying procedure, chip area
reduction and circuit speedup [2]. In order to implement
this tree we also use source-coupled transistors (as
illustrated in Fig. 2). From now on, we consider Fig.
2(b) as the symbolic representation of the source-
coupled transistors. One of the transistors is controlled
by the input and the other by the inverse of the output.
Every transistor has a separate drain which is connected
to a and b. “a” and “b” can take the logic values “0” or
“1”. Either can be the output of higher layers. This
structure has a unique output called “u”. The way “u” is
calculated which is based on the controls is illustrated
in Fig. 2.

Fig. 1: Illustration of a 3-varible graph.

(b) Symbol (a) Basic circuit

Fig. 2: Basic BDD cell structure.

In reality Fig. 2 structure is a multiplexer. In Fig.

2(b) the side with negative sign (-) is controlled by x
and the opposite side (+) is controlled by x. The first
DD simplification rule for r=2 is described with
equation (3) and illustrated in Fig. 3. According to this
rule, a node with equal inputs has no influence on
circuit functionality and can be omitted [11], [12].

 (3)

In this situation the transistors do not perform any

logical operations apart from directing the input to the
output node, so one can directly connect one of the
inputs to the related output. This is also called short
circuit.

x x

b a

b.xa.xu +=

() ()0 1 2 1 0 1 2 1, , , , n n r
p x x x x v v v v− −= =� �

0 11 2
0 1 2 1

nv vv v
np x x x x −

−= ⋅ ⋅ ⋅ ⋅�

()0 1 0 1u a x a x a x x a= ⋅ + ⋅ = ⋅ + =

S
C

I-P
U

B
LIC

A
TIO

N
S Author M

anuscript

Am. J. Applied Sci., 5 (2): 158-164, 2008

160

Fig. 3: Omitting one node with equal inputs (a= b).

If 2r ≥ then, in the related node entry, there will

be r inputs. As in here we have r= 2 and the number of
inputs is 2. Now if there is a case in which two nodes
have the exact same inputs and controls, then we can
consider these two nodes as equivalents and omit one
(Fig. 4). This is called the second simplifying rule [11],

[12].

Fig. 4: Elimination of a node.

If 2r � then, in the related node entry, there will

be r inputs. We want to accentuate that it is
straightforward to extend these rules to MDDs. Using
the two noted simplifying rules; one can simplify the
decision diagram and reduce it size. In the next section
we will describe the level coupling rule.

NEW D.D. SIMPLIFICATION ALGORITHM

A. The coupling rule: In the following algorithm, we
use a new rule. We have called it the “coupling rule” or
the “third simplifying rule”. A point to note in applying
the third rule into simplifying is that in spite of the first
and second rules, this rule dose not directly contribute
to the simplifying process, however by changing the
designer’s viewpoint it provides more simplifying
capability than the first and second rule (which directly
influence the simplifying procedure) [2]. Fig. 5
illustrates a branch of decision diagram for r radix with
“n” variables.

, , , ,k k k kα β γ ω� are the symbols reserved for branch
inputs (where { }0,1, , 1k r= −� and ,i jx x are control

variables in these two levels, where
{ }, 0,1, , 1 ,i j n i j= − ≠� , and , , , ,α β γ ω� are also the

weights or the labels of node input terminals. Fig. 6
represents the coupling of these two levels of decision
diagram.

Fig. 5: Two levels of decision diagram.

