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Abstract: One of the most popular clustering techniques is the k-means clustering algorithm. 
However, the utilization of the k-means is severely limited by its high computational complexity. In 
this study, we propose a new strategy to accelerate the k-means clustering algorithm through the Partial 
Distance (PD) logic. The proposed strategy avoids many unnecessary distance calculations by applying 
efficient PD strategy. Experiments show the efficiency of the proposed strategy when applied to 
different data sets. 
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INTRODUCTION 

 
 Clustering techniques have become very popular in 
a number of areas, such as engineering, medicine, 
biology and data mining[1,2]. A good survey on 
clustering algorithms can be found in[3]. 
 The k-means algorithm[4] is one of the most widely 
used clustering algorithms. The algorithm partitions the 
data points (objects) into C groups (clusters), so as to 
minimize the sum of the (squared) distances between 
the data points and the center (mean) of the clusters. 
 To apply the k-means algorithm, do the following: 
 
• Choose C data points to initialize the clusters 
• For each data point, find the nearest cluster center 

that is closest and assign that data point to the 
corresponding cluster 

• Update the cluster centers in each cluster using the 
mean of the data points which are assigned to that 
cluster 

• Repeat steps 2 and 3 until there are not more 
changes in the values of the means 

 
 In spite of its simplicity, the k-means algorithm 
involves a very large number of nearest neighbor 
queries. The high time complexity of the k-means 
algorithm makes it impractical for use in the case of 
having a large number of points in the data set. 
Reducing the large number of nearest neighbor queries 
in the algorithm can accelerate it. In addition, the 
number of distance calculations increases exponentially 
with the increase of the dimensionality of the data[5-7]. 

 Many algorithms have been proposed to accelerate 

the k-means. In[5,6], the use of kd-trees[8] is suggested to 
accelerate the k-means. However, backtracking is 
required, a case  in which the computation complexity 
is increased[7]. Kd-trees are not efficient for higher 
dimensions. Furthermore, it is not guaranteed that an 
exact match of the nearest neighbor can be found unless 
some extra search is done as discussed in[9].  
 Elkan[10] suggests the use of triangle inequality to 
accelerate the k-means. In[11-12], it is suggested to use R-
Trees. Nevertheless, R-Trees may not be appropriate 
for higher dimensional problems. 
 In[13-15], the Partial Distance (PD) algorithm has 
been proposed. The algorithm allows early termination 
of the distance calculation by introducing a premature 
exit condition in the search process  
 In this study, we propose a new algorithm to 
accelerate the k-means. The proposed algorithm avoids 
many unnecessary distance calculations by applying an 
efficient Partial Distance (PD) strategy.  
 Our approach proceeds by reducing the number of 
the nearest neighbor queries that the k-means algorithm 
executes. Thus speed is enhanced greatly. The time 
taken for a single iteration is greatly improved over the 
conventional k-means algorithms without  degrading 
the clustering quality and until taking the same number 
of iterations for convergence as the conventional k-
means. For simplicity, we report the results of running 
the k-means 20 iterations. 

 
PARTIAL DISTANCE 

 
 The (conventional) Partial Distance (PD) 
algorithm[13-15] has been proposed to reduce the 
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computation complexity of the exhaustive search. The 
PD algorithm allows early termination of the distance 
calculation between a data point (vector) and a cluster 
center by introducing a premature exit condition in the 
search process.  
 Let C = {ci, i = 1,…,N} be  a  set  of  cluster 
centers of size  N, where  (cij, j = 1,…, K) is  a  K 
dimensional data  point  (vector).  For a  given  data 
point  X = (xj, j = 1,…, K), it is required to find the 
cluster center with the minimum distance from the set C 
under the squared-error distance measure defined as 
follows: 
 

K
2

i j ij
j 1

d(X,c ) (x c )
=

= −�  

 
 The basic structure of the PD algorithm [13, 14] is 
illustrated below: 
 
  mind =∞  
 
Loop A: For i = 1, …, N 
 d = 0 
 
Loop B: For j = 1, …, K 
 d = d + (xj - cij)

2 

 if (d > dmin) Next i // (exit condition) 
 Next j 
 dmin = d 
 min = i 
 Next i 
 
 It can be observed that the partial distance search 
algorithm gains computation saving over the full search 
algorithm because of the provision for a premature exit 
from Loop B, on satisfying the condition d>dmin (called 
the exit condition) before the completion of the distance 
computation d(X, ci). 
 The problem with the PD algorithm is that its 
efficiency is dependent on the current (initial) distance 
dmin found so far. The larger the distance is, the less 
useful this method becomes[15]. 
Different strategies have been suggested to obtain an 
efficient initial distance to the PD algorithm. Paliwal 
and Ramasubramanian[16] assigned probabilities to the 
cluster centers based on the number of data points 
matching a particular cluster center during the creation 
of the cluster centers. The cluster centers are then 
decreasingly ordered according to their probabilities. 
Given a data set, cluster centers that have large 
probabilities are tried first. When ordering is used with 
the PD algorithm, some improvement is gained. 

