
American Journal of Applied Sciences 5 (9): 1117-1126, 2008
ISSN 1546-9239
© 2008 Science Publications

Corresponding Author: Jim Alves-Foss, Director, Center for Secure and Dependable Systems, University of Idaho, P. O. Box
441008, Moscow, Idaho 83844-1008, USA. Tel.: +1-208-885-4114, Fax: +1-208-885-6840.

1117

Security Policy Development: Towards a Life-Cycle and Logic-Based Verification Model

Luay A. Wahsheh and Jim Alves-Foss

Center for Secure and Dependable Systems, University of Idaho, P. O. Box 441008
Moscow, Idaho 83844-1008, USA

Abstract: Although security plays a major role in the design of software systems, security
requirements and policies are usually added to an already existing system, not created in conjunction
with the product. As a result, there are often numerous problems with the overall design. In this paper,
we discuss the relationship between software engineering, security engineering, and policy engineering
and present a security policy life-cycle; an engineering methodology to policy development in high
assurance computer systems. The model provides system security managers with a procedural
engineering process to develop security policies. We also present an executable Prolog-based model as
a formal specification and knowledge representation method using a theorem prover to verify system
correctness with respect to security policies in their life-cycle stages.

Keywords: Logic, policy engineering, policy life-cycle, policy verification.

INTRODUCTION

 High assurance computer systems are those that
require convincing evidence that the system adequately
addresses critical properties such as security, safety,
and survivability[13]. They are used in environments
where failure can cause security breaches or even the
loss of life. Examples include avionics, weapons
control, intelligence gathering, and life-support
systems.
 Security in high assurance computer systems
involves protecting systems’ entities from unauthorized
(malicious or accidental) access to information. In this
context, we use the following terms: entity to refer to
any source or destination through which information
can flow (e.g., user, subject, object, file, printer);
security enclave (coalition) to refer to a logical
boundary for a group of entities that have the same
security level (e.g., CS faculty, ER physicians, C-130
pilots); and message to refer to any data that has been
encoded for transmission to or received from an entity
(e.g., a method invocation, a response to a request, a
program, passing a variable, a network packet). The
transmission mechanism can utilize shared memory,
zero-copy message transport, kernel supported
transport, TCP/IP, and so forth.
 In this paper, we use the term policy to refer to
security policy. In the computer security literature, the
term policy has been used in a variety of ways. Policies
can be a set of rules to manage resources (actions based

on certain events) or definite goals that help determine
present and future decisions. We provided a detailed
discussion of the meaning of policy in high assurance
computer systems in our earlier work[23]. Broadly
speaking, a security policy shall address security issues:
CIA (Confidentiality, Integrity, Availability).
Confidentiality is related to the disclosure of
information, integrity is related to the modification of
information, and availability is related to the denial of
access to information. The security policies discussed in
this paper are multi-level (e.g., based on security
classification: Top Secret, Secret, Confidential,
Unclassified) and contain mandatory rules to guarantee
that only authorized message transmission between
entities can occur by imposing constraints on the
actions (operations) of these entities. However, our
work is not limited to military policies.
 One fundamental key to successful implementation
of secure high assurance computer systems is the design
and implementation of security policies. These policies
must specify the authorized transactions of the system
and actions for unauthorized transactions, all in a form
that is implementable. Implementing the enforcement
of a policy is difficult and becomes very challenging
when the system must enforce multiple policies. The
purpose of a secure system is to provide configurations
and mechanisms to support the functional use of system
resources within the constraints of a specified policy.
The specified security policy enumerates authorized
access to information, or authorized information flow
between components of the system.

Am. J. Applied Sci., 5 (9): 1117-1126, 2008

 1118

 Our research focuses on the Multiple Independent
Levels of Security (MILS) architecture, a high
assurance computer system design for security and
safety-critical multi-enclave systems. Although our
research is not limited to MILS, it works well in this
capacity. MILS is a joint research effort between
academia, industry, and government led by the United
States Air Force Research Laboratory with stakeholder
input from many participants, including the Air Force,
Army, Navy, National Security Agency, Boeing,
Lockheed Martin, and the University of Idaho[1, 2, 12].
The MILS architecture is created to simplify the
process of the specification, design, and analysis of
high assurance computer systems[25]. This approach is
based on the concept of separation, as introduced by
Rushby[20].
 The concept of separation is used, for example, in
avionics systems and is a requirement of ARINC 653[4]
(a standard for partitioning of computer resources)
compliant systems. Through separation, we can develop
a hierarchy of security services where each level uses
the security services of a lower level or peer entities to
provide a new security functionality that can be used by
higher levels. Effectively, the operating system and
middleware become partners with application level
entities to enforce application-specific security policies.
Limiting the scope and complexity of the security
mechanisms provides us with manageable, and more
importantly, evaluatable implementations. A MILS
system isolates processes into partitions, which define a
collection of data objects, code, and system resources.
Partitions are defined by the kernel’s configuration and
can be evaluated separately. This divide-and-conquer
approach will reduce the proof effort for secure
systems.
 We specified multi-policies in the MILS
architecture using Inter-Enclave Multi-Policy (IEMP)
and Policy Enforcement Graphs (PEG) in our earlier
work[23, 24]. IEMP is an approach where all interactions
between policies are controlled by a global multi-policy
that guarantees the integration of several heterogeneous
systems. For example, in a coalition model, IEMP can
integrate Army, Air Force, and Navy forces with a joint
staff that ensures policy-compliant interaction between
the coalition members. PEG is a graph-based approach
that creates policies that are used by IEMP providing a
framework for supporting the enforcement of diverse
security multi-policies. Although the approaches were
designed for use in the MILS architecture, based on the
concept of separation, they are applicable to a much
broader range of architectures.
 In this paper, we discuss the relationship between
software engineering, security engineering, and policy
engineering and present a policy development life-

