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Abstract: In this research the performance of a three-phase shunt active power filter (APF) using 
Model Reference Controller (MRC) has been compared with that using instantaneous active and 
reactive (p-q) theory. The novelty of this research lies in the application of MRC to generate the 
amplitude of the reference supply current required by the APF circuit and the successful 
implementation of the APF system for harmonic elimination. The entire system has been modeled 
using MATLAB 6.1 toolbox. Simulation results demonstrate the applicability of MRC for the control 
of APF.  
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INTRODUCTION 

 
 The major causes of power quality problems are 
due to the wide spread application of static power 
electronic converters, saturable devices, fluorescent 
lamps and arch furnaces. Some of the adverse effects of 
poor power quality are reduced motor life, increased 
losses, mal-operation, electromagnetic interference, 
increased heating, and faulty timing signals. Even 
though there are no standard waveforms for the purpose 
of specifying power quality problems, IEEE standard, 
American national standard guides (ANSI), British 
standards (BS), European norms (EN), etc. are widely 
followed to maintain electrical power quality. The  
IEEE standard 519 is a recommended practice for 
power factor correction and harmonic impact limitation 
at static power converters. IEEE-519 standard limits the 
total harmonic distortion (THD) of voltage and current 
below 5 %.  
 Active power line conditioners have been proposed 
for harmonic elimination and power factor 
improvement[1-11], cancellation of negative and zero 
sequence components[12-15], voltage sag and swell[16]. 
Many conventional control strategies have been 
proposed and implemented for the successful control of 
APF system. Recent research shows the effectiveness of 
artificial intelligent (AI) based controllers such as fuzzy 
logic controller and neural network controllers for the 
control of APF system[17-25]. 
 This research proposes MRC for the control of 
APF system.   The novelty of this research lies in the 
application of MRC for the determination of amplitude 

of reference supply current required in an APF system. 
This research also discusses the control of APF system 
using p-q theory.  The control strategies of APF system 
are detailed in the second part of this research. 
Simulation results in the third part demonstrate the 
effectiveness of MRC for the control of APF system. 
 

CONTROL TECHNIQUES OF APF SYSTEM 
 
 In this part of study control scheme of APF system 
using p-q theory is discussed and compared with that 
using MRC.  
 
Principle of operation: A three-phase system feeding 
an inverter load has been selected to study the 
performance of the APF system. It has been observed 
that due to the non-linear characteristics of power 
electronics loads the THD’s of source current and 
terminal voltage fall well below the IEEE-519 standard 
and in principle APF system is used to inject a current 
equal in magnitude but in phase opposition to harmonic 
current to achieve a purely sinusoidal current wave in-
phase with the supply voltage. Figure 1[26] shows the 
single-line diagram of a simple power system with APF 
system ON. The heart of the APF system is the IGBT 
based  voltage source inverter (VSI). A dc capacitor is 
used to deliver power for the VSI. For the successful 
operation of APF, capacitor voltage should be at least 
150 % of maximum line-line supply voltage. Since the 
PWM VSI is assumed to be instantaneous and infinitely 
fast to track the compensation currents, it is modeled as 
a current amplifier with unity gain and the  
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Fig. 1: Single-line diagram of a simple power system 

with APF ON 
 

 
 

Fig. 2: Inverter sub-system 
 
Simulink model of the inverter sub system used is 
shown in Fig. 2[27]. 
 
Control of APF system using p-q theory: The p-q 
theory proposed by Akagi[1] to determine the 
compensation current to be  injected by the APF system 
for harmonic elimination and reactive power uses 
Park’s transformation from three-phases (a,b,c) to two 
phases (αandβ). Thus the three phase supply voltages 
and load  currents could be transformed into the (α-β) 
orthogonal coordinates as follows: 
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 According to p-q theory, determination of 
instantaneous real power pl (t) and imaginary power  
ql (t) is given by the expression 
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where pl (t)  and ql (t)  contain dc and ac terms and can 
be written as 

)(tpl = p  + p~  
)(tql =  q  + q

~
 

 
To achieve unity power factor and harmonic 
elimination, the ac  term p�  and  the  imaginary power     
ql(t) have to be eliminated. The compensation power 
p� could be obtained by filtering out the ac components 
from lp (t).  Thus   

 )(* tp c  = p~  and 

)(* tq c  = )(tql  
The reference compensation current in the (α-β) plane 
is given by the expression  
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and the reference compensation currents for phase a, 
phase b and phase c could be evaluated using Park’s 
backward transformation and given in  matrix form as 
follows: 
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Figure 3 shows the simulink model of APF control 
system using p-q theory.  
 
