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Abstract: In this study new second derivative multistep methods (denoted SDMM) are used to solve 
Volterra's model for population growth of a species within a closed system. This model is a nonlinear 
integro-differential where the integral term represents the effect of toxin. This model is first converted 
to a nonlinear ordinary differential equation and then the new SDMM, which has good stability and 
accuracy properties, are applied to solve this equation. We compare this method with the others and 
show that new SDMM gives excellent results. 
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INTRODUCTION 
 
 Volterra's model for the population growth of a 
species within a closed system is given in[8,9,10] as 
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 Where ���  is the birth rate coefficient, ���  is 
the crowding coefficient and 	 ��  is the toxicity 
coefficient. The coefficient 	  indicates the essential 
behavior of the population evolution before its level 
falls to zero in the long term. �� is the initial population 
and � ��
���  denotes the population at time �� . 
 This model is a first-order integro-ordinary 

differential equation where the term 
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represents the effect of toxin accumulation on the 
species. We apply scale time and population by 
introducing the nondimensional variables 
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to obtain the nondimensional problem: 
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 Where �
�� is the scaled population of identical 
individuals at time t and �	�
����  is a prescribed 
non-dimensional parameter. The only equilibrium 
solution of eq.2 is the trivial solution �
����  and the 
following analytical solution[10] shows that �
����  for 
all t if �� �� . 
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 In[9], the singular perturbation method for 
Volterra's population model is considered. This author 
scaled out the parameters of eq.1 as much as possible 
and considered four different ways to do this. He 
considered two cases �	�
����  small and �	�
����  
large. 
 It is shown in[9] that for the case �� � , where 
populations are weakly sensitive to toxins, a rapid rise 
occurs along the logistic curve that will reach a peak 
and then is followed by a slow exponential decay. And, 
for large � , where populations are strongly sensitive to 
toxins, the solutions are proportional to ���	�
��� 
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 In[5] Adomian decomposition method and Sinc-
Galerkin method compared for the solution of some 
mathematical population growth models. This showed 
that Adomian decomposition method is more efficient 
and easy to use for the solution of Volterra's population 
model. In[11], the series solution method and the 
decomposition method are implemented independently 
to eq.2 and to a related nonlinear ordinary differential 
Equation. Furthermore, the Pade approximations are 
used in the analysis to capture the essential behavior of 
the populations �
�� of identical individuals, also the 
approximation of umax and exact value of umax for 
different �  were compared. 
 The solution of eq.1 has been of considerable 
concern. Although a closed form solution has been 
achieved in[8,9], it was formally shown that the closed 
form solution cannot lead to any insight into the 
behavior of the population evolution[8]. In the literature 
several numerical solutions for Volterra's population 
model have been reported. In[8], the successive 
approximations method was suggested for the solution 
of eq.2, but was not implemented. In this case the 
solution �
�� has a smaller amplitude compared to the 
amplitude of �
�� for the case �� � . In[10], several 
numerical algorithms namely the Euler method, the 
modified Euler method, the classical fourth-order 
Runge-Kutta method and Runge-Kutta-Fehlberg 
method for the solution of eq.2 are obtained. Moreover, 
a phase-plane analysis is implemented. In[10], the 
numerical results are correlated to give insight on the 
problem and its solution without using perturbation 
techniques. However, the performance of the traditional 
numerical techniques is well known in that it provides 
grid points only ,and in addition, it requires a large 
amounts of calculations. The authors of[6,7] applied 
spectral method to solve Volterra's population on a 
semi-infinite interval. This approach is based on a 
Rational Tau method. They obtained the operational 
matrices of derivative and product of rational 
Chebyshev and Legendre functions and then they 
applied these matrices together with the Tau method to 
reduce the solution of this problem to the solution of 
system of algebraic Equations. 
 On the other hand, in recent years, numerous works 
have been focusing on the development of more 
advanced and efficient methods for initial value 
problems especially for stiff systems. For example, as 
Enright[2] used second derivative of solution in his 
algorithm, Cash[1] and Ismail[4] introduced second 
derivative multistep methods that have good stability 
properties. These methods are A-stable of high orders. 
One of these efficient methods that have good stability 

and accuracy properties is a new class of second 
derivative multistep methods that is introduced by 
Hojjati et al.[3]

. The main superiority of this new class 
of methods lead us to apply this new class of methods 
to solve Volterra's population model after converting it 
to a system of ODEs. 
 This study is arranged as follows: in the first 
section we describe new second derivative multistep 
methods. In the second section Volterra's population 
model is considered. This equation is first converted to 
an equivalent nonlinear ordinary differential equation 
and then our method can be applied to solve this new 
equation. In the next section the proposed method is 
applied to several numerical examples and a 
comparison is made with existing methods that were 
reported in the literature to solve similar problems. The 
numerical results and advantages of the method are 
discussed in the final section. 
 