However, the problem with this strategy is that the 
authors assume that the data points follow the same 
match distribution as the cluster centers. This 
assumption is not always true, particularly when 
clustering image data. Moreover, there is no 
improvement when a large number of clusters is used, 
as reported in[17]. A similar approach has been reported 
in[18]. 
 Recently, Yang and Wang[19] propose a partial 
search strategy which aims at finding the nearest cluster 
center in image data. The strategy is based on 
partitioning the space into partial regions, using 
Unbalanced-Binary-Tree (UBT). Although some speed 
improvement is achieved, the quality of the result is 
degraded. 
 

THE PROPOSED ALGORITHM 
 
 In this study, we propose a new strategy to find 
efficient initial distances to the PD algorithm. Let x be 
any data point, let c be a cluster center and let cprev be    
the previous location of the same cluster center (i.e., the 
cluster center in the previous iteration). Suppose that in 
the previous iteration we know that dprev is the distance 
between x and cprev, then we can use dprev as an initial 
distance for the PD algorithm. In other words, if cprev 
has moved a small distance, then dprev is a good initial 
distance. Having these observations, the new proposed 
algorithm works as follows: 
 Step 0 assigns each data point, x, to its closest 
cluster center, c, using the PD algorithm. Use each 
resulting distance (dprev) as an initial distance in the next 
step.  
 
Step 1:  dmin = dprev   (from step 0) 
Loop A:  For i = 1, …, N 
  d = 0 
Loop B:  For j = 1, …, K 
  d = d + (xj - cij)

2 
  if (d > dmin) Next i // (exit condition) 
  Next j 
  dmin = d 
  min = i 
  Next i 
 
 It can be noticed that the new proposed strategy 
would gain more computation time saving than the 
conventional PD algorithm. This is because the initial 
distance, d>dmin produced from the proposed strategy is 
very small, as shown in Step1 (first line) in the 
algorithm above. 
 Note that step 0 is applied only once to find 
previous distances for the next steps. If the PD 
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algorithm is used in step 0, then we still gain some CPU 
time saving. 
 

RESULTS 
 
 In order to test the efficiency of our proposed 
strategy, two data sets have been tested.  The first set is 
the Letter data set with 20,000 data points and 16 
variables (dimensions) obtained from the UCI 
Repository of Machine Learning Databases[20]. The 
second set is the Speech set, which represents a data 
extracted from one minute of speech with 8 dimensions. 
The CPU time (Run time) is measured in seconds. The 
results are obtained after running the k-means algorithm 
20 iterations in all cases. 
 Table 1 shows the performance of the proposed 
strategy (or the new algorithm) with a number of cluster 
centers (No. Clust) for the Letter data set. The Table 
shows that the new algorithm gave better results than 
both the exhaustive and PD algorithms in all cases. The 
time saving of the new algorithm exceed 40% 
compared to the exhaustive algorithm in cases where 
the number of clusters (No. Clust) was 76, as shown in 
Table 1. 
 Table 2 shows the performance of the new 
algorithm with different dimensions (D) for the Letter 
data set. The Table shows that the new algorithm gave 
better results than the ones given by both exhaustive 
and PD algorithms in all cases. 
 
Table 1: Run time for exhaustive, PD and the new algorithm for the 

Letter data set with different number of clusters 
No. Clust EX PD New 
26 108 90 78 
52 217 174 162 
76 403 288 235 
104 427 345 313 
130 534 414 384 
156 641 501 454 
182 748 595 532 
208 855 671 609 
 
Table 2: Run time for exhaustive, PD and the new algorithm for the 

Letter data set with different dimensions (D) and 26 
clusters 

D EX PD New 
4 31 22 20 
8 57 43 37 
12 82 44 36 
16 108 86 78 
 
Table 3: Run time for exhaustive, PD and the new algorithm for the 

Speech data with 8 dimensions and a number of clusters  
No Clust Ex PD New 
100 99 69 58 
200 205 136 120 
300 300 203 180 
400 408 271 240 
500 500 339 301 

 The time savings of the new algorithm exceed 56% 
compared to the exhaustive algorithm in cases where 
the number of dimensions  (D) was 12, as shown in 
Table 2. 
 Table 3 shows the performance of the new 
algorithm for the Speech data for 10,000 data points, 8 
dimensions and a number of cluster centers (No. Clust). 
The Table shows that the new proposed algorithm gave 
the best results in all cases. The timesaving of the new 
algorithm exceeds 40%, which is a good percentage 
compared to the percentage of the time savings of the 
exhaustive algorithm in all cases. 
 It can be noticed from the tables above that the new 
algorithm outperformed both the conventional PD and 
exhaustive algorithms. 
 

CONCLUSION 
 
 In this study, we propose a new algorithm to 
accelerate the k-means clustering algorithm. The 
proposed algorithm is based on the Partial Distance 
(PD) logic. The proposed algorithm avoids many 
unnecessary distance calculations by applying an 
efficient partial distance strategy. Experimental results 
show that the proposed algorithm gave better results 
than both the exhaustive and the conventional PD 
algorithms when applied to real data sets. The time 
saving (over the exhaustive algorithm) exceeded 50% 
in some cases.  
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