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Abstract: We study the distribution of standardized returns by using various frequencies data.  The 
empirical standardized returns are obtained by using the unobserved and observable daily volatility.  
Our empirical results evidence the realized-standardized returns follow nearest to a Gaussian 
distribution.  On the other hand, the standardized returns using daily closing and range-based data are 
able to reduce but not fully eliminate the excess kurtosis condition compare to the realized 
standardized returns. 
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INTRODUCTION 

 
The financial time varying volatility is closely 

related to the risk management applications such as risk 
diversification, portfolio analysis and derivative pricing 
prediction.  One of the famous risk analysis 
applications is the immediate determination of value-at-
risk (VaR) from the estimated volatility. The 
commercial application of RiskMetricsTM[1] is 
successfully applied VaR in portfolio investments.  
Since the estimated volatility hinges crucially on its 
associated conditional return distribution, thus, an 
insight understanding of the conditional return 
distribution is important in order to provide useful 
information in risk management analysis.  In addition, 
the identified underlying distributions of conditional 
returns are important in the parametric discrete-time 
ARCH, stochastic volatility and continuous-time 
diffusion processes modelling under a particular 
underlying distribution assumption.                    
 In this paper, we have selected the Malaysian stock 
exchange and as an emerging market, the nature of the 
stock market is characterized by low liquidity, 
infrequent trading, low quality of information and rapid 
changes in regulatory framework.  The daily closing 
returns are adjusted for infrequent trading behaviour 
which might cause spurious correlation.  We later focus 
on the distinction of standardized return from fractional 
integrated autoregressive moving average (ARFIMA) 
model, long-range dependence autoregressive 
conditional hetoroscedasticity (ARCH) models, range-
based volatility and realized volatility in term of their 

Gaussianity.  In this study, the standardized return is 
defined as σ-standardized return where σ is either the 
estimated or realized volatility standard deviation.  In 
realized standardized returns, the 10- and 20-minute 
interval shows the nearest Gaussianity compare to 
others.  The Gaussianity of these return series are 
analysed by their moments, empirical cumulative 
distribution function (CDF) plot, quantile-quantile (Q-
Q) plots, Jacque-Bera test and a series of empirical 
distribution tests.  The overall results indicate the 
realized standardized returns are nearly Gaussian 
distributed compare to other approaches modelling 
where improvement of reducing but not eliminate the 
leptokurtic.  

 
DATA AND METHODOLOGY 

  
Data Source: The Kuala Lumpur Composite Index 
(KLCI) transaction prices cover the recovery period 1st 
2003 to 2006.  This price index is weighted by market 
capitalization with the base year 1977 of 100 listed 
companies.  After the bad experience of Asian 
Financial crisis, Malaysia implements the selective 
capital control in 1st September 1998 where RM is pegs 
at 3.80 to the USD.  This action stabilizes the RM 
where non-residents from Malaysia and abroad are 
restrict to trade the RM.  In addition, Securities 
Commission and the KLSE implements recovery 
strategic such as strengthening market intermediaries, 
improving market transparency and improving liquidity 
in corporate sectors.  In this recovery period, the 
Malaysia stock market is speculated by the RM-USD 
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un-pegged regulation(implemented at year middle of 
2005 where the RM was expected undervalued by 
approximately 6.5%), the merged of MESDAQ in 
KLSE besides the Main board and Second board 
previously started in year 2002, the fluctuating of petrol 
prices, etc.  We intend to study the reaction of market 
participants and market volatility to the good and bad 
news.     
 
Adjusted return: Emerging markets are often related 
to the infrequently traded shares activities.  This 
phenomena occurs when stocks market do not trade at 
every consecutive interval.  We adopt the method 
proposed by Miller et al [2] as follows: 
rt = a0 + a1rt-1 + εt                       (1) 

rt(adj) = 
)1( 1a

t

−
ε

.                 (2)    

The model assumes that the non-trading adjustment 
required to adjusted returns is constant throughout the 
periods in most of the high traded markets.  Let 
assumes that the return series after adjustment are 
decomposed as ttadjtr εσ=)(  where εt is independently 

and identically distributed with mean zero and unit 
variance.  Therefore, the σ-standardized return can be 
rearranged become, 

t

t
t

r
σ

ε =  .                 (3) 

Based on this equation, if given the σt, the distribution 
and structure of εt can be determined straightforward.  
However, the conditional standard deviation is not 
directly observable and has to be estimated from 
ARCH-type models, range-based volatility or realized 
volatility respectively.    
 