MATERIALS AND METHODS 
 
New second derivative multi step methods: Let us 
consider the stiff initial value problem 
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on the finite interval 
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and 
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 One of the main directions of search for higher 
order A-stable multi step methods is the use of higher 
derivatives of the solutions. By applying the second 
derivative of solution in algorithm of multistep 
methods, a new class of methods are introduced. These 
methods are known as second derivative multi step 
methods (SDMM). 
 The general SDMM can be written in the form: 
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 Where    	 
� are parameters to be determined 

and 
��
!  !  " ��� � . Taylor expansion shows that the 

method equation 4 is of order �  if and only 
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with � # �  . Some known important SDMM 
schemes were introduced by Enright[2]

, Cash[1]
,and 

Ismail[4] that are A-stable methods with high order of 
accuracy. New second derivative multistep methods 
that were introduced by Hojjati et al.[3] are part of a 
new class of similar methods that have good accuracy, 
good stability properties and are suitable for solving 
stiff equations. 
 The new SDMM takes the following general form 
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Where 
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and 
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and the other coefficients are chosen so that equation 6 
has order � �� . The coefficients of k-step methods of 
class equation  6 are given in[3]. 
 Assuming that the solution values 
! ! � ! � �� �  �� � ��  are available, the way in which 

equation 6 is used in practice is as follows: 
 
Stage 1: Compute ! �� �  as the solution of 
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 Where � ��	  and the other coefficients are 
chosen so that equation 7 has order � �� . The 
coefficients of k-step methods of class equation 7 are 
given in[3]

. 
 
Stage 2: Compute ! � �� � �  as the solution of 
 

 
�

�
 !  � � ! � � � ! � �

 ��

� �� � � " � � � � � �	 
 � ��  (8) 

 
Stage 3: Evaluate 
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Stage 4: Compute ! �� �  as the solution of 
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The method is a � -step method of order � �� . It is A-
stable up to order 9. For more details see[3]

. 
 
Solving Volterra's population model: In this section 
we study the algorithm of solving Volterra's population 
model by using the new SDMM. We first convert 
Volterra's population model equation 2 to an equivalent 
nonlinear ordinary differential equation. Let 
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This leads to 
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Inserting eq.9-eq.10 into 2 yields the nonlinear 
differential equation as following. 
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with the initial conditions 
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that obtained by using eq.9 and eq.10, respectively. The 
second order differential equation with initial values 
eq.12 and eq.13 now can be considered as following 
first order initial value problem 
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 Now we can apply the new second derivative multi 
step methods to this system. It can be seen that the 
above system of ODEs will be stiff for small � . 
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Table 1: A comparison among methods in[6,7,11] and the present method with the exact values for ����  

�  Method in[6] Method in[7] Method in[11] Present Method  Exact maxu  

0.02 0.923327 0.923463 0.90383805 0.92342714 0.92342717 
0.04 0.873605 0.873708 0.86124018 0.87381998 0.87371998 
0.1 0.769623 0.769734 0.76511308 0.7697414 0.76974149 
0.2 0.658872 0.659045 0.65791231 0.65905037 0.65905038 
0.5 0.485076 0.485188 0.48528235 0.48519029 0.48519030 
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Fig. 1: The results of new SDDM calculation for � = 

0.02, 0.04, 0.1, 0.2, 0.5 
 
 So, it is necessary to use a numerical method with 
extended stability. 
 

RESULTS AND DISCUSSION 
 
Illustrative example: In this study we applied the 
method presented to examine the mathematical 
structure of �
��. In particular, we studied the rapid 
growth along the logistic curve that will reach a peak, 
then followed by the slow exponential decay where 
�
�� ��  as � � � . The mathematical behavior 
introduced by[8] and justified by[9] using singular 
perturbation methods for the inner and outer solutions. 
Further, these properties were also confirmed by[10] 
upon using a phase plane analysis and[11] by using Pade 
approximations. We applied the method presented in 
this study and solved 2 for �� ����  and 
��������&�������  and 0.5. The numerical solutions 

obtained using the method described, as well as the 
method reported in[6,7,11] are compared with the exact 
solutions in Table 1. 
 

CONCLUSION 
 
 To achieve accurate solutions to problems, some 
methods with extensive regions of stability were 
applied. We converted Volterra's population model to a 

system of ODEs. The new SDMM algorithms proposed 
in this study solve stiff systems effectively. In Table 1 
we compare the solutions of these methods for ����  
and compare the results with exact solutions and also 
the other models. 
 The new SDMM provides accurate and 
numerically stable solutions for different � s. 
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