The proof of the fact that the outputs of the two
branches are equal is as follows (in this equation the
node output is presented by u) (equ. 4);

()
()
()

()

0 1 2 1 0
0 0 0 0

0 1 2 1 1
1 1 1 1

0 1 2 1 2
2 2 2 2

0 1 2 1 1
1 1 1 1

i i i i

i i i i

i i i i

i i i i

r
j

r
j

r
j

r r
r r r r j

u x x x x x

x x x x x

x x x x x

x x x x x

α β γ ω

α β γ ω

α β γ ω

α β γ ω

−

−

−

− −
− − − −

= ⋅ + ⋅ + ⋅ + + ⋅ ⋅ +

⋅ + ⋅ + ⋅ + + ⋅ ⋅ +

⋅ + ⋅ + ⋅ + + ⋅ ⋅ +

⋅ + ⋅ + ⋅ + + ⋅ ⋅

�

�

�

� � �

� (4)

The matrix representation of those relations is as

shown in equ. 5:

()0 1 2 2

1

0

0 0 0 0
1

1 1 1 1
2

2 2 2 2

1
1 1 1 1

1

i

i

i

i

r
j j j j r

r
r r r r r r

r

u x x x x

x

x

x

x

α β γ ω
α β γ ω
α β γ ω

α β γ ω

−

×

−
− − − − ×

×

=

� �� � � �� �
� �� �
� �� �× ×� �� �
� �� �
� �� � � �� � � �

�

�

�

�

� � � � � �

�

(5)

Using multiplication and simplifying operations in
the above matrix one can find out that there is another
representation for u. This is exact representation of
what we have called coupling.

()
()
()

()

0 1 2 1 0
0 1 2 1

0 1 2 1 1
0 1 2 1

0 1 2 1 2
0 1 2 1

0 1 2 1 1
0 1 2 1

r
j j j r j i

r
j j j r j i

r
j j j r j i

r r
j j j r j i

u x x x x x

x x x x x

x x x x x

x x x x x

α α α α

β β β β

γ γ γ γ

ω ω ω ω

−
−

−
−

−
−

− −
−

= ⋅ + ⋅ + ⋅ + + ⋅ ⋅ +

⋅ + ⋅ + ⋅ + + ⋅ ⋅ +

⋅ + ⋅ + ⋅ + + ⋅ ⋅ +

⋅ + ⋅ + ⋅ + + ⋅ ⋅

�

�

�

� � �

�
(6)

Or:

S
C

I-P
U

B
LIC

A
TIO

N
S Author M

anuscript

Am. J. Applied Sci., 5 (2): 158-164, 2008

161

()0 1 2 2

1

0
0 1 2 1

1
0 1 2 1

2
0 1 2 1

1
0 1 2 1 1

r
i i i i r

r j

r j

r j

r
r jr r r

u x x x x

x
x

x

x

α α α α
β β β β
γ γ γ γ

ω ω ω ω

−

×

−

−

−

−
− × ×

=

� �� �
� �� �
� �� �
� �� �× ×
� �� �
� �� �
� �� �

� � � �

�

�

�

�

� � � � � �

�
(7)

Where we label the following matrix, the input

matrix:

0 0 0 0

1 1 1 1

2 2 2 2

1 1 1 1

r r

r r r r r r

I

α β γ ω
α β γ ω
α β γ ω

α β γ ω

×

− − − − ×

� �
� �
� �
� �=
� �
� �
� �
� �

�

�

�

� � � � �

�
(8)

And the following vector, the control vector of the

j-th level:

(9)

Additionally we labeled the following matrix the

control matrix of the i-th level input:

(10)

Transposing all elements of the matrix and then

switching the two matrices ()1 1

T

r r
Ci × ×

 and ()1 1

T

r r
Cj × ×

according to matrix multiplication rules, will result in
the same “u” as before. The matrix:

0 1 2 1

0 1 2 1

0 1 2 1

0 1 2 1

r

r

r

r r r

α α α α
β β β β
γ γ γ γ

ω ω ω ω

−

−

−

− ×

� �
� �
� �
� �
� �
� �
� �
� �

�

�

�

� � � � �

�

Is the transpose of matrix r rI × or ()T
r rI × .

Fig. 6: Coupling of two levels of decision diagram.