cycle; an approach to policy design in high assurance
computer systems. We also present a Prolog-based
policy formal specification and knowledge
representation model. Prolog provides an
implementation of a formal reasoning system, for
example, it has the ability to make inferences. Formal
inferences may be used for verifying the correctness of
security policies and detecting conflicts between the
policies, as well as supporting policy refinement.

POLICY ENGINEERING

 We propose a security engineering methodology
that provides system security managers with a
procedural engineering process to develop security
policies. Due to its essential role in bridging the gap
between security requirements and implementation,
policies should be taken into account early on in the
development process.

System Engineering: To better understand the
relationship between software engineering, security
engineering, and policy engineering, we need to define
each field and discuss how they are related to one
another. We use the term system engineering to refer to
the combination of software engineering, security
engineering, and policy engineering. Software
engineering is an approach that focuses on the tools and
methods needed to develop cost-effective and faultless
software systems[21]. Security engineering is a discipline
that considers the development of systems that continue
to function correctly under malicious attacks[3]. Security
engineering focuses on the tools and methods needed to
design, implement, and test dependable systems and
must be integrated in every stage of the software
development process. The goal of security engineering
is to create confinement domains that will prevent
malicious software from reading or modifying
information[14]. Entities in the system cannot configure
security policies; system security managers have the
authority to evolve policies based on evolving
requirements and management needs. System security
managers ensure that entities in a system interact in a
controlled way with one another and other systems.
Systems should provide not only functionality, but also
secure and safe end-to-end communication.
 While policies in high assurance computer systems
are considered strategies that establish a practical way
to realize security models or requirements, they are
often rules for logical deduction with the purpose of
making decisions to protect resources from illegal
usage[9]. Meanwhile, a set of policies (multi-policies)
can be seen as a plan in the form of a program about

Am. J. Applied Sci., 5 (9): 1117-1126, 2008

 1119

relationships between entities in a system. By executing
the program, a system can automatically decide whether
or not to permit access to its resources. Policy
engineering is an approach similar to security
engineering that can be applied in the generation and
analysis of security policies.

Characterizing Policy Engineering: It is important to
distinguish policy engineering research from research
involving other engineering process areas. We consider
policy engineering as a subfield of security engineering
that distinguishes itself by being flexible; that is, the use
of policies is separate from applications. This allows
system security managers to build policies that can be
specified, implemented, maintained, resolved when
policy conflicts occur, and analyzed independently of
application design (there is no need to modify
applications in order to change policies). Policy
engineering focuses on the development of systematic
methods to design and enforce security policies. An
engineering approach based on software engineering is
applied to better design and implement security policies
which will have an impact on the overall security of the
system. While the software engineering approach
ensures that an entity does a certain operation (e.g.,
entity A can write message m to entity B), policy
engineering ensures that another entity does not (e.g.,
entity C cannot write message m to entity B).
 Policy engineering ensures that the security
enforcement mechanisms are NEAT (Non-bypassable,
Evaluatable, Always invoked, and Tamperproof). Non-
bypassable means that the mechanisms cannot be
avoided even through the use of lower-level functions.
Evaluatable means that the mechanisms are simple
enough to be analyzed and mathematically verified.
Always invoked means that the mechanisms are
invoked every time an action occurs (they must mediate
every access). Tamperproof means that the mechanisms
cannot be changed by unauthorized entities.
 Dai and Alves-Foss[9] stated the following
similarities between software engineering and policy
engineering:
• Multiple levels of development: abstract level for

analysis, end user level for unskilled people writing
policies, system level for policy refinement, and
programmer level for policy coding and integration.

• Multiple representation languages: mathematical
symbols for formal specification and analysis, visual
language for unskilled people writing policies,
programming language for implementing and
enforcing policies.

• Multiple validation approaches: formal verification
and testing can be applied to validate policies.