Unobservable estimated ARCH-types volatility:  
Component GARCH: Ding and Granger[3] and Engle 
and Lee[4] decomposed volatility into two components 
with one component captures the short-run innovation 
impact and the other captures the long-run impact of an 
innovation as follows: 
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Fractionally Integrated GARCH: The conditional 
variance of FIGARCH(p,d,q) introduced by Baillie 
et.al[5] can be expressed as: 
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with 0 ≤ d ≤ 1.  if d=0, the model will 
become 22 )()( tt aBB ασβ = , which is a GARCH model.  

If d=1, the model 22 )()1)(( tt aBBB ασβ =− , will follow 
a IGARCH model.  And when d is 0 < d < 0.5, the term 
(1-B)d has an infinite binomial distribution for non-
integer powers.   
 
ARFIMA-FIGARCH: The ARFIMA(p1,d1,q1)-
FIGARCH(p2,d2,q2) model is able to capture the 
possibility of long-range dependence in both the 
conditional return and its volatility as follows: 
(1-B)d1(1-β1(B))rt = (1-α1(B))at, at = σtεt ,  
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The shock term, at, follows a conditional time-varying 
variance and the εt~iid, N(0,σ2).  Davidson[6] and 
Caporin[7] argued that the d1 in ARFIMA is structural 
different from d2 where the persistence is increase 
when d1 approaches 0.5 compare to d2 approaches 0.  
The reverse behaviour may be due to the parameter acts 
directly on the squared errors but not on the conditional 
variance.   
 
Unobservable range-based volatility: We have 
adopted the Parkinson[8] and Garman and Klass[9] 
approaches with the assumption of the expected return 
is equal to zero.  The mean return is not statistically 
different from zero at 5% level under the t-test(t-
statistic 1.7521). In addition, the selected range-based 
volatility model is without the inclusion of bid-ask 
information.  This is due to the limitation of data 
source. The Garman and Klass is the extension of 
Parkinson with the inclusion of opening and closing 
price.  Both the volatility estimators can be expressed 
as: 

( )22
, 2ln4

1
ttparkt LH −=σ ;                (7) 

( )22
, 511.0 ttGKt LH −=σ    

           ( ) 2383.02)(019.0 tttttt CLHLHC −−−−       (8) 
where the definitions are followed the Yang and Zhang 
[10] with Ht, Lt and Ct are the normalized high, low and 
closing prices respectively. 
 
Observable realized volatility: In stock market, the 
intraday returns are obtained by summing the trading 
hours with the absence of overnight trading.  However, 
we are able to observe the close-to-open return for the 
overnight period.  The stock market encounters a short 
break in the afternoon and an overnight non-trading 
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period.  Under these conditions, we expect relative 
larger changes in the stock index price during the 
closing period compared to the n-minute returns 
observed during trading hours.  Therefore the overnight 
and afternoon break will provide a distorting effect on 
the volatility estimation.  A better alternative by using 
only intraday returns are proposed by Martens[11] and 
Hansen and Lunde[12].  Similarly, they suggested to use 
a scaled sum of squared intraday returns as follow: 
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where 2

22

oc

coocc
σ

σσ += .  The OC and CO represent close-

to-open and open-to-close respectively.  
 
 

RESULTS AND DISCUSSION 
 
Descriptive statistics: Table 1, the unadjusted return 
exhibits excess kurtosis and the Box-Ljung Q(12) 
statistic indicates the presence of serially correlation. 
The highly significant value for the first-order serial 
correlation is caused by the infrequent trading of 
emerging market.  After the correction of thin trading 
effect, the adjustments appear to have eliminated the 
apparent serial correlation of the return series where the 
Q(12) shows insignificant serially correlation at 1% 
significant level. 
 
