
American Journal of Applied Sciences 5 (9): 1199-1205, 2008
ISSN 1546-9239
© 2008 Science Publications

Corresponding Author: Su-Cheng Haw, Faculty of Information Technology, Multimedia University, 63100 Cyberjaya,
Malaysia, Tel: +603-83125233, Fax: +603-83125264

1199

TwigINLAB: A Decomposition-Matching-Merging Approach

To Improving XML Query Processing

Su-Cheng Haw and Chien-Sing Lee
Multimedia University

Faculty of Information Technology
63100 Cyberjaya, Malaysia

Abstract: The emergence of the Web has increased significant interests in querying XML data.
Current methods for XML query processing still suffers from producing large intermediate results and
are not efficient in supporting query with mixed types of relationships. We propose the TwigINLAB
algorithm to process and optimize the query evaluation. Our TwigINLAB adopts the decomposition-
matching-merging approach and focuses on optimizing all three sub-processes; introducing a novel
compact labeling scheme, optimizing the matching phase and reducing the number of inspection
required in the merging phase. Experimental results indicate that TwigINLAB can process both path
queries and twig queries better than the TwigStack algorithm on an average of 21.7% and 18.7%
respectively in terms of execution time using the SwissProt dataset.

Keywords: XML, query optimization, structural query, twig query, decomposition-matching-merging

INTRODUCTION

 eXtensible Mark-up Language (XML) is emerging
as the de facto standard for data exchange over the
Web. Since XML is a semi-structured data, two types
of user queries namely full-text queries (keyword based
search) and structural queries (complex queries
specified in tree-like structure) are usually used [1]. This
paper is concerned with structural queries.

Structural queries can be viewed as sequences of
location steps, where each node in the sequence is an
element tag or string value. Query nodes are related by
either parent-child (P-C) steps or ancestor-descendant
(A-D) steps. These relationships are depicted with a
single line and double lines respectively. Besides, query
nodes can be related adjacently with one another by
sibling or ordered query relationship. Sibling (ordered
query) relationship is usually denoted by “[]”.

To process such queries, it may undergo a
decomposition-matching-merging process. TWIG-
XSKETCH [2], tree signature [3], MPMGJN [4], Stack-
Tree [5] and PathStack and TwigStack [6] are examples
of query processing using the decomposition-matching-
merging approaches. Nevertheless, most of these
approaches focus on the second sub-process: the
matching phase only.

In this paper, we propose
1. a novel hybrid query optimization architecture,

INLAB (combination of INdexing and
LABeling techniques), which comprises an
XML Parser, XML Encoder, XML Indexer
and Query Engine and

2. query optimization algorithms (TwigINLAB)
to process twig queries efficiently without
traversing the whole XML tree.

INLAB labeling scheme size is only 12 bytes;

much shorter compared to previous labeling schemes.
This enables quick determination of P-C relationship
between elements in the XML database. However, to
check for A-D relationship, the index table need to be
accessed for confirmation. Besides, INLAB labeling is
integer based. Integer processing is very efficient
compared to that of string or bit-vector. The index
structures of INLAB allow us to efficiently find all
elements that belong to the same parent or ancestor.

Our TwigINLAB approach decomposes
relationships into a set of path queries. In addition, we
focus on optimizing all three decomposition-matching-
merging sub-processes. First, we introduce a novel
robust and compact labeling scheme consisting of
<self–level: parent> to allow quick determination and

Am. J. Applied Sci., 5 (9): 1199-1205, 2008

 1200

decomposition of the types of relationships among each
path edge. Subsequently, we optimize the matching
phase based on each relationship and finally reduce the
number of inspection required in the merging phase.