There are some remarkable points about level
coupling (level exchange) operation that make it
important:

1. Exchanging and interchanging of the location of

input variables (control variables)
2. The possibility of applying the rule locally and

only to those special branches of the graph which
can be simplified

3. The possibility of simplifying prediction, based on
the inputs ordering before applying the coupling
operation.

This property helps us to make more and more

suitable implementation of the decision diagram. As an
example the level coupling rule for a binary decision
diagram can be represented as in equ. 11:

() ()

() ()

1

1

0 1 0 0 1 1
0 0 1 0 1 1 1 1 0

0 0 1 0 0 1 1 1
0 0 0 1 0 1 1 0 1 1 0

0 1 0 0 1 1
0 0 1 0 1 0 0 1 0 1

BDDu x x x x x x

x x x x x x x x

x x x x x x u

α β α β

α β α β

α α β β

= ⋅ + ⋅ ⋅ + ⋅ + ⋅ ⋅ =

⋅ ⋅ + ⋅ ⋅ + ⋅ ⋅ + ⋅ ⋅ =

⋅ + ⋅ ⋅ + ⋅ + ⋅ ⋅ =
(11)

The coupling operation can be defined for level L

(L is indicated in next pseudo codes) according to the
following codes:

[]
[]

[] []

_ 0 1,0 1 ;

0 1,0 1 ;

0 1 {
0 1 {

, _ , ;

};
};

_ ;

array branch inputs r r

array temp r r

for col to r
for raw to r

temp raw col branch inputs col raw

branch inputs temp

− −

− −
= −

= −
=

=

� �

� �

In [17], it is proven that for achieving the simplest

graph with minimum size, it is sufficient to consider
and analyze the specific trees with independent control
variable locations.

()0 1 2 2
1 1

r
r j j j j r

Cj x x x x −
× ×

= �

0

1

2
1

1

1

i

i

i

i

r

r

r

x

x

Ci x

x

×

−

×

� �
� �
� �
� �= � �
� �
� �
� �
� �

�

S
C

I-P
U

B
LIC

A
TIO

N
S Author M

anuscript

Am. J. Applied Sci., 5 (2): 158-164, 2008

162

0 1 2 1

1 2 3 0

2 3 4 1

1 0 1 2

n

n n n n

x x x x

x x x x

x x x x

x x x x

−

− − ×

� �
� �
� �
� �
� �
� �
� �
� �

�

�

�

� � � � �

�

In other words this matrix demonstrates that for
achieving the minimum size of the decision diagram it
is sufficient to analyze only n graphs. It means that in
the above example for a branch of a two level binary
graph for n= 3, it is sufficient to analyze only 3 graphs.
Although the proof of it was questioned in 2005 [16], as
stated in that paper, only in some rare cases this
procedure cannot achieve the minimum graph size.
Nevertheless, the proposed rule can be applied in both
cases. In other words, by using the new coupling rule as
new optimize tools; any possible graph can be covered.
Using the following algorithm an ordered DD could
lead to an ordered or non-ordered (free) DD. In the
following algorithm, this rule is applied to graphs that
have already as far as possible been simplified with first
and second rules.

As another example, if we analyze all the different
kind of permutations in a binary graph (BDD) with n=
3, we will obtain six different graphs (with different
variable ordering) which represent the same function as
shown below:

() ()()
() ()()

() ()()
() ()()

()

3 0 1 0 0 1 1 0
0 2 0 2 1 1 2 1 2 1 0

0 1 0 0 1 1 1
0 2 0 2 1 1 2 1 2 1 0

3 0 1 0 0 1 1 0
0 1 1 1 2 0 1 1 1 2 0

0 1 0 0 1 1 1
0 1 1 1 2 0 1 1 1 2 0

3 0 1
0 1 1 1 0

B D D

B D D

B D D

n

n

n

u x x x x x x x

x x x x x x x

u x x x x x x x

x x x x x x x

u x x x

α β α β

γ ω γ ω

α α β β

γ γ ω ω

α α

=

=

=

= ⋅ + ⋅ ⋅ + ⋅ + ⋅ ⋅ ⋅ +

⋅ + ⋅ ⋅ + ⋅ + ⋅ ⋅ ⋅ =

= ⋅ + ⋅ ⋅ + ⋅ + ⋅ ⋅ ⋅ +

⋅ + ⋅ ⋅ + ⋅ + ⋅ ⋅ ⋅ =

= ⋅ + ⋅ ⋅ ()()
() ()()

