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Abstract: We proposed a simple way to combine a few long memory models in financial market 
volatility modeling using daily, range and high frequency data. This model was able to fit the return, 
range of daily return or realized volatility under a parametric heavy-tailed distribution.  Model was 
flexible to include additional volatility information as the contemporaneous variables. Empirical results 
found that the proposed model provides substantial improvement in the model fitting, specification and 
most importantly, a better out-of sample forecasting in the Malaysian stock market. 
 
Keywords: realized volatility, fractionally integrated, autoregressive conditional 

heteroscedastic  (ARCH). 
 

INTRODUCTION 
 
 The time varying conditional volatility ARCH-
GARCH models[1-2] are widely used in financial time 
series analysis such as risk management, portfolio 
analysis and derivative pricing.  The presence of long 
persistence volatility in asset returns[3-4] has further 
improved the model specification in volatility 
modelling. Both the ARCH effect and long persistence 
volatility have enriched the definitions of efficiency 
market hypothesis[5]. A series of studies[6-7] investigate 
the market efficiency by analyzing the degree of 
Hurst’s parameter[8] for different financial markets. 
With the evidence of long persistence property, some 
extension definitions of market efficiency hypothesis 
have been proposed such as fractal market hypothesis[9] 
and heterogeneous market hypothesis[10]. The most 
prominent application of volatility model is the 
measurement of value-at-risk(VaR) in risk and portfolio 
analysis. VaR measurement is directly related to the 
expected volatility over the relevant time horizon such 
as daily, weekly and etc.  The commercial application 
of VaR by Morgan[11] with his risk management model, 
RiskMetricsTM,  has successfully applied VaR in 
portfolio investments. Hence, a volatility model with 
correct specification is very important in the market 
efficiency and risk analysis studies. 
 Besides the model specification issue, the 
appropriate data handling approach also contributes to 
the development of volatility modelling. The most 
common approach is based on the closing prices which 
daily returns are subsequently calculated.  Due to its 

availability and simplicity, most of the empirical 
finance literatures using this daily return (squared 
returns/residual) as the measurement of latent volatility 
such as GARCH and stochastic volatility models. 
However, as indicated in[12], this estimation of volatility 
can be very noisy. Another alternative measurement of 
volatility is using the range, the logarithm difference 
between the highest and lowest prices.  The literatures 
that focus on range-based volatility proxy include the 
earliest work by Parkinson[13] and Garman and Klass[14].  
However, the latent volatility is also not directly 
measurable with the usage of daily information.  Hence, 
it is hard to identify the outperform models in terms of 
model fitting performance and specification adequacy.  
The vast development of recent information and 
communication technology(ICT) has encouraged the 
usage of high frequency data as an observable proxy for 
latent volatility which facilitates a more accurate 
estimation as well as forecasting.  Moreover, the 
availability of high frequency financial assets 
information such as stocks, stock indexes, foreign 
exchange, etc. has facilitated a more accurate 
estimation as well as forecasting. The study of 
observable(realized) volatility using high frequencies 
asset prices are discussed in[15]. The above study has 
motivated the usage realized volatility in both FX and 
equity markets due to the remarkably good out-of-
sample forecasting. 

In this paper, we have selected the Kuala Lumpur 
stock exchange(KLSE) index transaction prices during 
the recovery period 1st January 2003 to 15 January 2006 
(745 and 266710 observations for low and high 
frequency data respectively). The Malaysian stock 
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market had experienced a massive slid due to the major 
factor of drastic depreciation of Malaysian Ringgit(RM) 
where the RM(RM2.50 in first half of 1997) was 
depreciated to the weakest rate recorded against USD as 
RM4.88 on 9th January, 1988.  Malaysian government 
had implemented the one USD pegged to RM3.80 in 
the 1st September 1998 to stabilize the RM from 
currency speculation.  After the implementation, the 
Malaysian economics show significant recovery.  In our 
empirical study of recovery period, the Malaysia stock 
market was speculated by the RM-USD un-pegged 
regulation(implemented at year middle of 2005 where 
the RM was expected undervalued by approximately 
6.5%), the merged of MESDAQ 
(http://www.klse.com.my) in KLSE besides the Main 
board and Second board previously started in year 
2002, the fluctuating of petrol prices, etc.  We intended 
to study the long persistence volatility, the presence of 
risk premium and how the market participants react 
with respect to good and bad events using the low and 
high frequency data. 