Twig Query Processing: With the increasing
popularity of XML data representation, XML query
processing and optimization has attracted a lot of
research interest [7, 8, 9, 10, 11, 12]. In this section, we
summarize the related work. There are typically two
types of decomposition-matching-merging process.
First, a complex query pattern can be decomposed into
a set of basic binary relationships between each pair of
nodes or second, it can be decomposed into a set of path
queries, followed by subsequent matching and merging
processes. Our INLAB adopts the latter approach and
focuses on optimizing all three sub-processes;
introducing novel compact labeling scheme, optimizing
the matching phase and reducing the number of
inspection required in the merging phase. In the first
sub-process, most researchers use the labeling of
(docno, begin : end, level) for an element and (docno,
wordno, level) for a text word as the positional
representation of XML elements and texts. However,
we use <self – level : parent> as the positional
representation instead. The details on this will be
explained in the next section. MPMGJN [4], Stack-Tree
[5] and TwigStack [6] algorithms are based on (docno,
begin : end, level) labeling of XML elements. These
algorithms accept two lists of sorted individual
matching nodes and structurally join pairs of nodes
from both lists to produce the matching of the binary
relationships. Another similar approach is to
decompose the twig query into a set of path queries
instead. Polyzotis et al. propose methods to reduce the
number of intermediate results by introducing a
filtration step based on some notion of synopses to
facilitate query-approximate answers [2]. They propose
both TREESKETCH and TWIG-XSKETCH. Another
work, done by Amer-Yahia et al is to preprocess the
query patterns before the matching phase is executed
[13]. Since the efficiency of tree pattern matching
depends on the size of the pattern, it is essential to
identify and eliminate redundant nodes in the pattern
before the matching phase takes place. On the other
hand, Zezula et al. propose a novel technique, tree
signature, to represent tree structures as ordered
sequences of pre-order and post-order ranks of the
nodes [3]. They use tree signatures as index structure
and find qualifying patterns through integration of
structurally consistent path query. Merging together the
structural matches in the final process poses the

problem of selecting a good join ordering. Wu et al.
propose a cost-based join order selection of structural
join [7]. Kim et al. suggest partitioning all nodes in an
extent into several clusters [14]. Given two extents to be
joined, they propose filtering out unnecessary clusters
in both extents prior to the joining process.

Our TwigINLAB algorithm is a generalization of
the stack-based algorithm first mentioned by Bruno et
al. [6] to match twig query. However, we enhance the
query processing by utilizing indexes (built only once)
to speed up the matching and merging phases. Further
elaboration can be found in next section.

MATERIALS AND METHODS

Fig. 1 shows the INLAB architecture, which
consists of the XML Parser to check the well-
formedness of the XML document, the XML Encoder
to generate the labeling based on a <self-level:parent>
scheme, the XML Indexer to create index storing each
node parent and child information and the XML Query
Engine for pattern query matching. This paper
concentrates only on the XML Query Engine (the
optimizer). Other components such as XML Parser,
XML Encoder and XML Indexer have been reported in
[15, 16]. The criterion for assessing TwigINLAB is
execution time.

Fig. 2 depicts an example of XML document
labeled based on <self-level: parent>. Structural
relationships between element nodes can be efficiently
determined from the label as follows:

1. P-C relationship
node1 is the parent of node2 if and only if
node1.self = node2.parent.

2. Sibling relationship
node1 is the sibling of node2 if and only if
node1.parent = node2.parent.

3. Ordered query relationship (predecessor and
successor)
a. node1 is the predecessor node of node2 if
and only if node1.self < node2.self.
b. node1 is the successor node of node2 if and
only if node1.self > node2.self.

4. A-D relationship
node1 is possible as an ancestor of node2 if and
only if leveldiff = node2.level - node1.level >=
1. A multiple look-up via PCTable is
necessary as long as the leveldiff > 1 is true to
confirm the A-D relationship.

Am. J. Applied Sci., 5 (9): 1199-1205, 2008

 1201

Fig. 1: Query processing component architecture

publications

book

author title

author author publicationInfo price

journal

title

price

publisher place dateIssued dateRevised

author

(0-0:-1)

(1-1:0) (12-1:0)

(2-2:1) (3-2:1) (4-2:1) (5-2:1) (13-2:12) (14-2:12) (15-2:12)

(7-3:6) (8-3:6) (9-3:6)

(6-2:1) (11-2:1)

(10-3:6)

Fig. 2: A sample XML document with <self-level:
parent> label.

 For example, let publications (0-0:-1) be node1 and
author (14-2:12) be node2. The leveldiff between the
two nodes is two. This means that we need to trace up
the PCTable twice starting from the self attribute of
author to check whether publications is ancestor of
author as illustrated in Fig. 3. The parent attribute of
the retrieved node is equal to the self attribute of
publications. Thus, publications and author is of A-D
relationship.

self parent
0 -1

1 0

… …

12 0

13 12

14 12

15 12

Fig. 3: Fragment of PCTable index table.

Fig. 4 illustrates the overall processes involved in
TwigINLAB processing. Initially, the query pattern is
analyzed using the analysisQueryPattern() function.
For each query edge, if the twig is of P-C relationship,
the parent and child details will be updated in the
twigPC (a hashtable to store parent and child)
repository. During this process, each node in the twig
query is associated with a stream. Each stream contains
the positional representations of the node appearance in
the XML tree (as shown in Fig. 5). The nodes in the
stream are sorted by their self attribute, and thus, this
will determine the order of the node to be processed.
Associated with each stream is a stack. Stack is used to
store the possible intermediate results.