 However, policies distinguish themselves from
system or application software of other functionalities
by their logical nature. Policy enforcement is a logical
deduction process and specified policies may logically
contradict one another. Consequently, conflict detection
is important during policy development.
 Dai and Alves-Foss[9] argued that in policy
engineering, policies are separated away from the
system and application software of other functionalities
and treated specifically. They stated that the rationale
behind this strategy includes the following:
• Convenience for security analysis: security analysis

of a system can be separated into two parts: interface
implementation analysis and policy analysis. The
interface primarily refers to the policy enforcement
mechanism that may be provided as an application
programming interface and integrated into other
functionalities of a program. Once the interfaces have
been proved to be correctly and safely established,
security analyzers only need to focus on the
validation of policies.

• Convenience for coding: software developers can
focus on implementing non-security related
algorithms and embedding the general policy
enforcement mechanism in their software. This
decreases the complexity of the code, as
programmers do not have to entwine user policies in
their software.

• Scalability of system security: system and end users
have the capability to flexibly create, modify, delete,
and analyze their security policies for a system or an
application based on their own needs.

 Consider the policy engineering architecture
depicted in Fig. 1. We believe that in order to have
systems that are dependable, with cost-effective
software, and with flexible policies that offer a
management mechanism, all engineering approaches
(software engineering, security engineering, policy
engineering) are needed in each step of creating and
maintaining high assurance computer systems.
 We believe that policy engineering has been
ignored and has not been included in the development
process due to several reasons, including:
• Most system security managers, although

acknowledge the importance of policy design, lack
the knowledge and experience of policy development
methods.

Am. J. Applied Sci., 5 (9): 1117-1126, 2008

 1120

Software Engineering

Security
Engineering

Policy Engineering

Security
Policies

Fig. 1: Policy engineering architecture.

• Most system security managers are not willing to

sacrifice security with marketing of the product; they
are under pressure to get the product shipped to
consumers.

• Analyzing security policy behavior for consistency
and completeness can be a difficult task.

POLICY LIFE-CYCLE

 High-level policies are statements that define
objectives or entity relationships. They are not specific
to the deployed technology (e.g., which communication
ports, protocols, and devices are used). The following
are examples of high-level policies: “Allow only
detectives to access the evidence room”, “A faculty
member can view university records only for students
who are currently enrolled in his or her course”. High-
level policies are refined into low-level policies that a
computer can interpret. Low-level policies are specific
to the deployed technology. For example, depending on
the network configuration, communication port,
protocol, and device, policies must be identified in a
specific format. Low-level policies result from mapping
of high-level policies in a specific environment. The
following is an example of a low-level policy: “IF
SourceIPAddress = 1.1.1.1 AND SourcePort = 200
AND DestinationIPAddress = 7.7.7.7 AND
DestinationPort = 500 AND Protocol = GIOP AND
Dominates(SourceSecurityClassification,
DestinationSecurityClassification) THEN
AccessAllowed(Source, Destination) ELSE
AccessDenied(Source, Destination)”.
 Security should be formally integrated into the
development life-cycle. The policy development life-
cycle is the process of developing security policies. The
proposed model describes the series of ongoing steps

through which a policy progresses and the order in
which those steps must be followed by system security
managers. In this structured model, the process is
divided into five stages. During each stage, distinct
activities take place with their own input, output, and
analysis techniques. Each stage uses documentation of a
previous stage to accomplish its objectives.

Stages: Policies go through various development stages
throughout their life before they are deployed. Figure 2
shows the five stages of the policy life-cycle model:
requirements, design, implementation, enforcement,
and enhancement (RDIEE).
1. Policy requirements analysis: during this stage,

business needs and constraints are identified.
Descriptions of entities, enclaves, and security
policy goals (high-level) are provided. A policy
requirements document is generated, which will be
a guide for the policy designers.

2. Policy design: during this stage, the policy
requirements document is reviewed by the policy
designers who design techniques by which the
requirements will be implemented. High-level
policies are refined and transformed into low-level
policies, algorithms are designed, and the
following are identified: modules, interfaces,
threats, and risks. During this stage, a policy design
document is generated that specifies what the
system does.

3. Policy implementation: during this stage,
implementation begins with the policy design
document and produces code in a programming
language. Entity predicates and interfaces are
coded and the code is tested in a stand-alone
environment (one domain, not communicating with
inter-domain guards or network communication
devices) to identify any potential errors.

4. Policy enforcement: during this stage, inter-domain
guards and network communication devices (e.g.,
encryption engine, message router, wireless access
point, downgrader) are used to mediate message
passing between the system’s entities. Low-level
policies are enforced by the enforcement
mechanisms (the mechanisms are not specific to
one policy; they ensure that the refined policies are
enforced by the right entities) and policies are
monitored to ensure that the system as a whole
correctly implements policies. The behavior of the
system and its components are verified. At the end
of this stage, a working system is produced that has
been tested and is compliant with policy
requirements.