In order to account the stylized empirical facts of 
the volatility, we proposed a combination of 
ARFIMAX, HAR and ARCH-type generalized models.  
The model can flexibly include the additional volatility 
information (such as weekly, monthly) as the 
contemporaneous variables.  A battery of statistical 
tests has been employed to diagnose the model 
specifications.  As a result, the proposed model shows 
substantial improvement in in-sample estimation 
compare to other models.  For forecasting performance 
evaluations, the proposed model with the inclusion of 
additional contemporaneous variable is outperformed 
compare to other models. 
  

MATERIALS AND METHODS  
  
Data Source: In our empirical study, the KLSE index 
transaction prices are obtained from the DATA 
STREAM for 745 daily closing prices. On the other 
hand, the high frequency data1 is available from the 
data vendor which consists of 266710 data points. The 
availability of KLSE high frequency (minutely) data is 
not as popular as other mature market such as S&P 500, 
NIKKEI 250, CAC40, etc. where minutely data can be 
obtained up to 15 years start from 1991. The original 
dataset includes prices for every trade for 1-minute 
interval data. However, we further extract the 5 and 20-
minute intervals in order to study the statistical 
behaviour of the emerging market. As a comparison to 
the mature market such as S&P500 etc., we like to 
study whether the most common 5-minute interval is 

also suitable for the Malaysian emerging stock market.  
The interday return series, rt is defined as the close-to-
close prices on consecutive trading days. The 
percentage interday returns can be expressed as: 

( )closetclosett PPr ,1, lnln100 −−=           (1) 
  
The proposed HARFIMA-GARCH model: In this 
paper, we proposed a flexible volatility model which is 
able to form the ARCH-type, range-based and realized 
volatility model specifications.  In addition, this model 
is capable to include the possible past realized volatility 
with different frequencies such as weekly or monthly 
information as the contemporaneous variables. In short, 
the proposed model integrates the ARFIMAX, HAR 
and FIGARCH models in general.  The maximum 
likelihood estimation uses the iterative optimization 
algorithm to determine the second derivatives (Hessian 
matrix) under the standardized t-distribution with υ>2 
degree of freedom.  The HARFIMA(fk,p1,d1,q1)-
FIGARCH(pII,dII,qII) can be expressed as follows: 
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where 

• yI,t and yII,t represent either the return, range-
based volatility, return’s volatility or volatility 
of realized volatility series according to a 
specific model:  
-For ARCH-type model: the yI,t and yII,t 
represent the rt and 2

tσ  respectively; 
-For range-based volatility model: the 
volatility estimator is adopted from the 
Parkinson[13] and Garman and Klass[14] 
approaches with the assumption of the 
expected return is equal to zero where the 
mean return is not statistically different from 
zero at 5% level under the t-test(t-statistic 
1.7521) ; 
-For realized volatility model, Martens[15] 
suggested to use a scaled sum of squared 
intraday returns to represent the scaled realized 
volatility as follow: 
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where 2

22

oc

coocc
σ

σσ +
= . The OC and CO 

represent close-to-open and open-to-close 
respectively; 

• +
−1tr ( −

−1tr ) indicates rt-1 when rt-1>0(rt-1<0) and 

is zero otherwise. The present of +
−1tr ( −

−1tr ) 
suggests that the financial stock market 
volatility tends to rise in response to good 
(bad) news and responses reversely to bad 
(good) news;   

• c1 and c2 denote the risk-return tradeoff.  If the 
return-volatility poses a positive relationship, 
we assume that for a more volatile(riskier) 
securities, the rational market participants 
require a greater risk premium. On the other 
hand, if the relationship is negative, it implies 
that the market participants are more favorable 
in saving;   