X M L
d o c u m e n t

X M L P a r s e r

X M L E n c o d e r

X M L I n d e x e r

U s e r -
s p e c i f i e d
q u e r y

r e s u l t

< r o o t >
 < a >
 < b > < / b >
 < b >
 …
 < / b >
 < / a >
< / r o o t >

 0 - 0: - 1

 1-1:0

root
a
b
c

2 - 2 : 1 13 - 2:12
3 - 2 : 2 4 - 2:1 5 - 2:1

<1-1:0> <2-2:1>

<2-2:1> <3-2:2>

a b

b c

a-b

b-c

Intermediate results Final results

a-b-c
<1-1:0 2-2:1 3-2:2>merge

Q u e r y
E n g i n e

TwigINLAB algorithm

Am. J. Applied Sci., 5 (9): 1199-1205, 2008

 1202

analysisQueryPattern()

partitionTwig()

twigJoin()

mergeTwig()

book

author publisher

book book

author publisher

Sbook Sauthor Spublisher

outputSolution()

<1-1:0> <3-2:1> <8-3:6>
<4-2:1>
<5-2:1>

book-author

book=publisher

1-3 1-4 1-5

1=8

8

1

8

1

4

1

5 83

Fig. 4: Overall flow of TwigINLAB

b o o k

a u th o r p u b lish e r

< 1 -1 :0 >

< 8 -3 :6 >< 3 -2 :1 4 -2 :1 5 -2 :1 >

T b o o k

T p u b lish e rT a u th o r

S b o o k

S a u th o r

S p u b lish e r

Fig. 5: Stack and stream assigned to each query node

during the analysisQueryPattern() function.

Next, the partitionTwig() function takes place. If
the query is path query (only one leaf node), this
function is skipped and it will proceed to the twigJoin()
function. However, if it is twig query, during this
function, the twig pattern is decomposed into two or
more path queries. Starting from the root of twig query
pattern, for each start tag event, it pushes the tag into
twigStack (a stack to keep track of twig query
sequence). When it reaches an end tag event, it checks
whether the current entry at the top of twigStack is a

leaf node. If it is a leaf, the query node will be added
one by one to the vpathList (a vector to store query
nodes in leaf-to-root order) until it reaches the root.
Finally, it will be output in reverse order by the
function reverse(). The final output of this function is a
set of path queries in root-to-leaf order in pq (a
hashtable to keep each distinct path query).

For each path query, it recursively calls the
twigJoin() function to find the possible path matches.
Each possible match is pushed into the stack in the
twigJoin() function. For instance, using the twig query
in Fig. 5 as an example, after the partitionTwig()
function, there are two path queries: book-author and
book=publisher. Initially, the path query book-author is
to be processed first. Based on the self attribute in each
first occurrence in Tbook, and Tauthor, query node book is
being processed first. Element <1-1:0> is then pushed
into Sbook. The next returned query node is the
immediate child of book, which is author. Element <3-
2:1> is pushed into Sauthor because parent attribute of
book is equal to self attribute of author. Since author is
the leaf query node, a partial solution is formed
between book-author. Based on the next occurrences,
the next returned node is element <4-2:1> as it has the
next smallest self attribute. This element is then pushed
into Sauthor because the parent attribute of book is equal
to the self attribute of author. Since author is the leaf
query node, another partial solution is formed between
book-author. This process repeats until it reaches the
leaf node of the all paths as illustrated in Fig. 6.

Next, these matches are merged back through the
mergeTwig() function. In the mergeTwig() function, all
partial solutions from the twigJoin() function are
merged together to generate the final solutions. This
function begins by comparing each entry in the partial
solutions of two path queries at a time. All the
occurrences in the partial solutions are in sorted order
of their self-attributes. If each entry first node is equal,
or if the query edge is of P-C relationship and the
second query node is of sibling and predecessor
relationship, the partial solution will be added to the
final solutions. For query edge with A-D relationship, if
the second query node is a predecessor, it will be added
as a final solution. In both cases, the inner loop begins
the iteration from the current j position. Hence, this
function skips the unnecessary iteration of non-feasible
partial solutions. However, if the first node in the
second path query is greater than node1, the next inner
loop will begin from position j-1 (for cases where j >
0). Fig. 7 illustrates the merging process.
 Finally, the final solutions are output through the
outputSolution() function.