Control of APF system using MRC: MRC is 
successfully used for the control of UPQC[28]. Fig. 4 
shows the simulink model of MRC controlled APF 
system, whereas in Fig. 5 the detailed control structure 
of APF system using MRC is illustrated. Model 
reference controller uses two neural networks: a plant 
model network and a controller network. To train the 
controller, first of all neural network plant model shown 
in Fig. 6 has been identified and trained. Following  that  
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Fig. 3: Simulink model of APF system using p-q theory 
 

 
 

Fig. 4: APF system using MRC 
 
training data has been generated using a simulink 
reference model.  The Levenberg-Marquadrat algorithm 
is used for training the neural network plant model. The 
controller training is computationally expensive and 
time consuming as it requires dynamic back 
propagation. The BFGS (Broyden, Fletcher, Goldfarb, 
and Shanno)      training      algorithm     was      used  to 
train   the controller. 

 As shown in Fig. 4, the control input of the plant is 
the amplitude of the desired mains current and the 
capacitor voltage is the plant output. MRC checks the 
desired capacitor voltage and the actual capacitor 
voltage and the control input is adjusted to achieve the 
reference value. Table 1 and 2 show the specifications 
of the plant model network and controller network. It 
has been observed that the complicated equations in p-q 
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Fig. 5: Control circuit using MRC 
 

 
 

Fig. 6: Plant model 
 
Table 1: Plant model specifications 
Size of hidden layer 1 
Sampling interval (s) 6.254e-5 
No. of delayed plant inputs 2 
No. of delayed plant outputs 1 
Training samples 50000 
Maximum plant input 1.8 
Minimum plant input 1.5 
Maximum interval value (s) 0.05 
Minimum interval value (s) 0.01 
Maximum plant output 800 
Minimum plant output 700 
Training Epochs 100 
Training Function trainlm 
Use current weights selected 
Use validation data selected 
Use testing data selected 

 
Table 2: Specifications of Model reference control 
Size of hidden layer 1 
Sampling interval (s) 6.254e-5 
No.  delayed reference inputs 1 
No. delayed controller outputs 1 
No. delayed plant outputs 1 
Training samples 50000 
Maximum plant input 1.8 
Minimum plant input 1.5 
Maximum interval value (s) 0.05 
Minimum interval value (s) 0.01 
Training Epochs 10 
Controller training segments 2 
Use current weights selected 
Use cumulative training  unselected 

 
 

Fig. 7: Performance graph 
 

 
 

Fig. 8: Training data 
 
theory could be eliminated by the use of MRC. Sample 
performance graph, training data, reference model and 
neural network outputs obtained are illustrated in Fig. 7 
and Fig. 8 and 9 respectively. 
 

RESULTS AND DISCUSSION 
 
 An APF system based on MRC has been 
successfully modeled and tested using MATLAB 6.1 
toolbox. The effectiveness of the system has been tested 
for various firing angles (α) in the range of 0° and 180°. 
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Fig. 9: Reference model and neural network outputs 
 

 
 
Fig. 10: Plots of vsa(t), isa(t), ila(t), ica(t) using MRC 
 

 
 
Fig. 11: Plots of vsa(t), isa(t), ila(t), ica(t) using p-q 

theory 
 

 
 
Fig. 12: Frequency spectrum of load current  

 
 
Fig. 13: Frequency spectrum of source current after 

compensation using MRC based APF system 
 

 
 
Fig. 14: Frequency spectrum of source current after 

compensation      using      p-q     theory based 
APF system  

  

 
 
Fig. 15: THD of source and load currents after 

compensation using MRC   
 
 The performance of the developed system is 
illustrated with the one using p-q theory for α = 165° as 
shown in Fig.10-15. It has been observed that using p-q 
theory, for α = 165°, as the load is in the inverter mode, 
the source currents are 180° out of phase with the 
respective supply voltages. However using MRC source 
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currents are in-phase with the supply voltages. One may 
observe that in MRC based APF system, reference 
source currents are obtained by multiplying the required 
amplitude of the source currents with the unit amplitude 
waveform in-phase with the supply voltages.  
 

CONCLUSION 
 
 An MRC based APF system has been modeled and 
successfully tested for the control of APF.   The novelty 
of this research lies in the application of MRC to 
determine the amplitude of the reference source current 
required in an APF system. This research also discusses 
modeling and control of APF system using p-q theory. 
The performance of the different system has been 
compared. It has been observed that the complicated 
calculations used in p-q theory could be eliminated by 
the use of MRC. 
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