Am. J. Applied Sci., 5 (9): 1117-1126, 2008

 1121

5. Policy enhancement: during this stage, the system
evolves to meet any changes in policy
requirements. Several issues are addressed to
ensure that the system as a whole still meets policy
requirements: do policies meet the requirements,
do policies operate effectively, detect and resolve
policy conflict or defect, audits (records that
provide a documentary of actions which is often
used to trace a system, audits will be performed for
each entity request in the system; a request will be
logged in as a trace operation which will be used
for analysis of activities in the system), and policy
assurance; that is, security requirements in the
policy are consistent and complete. They are
consistent because an entity request is either
accepted or denied but not both and complete
because for each entity request, there is a result
(the access being accepted or denied).

Policy Requirements
Analysis

Policy
Design

Policy
Implementation

Policy
Enforcement

Policy
Enhancement

2

3
4

5

1

Fig. 2: Policy life-cycle model.

Example: The following example illustrates some
activities that take place during each stage of the
RDIEE life-cycle process:
1. Requirements: consider the problem of designing a

program that facilitates granting or denying entity
access. A request is made by a source entity
attempting to access a destination entity. Given the
source entity, source enclave, source role,
operation (read or write), destination entity,
destination enclave, and destination role, the
program should respond with a decision: access is
either granted or denied. The system access policy
is based on the simple security and star properties
as defined by Bell-LaPadula[5] (no read-up and no
write-down, respectively). There are five entities,
four enclaves, five roles, and two operations. The

program must be completed within three months
with a cost of less than $4,000.

2. Design: define the system’s entities, enclaves,
roles, and operations. Assign enclaves, roles, and
security classifications (1 = Unclassified, 2 =
Confidential, 3 = Secret, 4 = Top Secret) to the
entities. Define a dominate() predicate that is based
on the simple security and star properties as
defined by Bell-LaPadula[5]. Users will input the
following information: source entity name, the
enclave that it belongs to, its role, operation,
destination entity name, the enclave that it belongs
to, and its role; all variables are of data type atom.
In addition, define allow() predicates that process
read operations for entities that are members of one
enclave (the same enclave), write operations for
entities that are members of one enclave, read
operations for entities that are members of different
enclaves, and write operations for entities that are
members of different enclaves. The allow()
predicates will be invoked to determine whether
access is granted or denied. If access is granted,
then the program displays “yes” and if the access is
denied, then the program displays “no”. Users can
also have queries about the system’s entities,
enclaves, roles, and operations.

3. Implementation: the modules of the system design
are coded. See the Prolog source code in the
Implementation Section.

4. Enforcement: the program is validated and tested
for correctness (see the Prolog Section). Sample
test cases (valid and invalid) are provided that
demonstrate a working system that meets policy
specifications. In addition to testing the program
against test cases, a code review (inspection) is
done to detect and resolve any programming faults.
The reviewers ensure that there are no
contradictions and ambiguities between the policy
requirements and policy design activities.

5. Enhancement: the following entities are added to
Prolog’s knowledge base: Raneem, Dana, and Sam
and a new role, called post_doc, is defined.
Enclaves, roles, and security classification are
assigned to the added entities as shown in the
Enhancement Section. The program is tested to
ensure that not only the policy changes have been
correctly implemented, but also that the
functionality of the rest of the program has not
been contradicted.

Advantages and Limitations: One of the key
advantages of the RDIEE policy life-cycle model is that
it allows system security managers to have control over

Am. J. Applied Sci., 5 (9): 1117-1126, 2008

 1122

each clearly-stated individual development stage, which
promotes manageability. Another advantage is that
evolving system characteristics can be incorporated in
the model. A limitation of the model is that a policy
change requires time to implement in the system due to
the fact that policies may affect one another and careful
modification is required. Another limitation is that the
whole system is tested towards the end of the process.

PROLOG

 In order to verify security policies in their life-
cycle (stages 3, 4, and 5), we use Prolog as a method to
prove system correctness with respect to policies using
Prolog’s theorem prover that is based on a special
strategy for resolution called SLD-resolution. Prolog is
a first-order predicate logic programming language that
uses Horn clauses to describe relationships based on
mathematical logic. A Prolog program consists of
clauses stating facts and rules. Facts and rules are
explicitly defined and implicit knowledge can be
extracted from Prolog’s knowledge base. Queries are
used to check whether relationships hold.
 Unlike programs in other programming languages,
a Prolog program is not a sequence of processing steps
to be executed. A Prolog program is a set of formulas
(axioms) from which other formulas expressing
properties of this program may be deduced as
theorems[17]. A theorem is proved using a proof
procedure, that is a sequence of rules of inference
producing new expressions from old ones, the inference
rules are repeatedly applied to a set of axioms and the
new expressions, until the desired theorem is reached[8].
The theorem to be proved is the starting goal (clause)
and the inference rules and axioms are the program
itself.