Am. J. Applied Sci., 5 (9): 1199-1205, 2008

 1203

p q

b o o k = p u b l is h e r

b o o k - a u t h o r

T b o o k

T a u t h o r

T p u b l is h e r

< 1 - 1 : 0 >

< 8 - 3 : 6 >

< 3 - 2 : 1 > < 4 - 2 : 1 > < 5 - 2 : 1 >

I n T w ig J o i n () l o o p 1

< 1 - 1 :0 >

S b o o k

(i= 0)

(i= 1)
< 1 - 1 :0 >

S b o o k
< 3 - 2 : 1 >

S a u t h o r

S a u t h o r

(i= 2)
< 1 - 1 :0 >

S b o o k
< 4 - 2 : 1 >

S a u t h o r

(i= 3)
< 1 - 1 :0 >

S b o o k
< 5 - 2 : 1 >

S a u th o r

P a r t ia l s o lu t io n
1 - 3

P a r t ia l s o lu t io n
1 - 3

P a r t ia l s o lu t io n
1 - 3

1 - 4

1 - 4 1 - 5

I n T w ig J o i n () l o o p 2

< 1 - 1 :0 >

S b o o k

(i= 0)

(i= 1)
< 1 - 1 :0 >

S b o o k
< 8 - 3 : 6 >

S p u b l is h e r

S p u b l is h e r

P a r t ia l s o lu t io n
1 = 8

0

1

P q h a s h t a b le S t r e a m s

Fig. 6: Matching process in twigJoin() function.

Fig. 7: The merging process scenario.

RESULTS AND DISCUSSION

We have implemented TwigINLAB using Java API
for XML Processing (JAXP). Experiments have been
carried out on the SwissProt dataset (112MB) obtained

from the University of Washington XML repository [17].
We modified the SwissProt dataset into various file
sizes ranging from 10MB until 110MB for the purpose
of measuring the scalability of both approaches in
supporting large-scale dataset.

We evaluated the performance of TwigINLAB as
compared to TwigStack on two main types of queries
namely, path query and twig query. For each type of
query, we measure the performance of both algorithms
on (a) Q1:-Query with P-C relationship (b) Q2:-Query
with A-D relationship and (c) Q3:-Mixed query.

All our experiments are performed on 1.7GHz
Pentium IV processor with 512 MB SDRAM running
on Windows XP systems. All numbers presented here
are produced by running the experiments multiple times
and averaging the execution times of several
consecutive runs.

Figures 8, 9 and 10 show the execution time of
TwigINLAB and TwigStack for both path and twig

Am. J. Applied Sci., 5 (9): 1199-1205, 2008

 1204

query. Fig. 8 shows the execution time of: Q1PQ=
Entry/Organelle for path query and Q1TQ=
Entry[/Organelle]/Prints for twig query over Standard
dataset by varying the file sizes. From the result,
TwigINLAB outperforms TwigStack in all the test
cases by about 26.8% for path query and 24.5% for
twig query.

0

1

2

3

4

5

10 20 30 40 50 60 70 80 90 100 110

XML Doc. (MB)

E
xe

cu
ti

on
 T

im
e

(s
)

PQ-TwigINLAB PQ-TwigStack

TQ-TwigINLAB TQ-TwigStack

Fig. 8:Test results for Q1.

Fig. 9 shows the execution time of: Q2PQ =

Entry//MedlineID for path query and Q2TQ=
Entry[//MedlineID]//Comment for twig query
respectively. TwigINLAB performs by about 21.2%
better than TwigStack for path query and 17.8% for
twig query.

0

2

4

6

8

10

12

14

10 20 30 40 50 60 70 80 90 100 110

XML Doc. (MB)

E
xe

cu
ti

on
 T

im
e

(s
)

PQ-TwigINLAB PQ-TwigStack

TQ-TwigINLAB TQ-TwigStack

Fig. 9: Test results for Q2.

Fig. 10 shows the execution time of: Q3PQ =
Features//MUTAGEN//Descr for path query and Q3TQ
= Features[//MUTAGEN//Descr]/Site for twig query
respectively. TwigINLAB performs about 17.1% better
than TwigStack for path query and 13.7% for twig
query.

0

5

10

15

20

25

30

10 20 30 40 50 60 70 80 90 100 110

XML Doc. (MB)

E
xe

cu
tio

n
Ti

m
e

(s
)

PQ-TwigINLAB PQ-TwigStack

TQ-TwigINLAB TQ-TwigStack

 Fig. 10: Test results for Q3.

From these figures, we draw several observations
and conclusions:-

• When the twig query contains only P-C edges,
TwigINLAB performs around 24.5% better as
compared to TwigStack (shown in Fig. 9).
This may be due to the INLAB labeling
scheme, which is optimal to support P-C
relationships.