() ()()
() ()()

() ()()

0 0 1 1 0
0 1 1 1 0 2

0 1 0 0 1 1 1
0 1 1 1 0 0 1 1 1 0 2

3 0 1 0 0 1 1 0
0 0 0 0 1 1 0 1 0 1 2

0 1 0 0 1 1 1
0 0 0 0 1 1 0 1 0 1 2

3 0 1 0 0 1 1 0
0 0 0 0 2 0 0 0 0 2 1

B D D

B D D

n

n

x x x x

x x x x x x x

u x x x x x x x

x x x x x x x

u x x x x x x x

γ γ

β β ω ω

α γ α γ

β ω β ω

α γ β ω

=

=

+ ⋅ + ⋅ ⋅ ⋅ +

⋅ + ⋅ ⋅ + ⋅ + ⋅ ⋅ ⋅ =

= ⋅ + ⋅ ⋅ + ⋅ + ⋅ ⋅ ⋅ +

⋅ + ⋅ ⋅ + ⋅ + ⋅ ⋅ ⋅ =

= ⋅ + ⋅ ⋅ + ⋅ + ⋅ ⋅ ⋅ +

() ()()

() ()()
() ()()

0 1 0 0 1 1 1
1 0 1 0 2 1 0 1 0 2 1

3 0 1 0 0 1 1 0
0 2 0 2 0 0 2 0 2 0 1

0 1 0 0 1 1 1
1 2 1 2 0 1 2 1 2 0 1

B D D

n

x x x x x x x

u x x x x x x x

x x x x x x x

α γ β ω

α β γ ω

α β γ ω

=

⋅ + ⋅ ⋅ + ⋅ + ⋅ ⋅ ⋅ =

= ⋅ + ⋅ ⋅ + ⋅ + ⋅ ⋅ ⋅ +

⋅ + ⋅ ⋅ + ⋅ + ⋅ ⋅ ⋅

Algorithm: As stated in the previous part of this
section, we present an algorithm which adds many
different capabilities to the decision diagram design
tool.

The algorithm illustrated in Fig. 7 accepts an
OMDD graph as input. The next step in this approach is

detecting branches that can be coupled and lead to
further simplification.

We begin this operation by making some matrix
called “coupling matrix”, which must be fabricated for
every two level branch of the graph.

[]

[]

2

0 1,0 1 ;

0 1 {
0 1 {

0 1 {

, ();

};
};

};

Z

m

col raw
Z j i

array CM r r

for Z to r
for col to r

for raw to r

CM raw col value x x

−

− −

= −
= −

= −
= ⋅

� �

This process is done step by step and if we are to

number graph levels from root to bottom(0 to m) then
level m would be the terminal nodes, or a node
containing ‘0’ or “1” values. We perform the procedure
of making CM matrices from the (m-2) th level nodes to
the top and consequently in every step we consider only
one level. In each step, we consider m-1 and m-2 level
nodes.

For the whole graph:
[]

[]

2

0 1,0 1 ;

int _ ;
mod 2 0 { _ 0;

_ 1; };
2 _ 2 {

0 1 {
0 1 {

0 1 {

, ();

};
};

};
/*

L
Z

m

L col raw
Z j i

array CM r r

bound level
if m bound level

else bound level
for L m to bound level step

for Z to r
for col to r

for raw to r

CM raw col value x x

STOP for red

−

− −

= =
=

= − =
= −

= −
= −

= ⋅

� �

* /
};

uction

In this step, simplifying must be applied. We must

notify that every time the term ‘L level coupling” is
used, it means that the L-1 and L+1 levels are
considered and manipulated. The overall function of the
algorithm is as follows:

1. If in L

ZCM matrices (with constant L, Z) all
elements of the C-th column are equal, then we can
eliminate the c-th node from L+1 level. In the case
where all the elements of L