Benefits: Prolog has several benefits that are appealing,
including:
• Compliance: code can be written to meet security and

safety needs.
• Flexibility: information access can be defined and

controlled.
• Mathematical logic: Prolog’s syntax and meaning can

be concisely specified with reference to logic.
• Dynamic nature: information and constraints can be

added to the existing knowledge base while the
program is executed.

• Efficiency: a small number of lines of code can be
written to perform a task.

• Interoperability: Prolog can communicate with
different applications that use other programming
languages and software visualization tools.

 Because of its simple declarative nature, Prolog is
an appropriate language for expressing and verifying
security policies. To determine all possible answers to a
query, Prolog supports backtracking. Backtracking is
the process of determining all facts or rules with which
unification (determining whether there is a substitution
that makes two atoms the same) can succeed. Several
authors in the literature indicated the use of Prolog as a
policy specification language, including Lin[16] who
argued that Prolog is a suitable language for specifying
security policies due to several features, among which
is that it is based on a subset of first-order logic with a
solid mathematical foundation, it is a productive
modeling language supporting incremental policy
writing and refinement, it is able to reason from a set of
rules, and it supports meta-level reasoning thus making
policy conflict detection possible.

Implementation: The following is an excerpt from a
Prolog-based implementation model that we have
developed. The expressed policy is based on the simple
security and star properties as defined by Bell-
LaPadula[5]. As demonstrated in the model, we use a
closed security policy where only the allowed
operations are specified; only authorized entities are
allowed access. The operations to be denied are not
explicitly specified because Prolog’s negation-by-
failure mechanism will enforce a default denial on
messages other than those explicitly allowed by the
knowledge base and inference rules.
 Entities, enclaves, and roles in the system are
defined as Prolog facts. The sets Entity = {Penny,
Diala, Adrian, Trudy, Evey}, Enclave = {1, 2, 3, 4},
and Role = {Faculty, Staff, BS Student, MS Student,
PhD Student} are defined as follows:

�������������	

�������� �� � �	

�������� � ��� ��	

���������� � ��	

��������� ���	

��� � � ����� � �	

��� � � ����� � �	

��� � � ����� � �	

��� � � ����� � �	

������ � � ���	

����� �� ���	

����� � � � �� � �	

����� � � � �� � �	

������ � � � �� � �	�

Am. J. Applied Sci., 5 (9): 1117-1126, 2008

 1123

 The allowed operations between entities are read or
write, defined as Prolog facts as follows:

������ � �	

���� �����	

 Enclaves, roles, and security classifications, which
are defined as Prolog facts, are assigned to entities. The
format of the classification() predicate is
classification(entity, enclave, role,
security_classification). We use the following values as
follows: 1 to refer to a security classification of
Unclassified, 2 to refer to a security classification of
Confidential, 3 to refer to a security classification of
Secret, and 4 to refer to a security classification of Top
Secret. The facts are defined as follows:

� � � � ���� � �������������� � ��� � � ���� �	

� � � � ���� � ������ �� � ���� � ��� � � ���� �	

� � � � ���� � ������ � ��� ����� � �� �� ���� �	

� � � � ���� � �������� � ����� � �� � � � �� � �� �	

� � � � ���� � ������� ������ � ��� � � � �� � �� �	

� � � � ���� � ������� ������ � �� � � � �� � �� �	

 After Prolog facts have been defined, Prolog rules
are stated as follows:
• Rule 1 processes only read operation requests for

entities that are members of one enclave (the same
enclave). The format of the allow() predicate is
allow(EntityA, EnclaveA, RoleA, read, EntityB,
EnclaveB, RoleB). The rule is defined as follows:

� �� �� �� �� �� �! �� �" ����� ��# �� �� # �! ��# �$%

���" �����

" ���
&
��� � �

� ��
&
� �� # �

����! �� ��

����! ��# ��

�������� �� ��

�������� ��# ��

��� � � ��� �� ��

��� � � ��� �� # ��

'	

• Rule 2 processes only write operation requests for
entities that are members of one enclave. The format
of the allow() predicate is allow(EntityA, EnclaveA,
RoleA, write, EntityB, EnclaveB, RoleB). The rule is
defined as follows:

� �� �� �� �� �� �! �� �" ����� ��# �� �� # �! ��# �$%

���" �����

" ���
&
� �����

� ��
&
� �� # �

����! �� ��

����! ��# ��

�������� �� ��

�������� ��# ��

��� � � ��� �� ��

��� � � ��� �� # ��

'	�

• Rule 3 processes only read operation requests that are
members of different enclaves. The format of the
allow() predicate is allow(EntityA, EnclaveA, RoleA,
read, EntityB, EnclaveB, RoleB). The rule is defined
as follows:

� �� �� �� �� �� �! �� �" ����� ��# �� �� # �! ��# �$%

���" �����

" ���
&
��� � �

����! �� ��

����! ��# ��

�������� �� ��

�������� ��# ��

��� � � ��� �� ��

��� � � ��� �� # ��

���� �(� � �� �� �� �� # ��

� �� ��� ���� �� �� �� �! �� �� ��# �� �� # �! ��# ��

'	

• Rule 4 processes only write operation requests that
are members of different enclaves. The format of the
allow() predicate is allow(EntityA, EnclaveA, RoleA,
write, EntityB, EnclaveB, RoleB). The rule is defined
as follows:

� �� �� �� �� �� �! �� �" ����� ��# �� �� # �! ��# �$%

���" �����

" ���
&
� �����

����! �� ��

����! ��# ��

�������� �� ��

�������� ��# ��

��� � � ��� �� ��

��� � � ��� �� # ��

���� �(� � �� �� �� �� # ��

� �� ��� ���� ��# �� �� # �! ��# �� �� �� �� �! �� ��

'	

• Rule 5 determines whether entities dominate one
another (based on the simple security and star
properties as defined by Bell-LaPadula[5]). The
format of the dominate() predicate is
dominate(EntityA, EnclaveA, RoleA, EntityB,
EnclaveB, RoleB). The rule is defined as follows:

� �� ��� ���� �� �� �� �! �� �� ��# �� �� # �! ��# �$%

� � � � ���� � ������ �� �� �� �! �� �) * � ��

� � � � ���� � ������ ��# �� �� # �! ��# �) * � ��

) * �
+ &
) * � 	

• Rule 6 consists of two sub-rules: not_equal() and
not() predicates that determine whether two
identifiers are equal. The sub-rules are defined as
follows:

���� �(� � �, �- �$%

����,
&
- �	

Am. J. Applied Sci., 5 (9): 1117-1126, 2008

 1124

����, �$%

, �
'�
�� �

.

��� �	

Enforcement: In order to test the Prolog program for
correctness, valid and invalid test cases are provided.
The test cases demonstrate a working system that meets
policy specifications. The following are sample queries:
• Can faculty Penny in enclave 1 read from staff

Adrian in enclave 4?
/
0%
� �� ���������� � ��� � � ������ � �� � ��� ����� � �� �� ���	

���

• Can BS student Evey in enclave 2 read from PhD
student Evey in enclave 1?
/
0%
� �� ��� ������ � �� � � � �� � ���� � ��� ������ � ��� � � � �� � �	

��

• Can MS student Trudy in enclave 3 write to faculty
Penny in enclave 1?
/
0%
� �� ���� � ����� � �� � � � �� � �� �������������� � ��� � � ���	

���

• Can faculty Diala in enclave 1 write to staff Adrian in
enclave 4?
/
0%
� �� �� �� � ���� � ��� � � ���� ������ � ��� ����� � �� �� ���	

��

• Can MS student Trudy in enclave 3 read from staff
Sam in enclave 5?
/
0%
� �� ���� � ����� � �� � � � �� � ���� � �� � � ���� 1 �� �� ���	

��

• Who are the members of enclave 1?
/
0%
� � � � ���� � ������ ��������� � �! ���� �	

� �����
&
�����

! ��
&
�� � � ��
0
.

� �����
&
� �� �

! ��
&
�� � � ��
0
.

� �����
&
�� ��

! ��
&
�� � � � �� �
0
.

• Give all entities with their assigned enclaves, roles,
and security classifications.
/
0%
� � � � ���� � ������ ���� �� �! ���2 ��) �	

� ��
&
��� �

� ��
&
�����

! ��
&
�� � � ��

2 ��)
&
�
0
.

� ��
&
��� �

� ��
&
� �� �

! ��
&
�� � � ��

2 ��)
&
�
0
.

� ��
&
��� �

� ��
&
� � ��� �

! ��
&
� �� ��

2 ��)
&
�
0
.

� ��
&
��� �

� ��
&
��� � �

! ��
&
� � � � �� �

2 ��)
&
�
0
.

� ��
&
��� �

� ��
&
�� ��

! ��
&
�� � � � �� �

2 ��)
&
�
0
.

� ��
&
��� �

� ��
&
�� ��

! ��
&
� � � � �� �

2 ��)
&
�
0
.