Comparison of standardized returns: The 
distributions of each of the standardized-returns series 
are examined relative to a standard Gaussian 
distribution.  We look into their moments, the empirical 
cumulative distribution function (CDF) plots, the Q-Q 
plots and empirical distribution test respectively.   

Geometrically, the preliminary Gaussianity 
analyses are illustrated by the CDF plots and Q-Q plots 
respectively in Figure 1 and Figure 2.  Most of the 
ARCH-standardized returns move closely to a 
simulated Gaussian distribution.  On the other hand, 
especially the range-based standardized returns series 
show higher and lower cumulative probabilities in the 
early and end tails respectively relative to the simulated 
Gaussian CDF.  In addition, the range-based 
standardized returns series also indicate relative wider 
range in the volatility attribute axis.    

The Q-Q plot for adjusted return exhibit s-shaped 
pattern with symmetric and heavy tailed at both the 
ends.  A few points fall on the end of the line indicate 
that the extreme values in the returns series. For ARCH, 

Table 1: Return and adjusted return 

Note: the indications are the same in notes Table 2. 
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Fig. 1: CDF plots 
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Fig. 2: CDF plots 

 return adjusted return 
 Mean 0.0493 -0.00002 

 Std. Dev. 0.6474 0.7572 
 Skewness 0.3064 c (3.410) 0.2525 c(2.810) 
 Kurtosis 4.5780 c(8.780) 4.3414 c(7.464) 
 Jarque-Bera 88.5970 c(0.0000) 63.5211 c(0.0000) 
   
Normality test   

D  0.0499 c(0.0003) 0.01470 c(0.0057) 
A2 0.3888 c(0.0000) 0.2544 c(0.0011) 
W2 2.6389 c(0.0000) 1.7459 c(0.0002) 
Autocorrelation    
lag 1 0.155 -0.005 
lag 2 0.056 0.032 
lag 3 0.020 0.005 
lag 4 0.046 0.044 
lag 5 0.005 -0.006 
Q(12) 26.165 5.462 
p-value 0.010b 0.941 
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Table 2: σ-standardized adjusted return Comparison  

Notes:  (1) t-test for Gaussian skewness and kurtosis. 

The standard error for Gaussian skewness and kurtosis are T
6 =0.090 and T

24 =0.180.  The parentheses indicate the t-statistics.  

The null hypothesis indicates S
~

=0 and K
~

=3 respectively.  
      (2) Empirical distribution test(EDT): The test statistics are Kolmogorov-Smirnov(D), Anderson-Darling(A2) and Cramer-von  

Mises(W2) respectively.  The parentheses indicate the p-values. 
H0: The return series follows the Gaussian distribution. 
H1: The return series does not follow the Gaussian distribution. 
a, b and c denote 10%, 5% and  1%   level of significance.   

 
range-based and realized -standardized returns series, a 
nearly linear line indicating that Gaussian distribution 
provides a better approximation to the series.  However, 
a series of statistical tests have to be implemented to 
examine the Gaussianity of the standardized returns 
series.    

In Table 2, the standardized returns by long-range 
dependence ARCH-type estimations show a better 
approximation to Gaussian distribution with nearly 
unity standard deviation and smaller skewness compare 
to the adjusted and unadjusted returns series.  The 
complete ARCH-type estimations are provided upon 
request.  However, the ARCH-standardized returns still 
exhibit leptokurtic even though overall they show 
smaller excess kurtosis.  On the other hand, the range-
based-standardized return show similar results compare 
to ARCH.  However, the range-based approach exhibits 
stronger violation from Gaussian distribution which 

indicated by the smaller p-value compare to ARCH 
approach.  Finally, the realized-standardized returns 
show closest to a Gaussian distribution with decreased 
positive skewness and kurtosis approximate 3 that are 
3.293 and 3.060 for 10 and 20-minute interval 
respectively.  The t-statistics for gaussianity skewness 
and kurtosis tests in Table 2 confirm that only the 
realized standardized returns with 10-minute interval 
are insignificant at 5% significant level.  Finally, formal 
tests by Jacque-Bera and empirical distribution tests are 
implemented to further analyze the presence of 
Gaussianity of the return series.  From Table 2, only the 
realized standardized returns with 10-minute and 20-
minute interval are normally distributed at 5% 
significant level.  These findings are inline with the 
work by Andersen et.al.[13] and Andersen et.al.[14] who 
reported that the stock realized stock returns are 
approximately normally distributed. 