ZCM matrixes

S
C

I-P
U

B
LIC

A
TIO

N
S Author M

anuscript

Am. J. Applied Sci., 5 (2): 158-164, 2008

163

(considering constant L, Z) are equal, then the Z-th
branch can be omitted in L and L+1 levels

2. If in the same L
ZCM matrixes (considering constant

L) there are some columns with equal elements
then we can keep one node and eliminate the others.
Choosing the node we keep is an important
consideration

3. The information about the number of nodes in the
above two steps will be stored and then we
transpose the coupling matrix and finally steps 1
and 2 will be applied to them again. The
transposition is done from the lowest levels up to
the root and in this procedure, the upper-level
matrices are corrected as well.

Transposition of coupling matrices means applying

the coupling operation on levels m-2, m-4, m-6, and so
on. If a larger number of simplifications are obtained in
this level, simplification information is rewritten;
otherwise, the old information is kept. In both cases,
matrices are transposed once again after this step and
all the proceeding steps are repeated.

RESULTS

In [20] a method named 123dd has been presented

in which the improvement of the number of transistors
in DCVS tree for:

F = (1011 0000 1011 0011 1011 1001 1011 0001)
is more than 15% (from 26tT to 22T). If we implement
F with the new proposed algorithm we will only need
16T. The improvement is about 34.5% in comparison to
the 26T implementation and 27.27% in comparison to
the 12dd method.

As an example of MDD, Fig. 1 demonstrates the
function ()3 3 3 3101 ,110 ,111 ,112G =� and as another

example, we can mention the sample presented in [7].
Its implementation with the new proposed method
illustrates a reduction of 20% in the number of
transistor used.

The first reduction rule

The second reduction rule

Start

counter=0
var. count=n

N

Y

First graph
?

Store info.

Complete coupling rule

Update info.

Y

N Reduction
?

counter=counter+1

counter
=

n-1

Final info.

End

N

Y

 Fig. 7: Proposed Algorithm.

S
C

I-P
U

B
LIC

A
TIO

N
S Author M

anuscript

Am. J. Applied Sci., 5 (2): 158-164, 2008

164

After applying the primary algorithm to the above
mentioned graph, the number of nodes will be reduced
from 13 to 4. Now if we analyze the coupling matrix for
the resulted graph further simplification using the first
rule can be obtained by applying the coupling algorithm
to the root of the D.D. above. So one of the four
resulting nodes is omitted and the design is completed
using three nodes achieving, 25% more simplification
in comparison to the common ROMDD. In other words,
we have made an enhanced ROMDD that needs the
least number of nodes to implement a function. This
simplification will affect size and power dissipation.

CONCLUSION
In this paper we presented a new algorithm for free

MDD graph design. By applying the coupling rule, as
described in the paper, we can obtain better
simplification in circuit implementation. This new rule
referred to as the third simplifying rule, changes the
designer’s perspective leading to better simplification
using the first and second rules. Simplifying is
improved by 20% in the three implemented variable
example function compare to the old algorithm. In
multiple-value implementation 27% improvement and
in other comparisons an improvement of more than
27% was achieved.

REFERENCES

1. D. M. Miller and G.W. Duec, 2003. On the size of
multiple valued decision diagrams. 33rd IEEE
International Symposium on Multiple-Valued
Logic (ISMVL’03)

2. O. Kavehie, K. Navi, T. Nikoubin, M.
Rouholamini, 2006. A Novel DCVS Tree
Reduction Algorithm. IEEE International
Conference on Integrated Circuit Design
&Technology (ICICDT’06), pp. 1-7, 24-26

3. D. M. Miller and R. Drechsler, 2002. On the
construction of multiple-valued decision diagrams.
32rd IEEE International Symposium on Multiple-
Valued Logic (ISMVL’02), pp. 245-253