• Is system administrator a role?
/
0%
����� �� � � � � ���	

��

• Can faculty Ray in enclave 1 read from staff Adrian
in enclave 4?
/
0%
� �� ��� ����� � ��� � � ������ � �� � ��� ����� � �� �� ���	

��

• Can MS student Trudy in enclave 3 execute faculty
Penny in enclave 1?
/
0%
� �� ���� � ����� � �� � � � �� � ��3 �� � ������������ � ��� � � ���	

��

Enhancement: The Prolog program is tested to ensure
that the policy changes have been correctly
implemented and that the functionality of the rest of the
program has not been contradicted.
• New entities Raneem, Dana, and Sam are added to

Prolog’s knowledge base as follows:
��������� ���� �	

�������� � �� �	

�������� � � �	

• A new role, called post_doc, is defined as follows:
������� �� � �� �	

• Enclaves, roles, and security classification are
assigned to the added entities:
- Raneem is assigned to enclave 1, a role of

post_doc, and a security classification of 4 as
follows:

� � � � ���� � ������� ���� ���� � ���� �� � �� �� �	

- Dana is assigned to enclave 3, a role of faculty, and

a security classification of 2 as follows:
� � � � ���� � ������ � �� ���� � ��� � � ���� �	

- Sam is assigned to enclave 4, a role of staff, and a
security classification of 1 as follows:

� � � � ���� � ������ � � ���� � �� �� ���� �	

• An existing entity Penny (who is in enclave 1) is
assigned to additional enclaves, enclaves 2 and 3 as
follows:

� � � � ���� � �������������� � ��� � � ���� �	

Am. J. Applied Sci., 5 (9): 1117-1126, 2008

 1125

� � � � ���� � �������������� � ��� � � ���� �	

 After the changes were made, the program was
executed. The results confirm that the policy changes
have been correctly implemented and that the rest of the
program has not been compromised (the new results are
the same as those obtained before the changes were
made).

 In the next four paragraphs, we summarize related
research work regarding policy life-cycle models,
policy engineering, security engineering, and policy
specification in Prolog.
 We found very little research in the literature that
considers a life-cycle for security policies. Among
those we did find was the model defined by Goh[11] who
presented a policy evolution life-cycle that consists of
the following stages: requirements establishment,
domain interpretation, iterative refinements and object
specifications, configuration mapping, and enforcement
verification. More recently, Cakic[7] presented a policy
life-cycle model using a state transition diagram. The
model consists of the following main phases:
specification, enabling, enforcement, modifications, and
deletion.
 Shah et al.[22] introduced consistency maintenance
between different policies within a given domain or
policies across domains using policy engineering. They
argued that consistency maintenance for policies across
domains is required when several domain ontologies
are merged together and policies are being created on
entities within these domains. Lewis et al.[15] proposed a
method to support policy engineering by using
ontology-based semantic models of the managed
system to enable automated reasoning about the
resolution and interactions of policies.
 Irvine[14] indicated the need for an early step in the
security engineering process: developing a
mathematical security policy model. The formal model
should demonstrate that the policy is not flawed and
that the operations described in the system do not
violate the security policy. Bryce[6] presented a design
for a security system that provides a security
engineering framework for the design, verification, and
implementation of application security policies.
 Although various languages have been proposed
for specifying policies for different purposes, a standard
language does not yet exist for the policy community to
use. Moffett and Sloman[19] provided an analysis of
policy hierarchies by specifying policy hierarchy
refinement relationships in Prolog. Lupu and Sloman[18]

applied Prolog to meta-policies to identify several types
of policy conflicts. DeTreville[10] presented Binder, a

logic-based security language that provides low-level
programming tools to implement security policies.
Binder adopted Prolog’s syntax and its programs can be
translated into Prolog.

CONCLUSIONS

 This paper outlines a policy engineering
methodology that provides system security managers
with a procedural process to develop security policies in
high assurance computer systems. We propose a policy
life-cycle model that is significant in high assurance
computer systems because policies are crucial elements
of systems’ security (i.e., defining a policy life-cycle
model will lead to having more secure systems). Before
policies can be deployed, it is essential that the
development life-cycle starts with a clearly-stated
policy requirements analysis and goes through policy
design, policy implementation, policy enforcement, and
finally policy enhancement. Policies are usually
designed not only to guide information access, but also
to control conflicts and cooperation of security policies
of different security enclaves. We strongly believe that
no enforcement of security standards can be effectively
made without the support of security policies.
 Integrating security is a vital issue in computer
systems and software engineering. Systems’ security
should be considered before design. An engineering
approach to policy forms the foundation to security.
Therefore, it is crucial for system security managers to
constantly keep a policy’s effect in mind throughout a
system’s development life-cycle. Further work is
needed to better understand the impact of security
policy development on effective security design. The
relationship between software engineering, security
engineering, and policy engineering introduces new
challenges that need to be investigated. The approach
proposed in this paper is an important step towards
defining this relationship.

ACKNOWLEDGEMENTS

 We wish to acknowledge the United States Air
Force Research Laboratory (AFRL) and Defense
Advanced Research Projects Agency (DARPA) for
their support. This material is based on research
sponsored by AFRL and DARPA under agreement
number F30602-02-1-0178. The U.S. Government is
authorized to reproduce and distribute reprints for
governmental purposes notwithstanding any copyright
notation thereon. The views and conclusions contained
herein are those of the authors and should not be

Am. J. Applied Sci., 5 (9): 1117-1126, 2008

 1126

interpreted as necessarily representing the official
policies or endorsements, either expressed or implied,
of AFRL, DARPA, or the U.S. Government. We also
wish to acknowledge the anonymous reviewers and
journal editors for reviewing this paper.