• Although TwigINLAB still outperforms
TwigStack for query with edges of A-D
relationship by around 17.8%, the difference is
less significant as compared to query with
edges of P-C relationships. This may be due to
the extra time needed to determine whether the
two nodes is in A-D relationship by multiple
lookups on the index table until the ancestor
level is reached.

• For each test case, TwigINLAB increases less
drastically as compared to TwigStack. This
shows that TwigINLAB is more scalable in
processing large-scale datasets efficiently.

Am. J. Applied Sci., 5 (9): 1199-1205, 2008

 1205

CONCLUSION

 In this paper, we have presented the TwigINLAB
algorithm to optimize all the sub-processes involved in
the decomposition-matching-merging approaches.
Experimental results show that, in terms of execution
time, on average, TwigINLAB performs about 21.7%
better for path query and about 18.7% better for twig
query compared to the TwigStack. Also, TwigINLAB
is more scalable compared to TwigStack. As such,
TwigINLAB supports large-scale query of datasets
efficiently.

ACKNOWLEDGEMENTS

 This work was partially supported by funding from
eScienceFund, Ministry of Science, Technology and
Innovation, Malaysia.

REFERENCES

1. Haw, S.C. and Rao, G.S.V.R.K., 2005. Query

Optimization Techniques for XML Databases.
International Journal of Information Technology,
2(1): 97-104.

2. Polyzotis, N., Garofalakis, M., Ioannidis, Y., 2004.
Approximate XML Query Answers, Proceedings
of ACM SIGMOD, pp: 263–274.

3. Zezula, P., Mandreoli, F., Martoglia, R., 2004. Tree
Signatures and Unordered XML Pattern Matching,
Proceedings of SOFSEM, pp:122–139.

4. Zhang, C., Naughton, J., DeWitty, D., Luo, Q.,
Lohman, G., 2001. On Supporting Containment
Queries in Relational Database Management
Systems, Proceedings of ACM SIGMOD, pp: 425-
436.

5. Al-Khalifa, S., Jagadish, H.V., Koudas, N., Patel,
J.M., Srivastava D., Wu, Y., 2002. Structural Joins:
A Primitive for Efficient XML Query Pattern
Matching, Proceedings of ICDE, pp: 141-152.

6. Bruno, N., Srivastava, D., Koudas, N., 2002.
Holistic Twig Joins: Optimal XML Pattern
Matching, Proceedings of ACM SIGMOD, pp:
310-321.

7. Kim, J., Lee, S.H., Kim, H-J., 2004. Efficient
structural joins with clusters extents. Information
Processing Letters, 91: 69-75.

8. Yao, J.T. and Zhang, M., 2004. A Fast Tree
Pattern Matching Algorithm for XML Query,
Proceedings of IEEE/WIC/ACM, pp: 235-241.

9. Chen, Q., Lim, A., Ong, K., Tang, J., 2003. D(k)-
index: An adaptive structural summary for graph-
structured data, Proceedings of SIGMOD, pp:
134–144.

10. Li, Q. and Moon, B., 2001. Indexing and Querying
XML Data for Regular Path Expressions,
Proceedings. of VLDB, pp: 361-370.

11. Bayardo, R.J., Gruhl, D., Josifovski, V.,
Myllymaki, J. 2004. An Evaluation of Binary XML
Encoding Optimizations for Fast Stream Based
XML Processing, Proceedings of WWW, pp: 345-
354.

12. Diao, Y., Fischer, P., Franklin, M., To, R. (2002).
YFilter: Efficient and Scalable Filtering of XML
Documents, Proceedings of ICDE. Demo paper.

13. Amer-Yahia, S., Cho, S., Lakshmanan, L.V.S.,
Srivastava, D., 2002. Tree pattern query
minimization. VLDB Journal ,11(4): 315-331.

14. Wu, Y., Patel, J. M., Jagadish, H.V., 2003.
Structural join order selection for XML query
optimization, Proceedings of ICDE, pp : 443-454.

15. Haw, S.C. and Rao, G.S.V.R.K. 2007. A
Comparative Study and Benchmarking on XML
Parsers, Proceedings of IEEE-ICACT, pp: 321-
325.

16. Haw, S.C. and Rao, G.S.V.R.K., 2007. An efficient
Path Query Processing support for Parent-Child
Relationship in Native XML Databases. Journal of
Digital Information Management, 2(2): 82-87.

17. University of Washington XML Repository.
Available
http://www.cs.washington.edu/research/xmldatase
ts/