4. Dragan Jankovic, Radomir S. Stankovic, Rolf
Drechsler, 2004. Reduction of Sizes of Multi-
Valued Decision Diagrams by Copy Properties.
34rd IEEE International Symposium on Multiple-
Valued Logic (ISMVL’04)

5. F. Somenzi, 2001. Efficient manipulation of
decision diagrams. International Journal on Software
Tools for Technology Transfer, 3, pp. 171-181

6. D. M. Miller and R. Drechsler, 1998.
Implementing a multiple valued decision diagram
package. 28rd IEEE International Symposium on
Multiple-Valued Logic (ISMVL’98), pp. 52-57

7. M. Abd-El-Barr, and H. Fernandez, 1999.
Synthesis of Multiple-Valued Decision Diagrams
using Current-Mode CMOS Circuits. 29rd IEEE
International Symposium on Multiple-Valued
Logic (ISMVL’99), pp. 160-165

8. R. Drechsler, 2002. Evaluation of Static Variable
Ordering Heuristics for MDD Construction. 32rd
IEEE International Symposium on Multiple-
Valued Logic (ISMVL’02)

9. D. M. Miller, 1993. Multiple-Valued Logic Design
Tools. 23rd International Symposium on Multiple-
Valued Logic, pp. 2-11

10. R. E. Bryant, 1986. Graph-based Algorithms for
Boolean Function Manipulation. IEEE
Transactions on Computers, Vol. 35, No. 8, pp.
677-691

11. S. Minato, N. Ishiura and S. Yajima, 1990. Shared
Binary Decision Diagrams with Attributed Edges
for Efficient Boolean Function Manipulation.
ACM/IEEE Design Automation Conference
(DAC’90), pp. 52-57

12. R. Rudell, 1993. Dynamic variable ordering for
ordered binary decision diagrams. IEEE/ACM
International Conference on Computer-Aided
Design (ICCAD’93), pp. 43-47

13. F. Somenzi, CUDD: CU Decision Diagram
Package, http://bessie.colorado.edu/~fabio

14. S. J. Friedman and K. J. Supowit, 1990. Finding
the Optimal Variable Ordering for Binary Decision
Diagrams. IEEE Transactions on Computers, Vol.
39, Issue. 5, pp: 710-713

15. Wolfgang Guenther, and Rolf Drechsler, 2003.
Efficient Minimization and Manipulation of
Linearly Transformed Binary Decision Diagrams.
IEEE Transactions on Computers, Vol. 52, No. 9

16. M. Teslenko, A. Martinelli, E. Dubrova, 2005.
Bound-Set Preserving ROBDD Variable Orderings
May Not Be Optimum. IEEE Transactions on
Computers, Vol. 54, No. 2, pp. 236-237

17. R. Ashenhurst, 1959. The Decomposition of
Switching Functions. International Symposium
Theory of Switching, Vol. 29, pp. 74-116

18. O. Kavehie, K. Navi, 2005. A Novel 54x54-bit
Scalable Multiplier Architecture. 13th Iranian
Conference on Electrical Engineering (ICEE’05),
pp. 367-371

19. Yu-L. Wu, H. Fan, M.M. Sadowska, C.K. Wong,
2000. OBDD Minimization Based on Two-Level
Representation of Boolean Functions. IEEE
Transactions on Computers, Vol. 49, No. 12, pp.
1371-1379

20. Arunita Jaekel, Subir Bandyopadhyay, and Graham
A. Jullien, 1998. Design of Dynamic Pass-
Transistor Logic Circuits Using 123 Decision
Diagrams. IEEE Transactions on Circuits and
Systems-I: Fundamental Theory and Applications,
Vol. 45, No. 11

21. K.M. Chu and D.L. Pulfrey, 1987. A Comparison
of CMOS Circuit Techniques: Differential Cascode
Voltage Switch Logic versus Conventional Logic.
IEEE Journal of Solid-State Circuits, Vol. SC-22,
No. 4, pp. 528-532.

S
C

I-P
U

B
LIC

A
TIO

N
S Author M

anuscript