σ-standardized adjusted return 
 σ(GARCH) σ(CGARCH) σ(FIGARCH) σ(ARFIMA) σ(park) σ(GK) σ(RV-10) σ(RV-20) 
 Mean -0.0040 -0.0062 -0.0076 -0.0110 -0.0007 0.0243 -0.0085 -0.0062 
 Std. Dev. 1.0005 0.9980 1.0057 1.1040 1.7945 1.8246 1.2718 1.2548 
 Skewness 0.3256 c 

(3.623) 
0.2837 c 
(3.157) 

0.2813 c 
(3.131) 

0.2746c 
(3.052) 

0.2991 c 
(3.3233) 

0.5250 c 
(5.8333) 

0.1961b 
(2.182) 

0.2442 c 
(2.717) 

 Kurtosis 4.0479 c 
(5.831) 

3.9448 c 
(5.257) 

3.9077 c 
(5.050) 

3.1758 
(0.977) 

4.5508 c 
(8.6155) 

5.0530 c 
(28.0722) 

3.2931 
(1.631) 

3.0602 
(0.335) 

         
 Jarque-Bera 46.9936 c 

(0.0000) 
37.5039 c 
(0.0000) 

35.2117 c 
(0.0000) 

10.2710c 
(0.0059) 

84.2730 c 
(0.0000) 

162.1903c 
(0.0000) 

7.4106b 
(0.0246) 

7.4863b 
(0.0237) 

EDT         

D  
0.0147 c 
(0.0057) 

0.0399 c 
(0.0099)c 

0.0410 c 
(0.0072) 

0.0220 
(>0.100) 

0.0781 c 
(0.0000)c 

0.0863c 
(0.0000)c 

0.0315a 
(0.0953) 

0.0254 
(0.1135) 

A2 
0.2544 c 
(0.0011) 

0.2402 c 
(0.0017) 

0.2527 c 
(0.0012) 

0.6403 a 
(0.0946)  

5.7606 c 
(0.0000) 

6.5152 c 
(0.0000) 

0.0865 
(0.1703) 

0.0604 
(0.3729) 

W2 
1.7459 c 
(0.0002) 

1.6838 c 
(0.0003)  

1.8156 c 
(0.0001) 

0.0798 
(0.2081) 

1.0203 c 
(0.0000) 

1.1223 c 
(0.0000) 

0.5535 
(0.1531) 

0.4873 
(0.2235) 

ACF         
lag 1 0.012 0.006 0.007 0.004 -0.024 -0.026 -0.058 -0.089 
lag 2 0.031 0.029 0.038 0.037 0.037 0.033 0.036 0.029 
lag 3 0.003 0.003 0.002 -0.001 0.032 0.035 0.004 0.009 
lag 4 0.058 0.058 0.054 0.039 0.052 0.036 0.011 -0.003 
lag 5 -0.030 -0.031 -0.029 -0.026 -0.049 -0.049 -0.02 -0.011 
Q(12) 7.123 6.943 7.331 7.0826 -0.003 0.019 10.971 15.090 
p-value 0.849 0.861 0.835 0.852 0.461 0.405 0.531 0.237 
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Note: The symmetric red line indicates a normal-normal QQ-plot 

 
Fig. 3: Quantile-quantile plots for the overall standardized returns series 

 
 

CONCLUSION 
 
In this paper, our empirical results evidence that 

the realized-standardized return series with 10- and 20- 
minute interval show remarkably near to a Gaussian 
distribution compare to ARCH and range-based 
standardized return series.  The result suggests that for 
the underlying Gaussianity distribution assumption in 
volatility modelling, the realized volatility approach 
provide a better theoretical modelling framework. Our 
findings may offer some statistical implications in the 
distribution of returns series for any further theoretical 
modelling and prediction of others market financial 
time series. 
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