REFERENCES

1. Alves-Foss, J., W. S. Harrison, P. Oman, and

C. Taylor, 2006. The MILS architecture for high
assurance embedded systems. International Journal
of Embedded Systems, 2 (3/4): 239-247.

2. Alves-Foss, J., C. Taylor, and P. Oman, 2004. A
multi-layered approach to security in high
assurance systems. In Proceedings of the 37th
Annual Hawaii International Conference on
System Sciences.

3. Anderson, R., 2001. Security Engineering: A
Guide to Building Dependable Distributed
Systems. John Wiley & Sons.

4. Avionic application software standard interface
(Draft 3 of Supplement 1) (Specification ARINC
653), 2003. ARINC Standards.

5. Bell, D. E. and L. J. LaPadula, 1976. Secure
computer systems: Unified exposition and
MULTICS interpretation. Technical Report ESD-
TR-75-306, MITRE Corporation MTR-2997
Rev. 1.

6. Bryce, C., 1997. The Skippy security engineering
framework. Technical Report 1060, GMD -
 German National Research Centre for Information
Technology.

7. Cakic, J., 2003. A High-Level Framework for
Policy-Based Management of Distributed Systems.
PhD thesis, University of Kent at Canterbury.

8. Civera, P., G. Masera, G. Piccinini, and
M. Zamboni, 1994. VLSI Prolog Processor, Design
and Methodology: A Case Study in High Level
Language Processor Design. North-Holland.

9. Dai, J. and J. Alves-Foss, 2002. Logic based
authorization policy engineering. In Proceedings of
the 6th World Multiconference on Systemics,
Cybernetics and Informatics, pp: 230-238.

10. DeTreville, J., 2002. Binder, a logic-based security
language. In Proceedings of the IEEE Symposium
on Security and Privacy, pp: 105-113.

11. Goh, C., 1998. Policy management requirements.
Technical Report HPL-98-64, Hewlett-Packard
Laboratories.

12. Harrison, W. S., N. Hanebutte, P. Oman, and
J. Alves-Foss, 2005. The MILS architecture for a
secure global information grid. Crosstalk: The
Journal of Defense Software Engineering,
18 (10): 20-24.

13. Heitmeyer, C., 2004. Managing complexity in
software development with formally based tools.
Electronic Notes in Theoretical Computer Science,
108: 11-19.

14. Irvine, C. E., 2000. Security: Where testing fails.
International Test and Evaluation Association
Journal, 21 (2): 53-57.

15. Lewis, D., K. Feeney, K. Carey, T. Tiropanis, and
S. Courtenage, 2004. Semantic-based policy
engineering for autonomic systems. In Proceedings
of the 1st IFIP TC6 WG6.6 International
Workshop on Autonomic Communication,
pp: 152-164.

16. Lin, A., 1999. Integrating policy-driven role based
access control with the common data security
architecture. Technical Report HPL-1999-59,
Hewlett-Packard Laboratories.

17. Loeckx, J. and K. Sieber, 1987. The Foundations of
Program Verification. John Wiley & Sons and
B. G. Teubner, 2nd edition.

18. Lupu, E. C. and M. Sloman, 1999. Conflicts in
policy-based distributed systems management.
IEEE Transactions on Software Engineering,
25 (6): 852-869.

19. Moffett, J. D. and M. S. Sloman, 1993. Policy
hierarchies for distributed systems management.
IEEE Journal on Selected Areas in
Communications, 11 (9): 1404-1414.

20. Rushby, J. M., 1981. Design and verification of
secure systems. In Proceedings of the 8th ACM
Symposium on Operating System Principles,
pp: 12-21.

21. Schach, S. R., 2005. Object-Oriented and Classical
Software Engineering. McGraw-Hill, 6th edition.

22. Shah, A., L. Kagal, T. Finin, and A. Joshi, 2004.
Policy development software for security policies.
In Proceedings of the DIMACS Workshop on
Usable Privacy and Security Software.

23. Wahsheh, L. A. and J. Alves-Foss, 2006.
Specifying and enforcing a multi-policy paradigm
for high assurance multi-enclave systems. Journal
of High Speed Networks, 15 (3): 315-327.

24. Wahsheh, L. A. and J. Alves-Foss, 2007. Using
policy enforcement graphs in a separation-based
high assurance architecture. In Proceedings of the
IEEE International Conference on Information
Reuse and Integration, pp: 183-189.

25. White, P., W. Vanfleet, and C. Dailey, 2000. High
assurance architecture via separation kernel. Draft.