• αI(B), βI(B), αII(B) and βII(B) denote the 
stationary finite polynomials in the backshift 
or lag operators with Bkyt=yt-k where in 
general:  
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• dI and dII represent the long memory 
parameters with the constraint vary to their 
respective models. The (1-B)d can be 
expressed as an infinite binomial distribution 
for non-integer powers: 
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The HARFIMA(fk,p1,d1,q1)-FIGARCH(pII,dII,qII) 
model includes other models as special cases: 

• The ARFIMAX of Granger (1980) when ch,k 
=0 (k= weekly and monthly) with no 
conditional heteroscedastic volatility; 

• The Heterogeneous AutoRegressive with time 
varying volatility model[16] when dI = c1 = c2 = 

0;  The ∑ ∑ 
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the contemporaneous realized volatility with 
the coefficient, ch,k, which indicates the 
significant influences of possible different 
frequencies of past realized volatility with the 
k = lagged daily, weekly and monthly and its 
associates n =1, 5 and 20 respectively;    

• The joint ARMA-GARCH[2] and ARMA-
FIGARCH[3] respectively when ch,k=0 (k= 
daily, weekly and monthly), dI = c1 = c2 = 0;  
0< dII<0.5 to ensure a stationary ARMA-
FIGARCH. The shock term, at, follows a 
conditional time-varying variance and the 
εt~iid, with certain specific parametric 
distributions;   

  
 The ARFIMA-FIGARCH when ch,k= c1 = c2 = 0. 
Davidson[17] argued that the dI in ARFIMA is structural 
different from dII where the persistence is increases 
when dI approaches 0.5 compare to dII approaches 0.  
The reverse behaviour may be due to the parameter acts 
directly on the squared errors but not on the conditional 
variance. 
 
One-day-ahead Forecasting evaluation: The out-of-
sample forecasting is evaluated by using some standard 
statistical measurements such as mean squared 
error(MSE), mean error(ME), mean absolute 
error(MAE) and Mincer-Zarnowitz Regression[18].  For 
Mincer-Zarnowitz regression, 2

tσ  is the proxy of the 
actual volatility (realized volatility) for time period t 
and 2ˆ tσ  is the forecasted conditional variance for time t. 
The simple linear regression model is illustrated as 
follow: 

ttt uba ++= 22 σ̂σ          (13) 
Conditioning upon the forecast, the forecast is unbiased 
and optimal only if a=0 and b=1.  The determinant 
coefficient, R2 indicates the power of predictability of 
the selected models.   
 
 

RESULTS AND DISCUSSION 
 

The results in Table 1 show that all the standard 
deviations for the realized volatility, RVt,I are slightly 
greater than RVt,II for all the selected frequencies which 
explained that with the presence of lunch-break and 
over-night effects, the realized volatility become more 
noise. Due to this, we stick to the RVt,II results for 
further analysis. The scaling value (1+c) is 
approximately 1.111 which is lower than the result 
reported by Marten[15] of 1.205 in S&P500 future index 
series.   
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Table 1: Break and Scaled Realized volatility 
RV RVt,I 1-min RVt,II1-min RVt,I5-min RVt,II5-min RVt,I20-min 

RVt,II20-
min 

 Mean 0.5762  0.5952 0.3968  0.3874 0.3884 0.3835 
 Std. Dev. 0.3869  0.2945 0.3423  0.1999 0.4741 0.3925 
 Skewness 5.2064  2.3162 6.7664  2.1395 5.5368 4.5374 
 Kurtosis 46.2392  17.8137 66.1134  11.3014 45.1322 35.5703 
(1+c)  1.113  1.111  1.111 

 
Table 2: Range-based and scaled realized volatility estimators 

daily Realized volatility Range-based volatility  

rt
2 RVt,1 ln(RVt,1) 1,tRV  RVt,5 ln(RVt,5) 5,tRV RVt,20 ln(RVt,20) 20,tRV

 

2
, parktσ
 

ln 2
, parktσ  2

,GKtσ  ln 2
,GKtσ  

 Mean  0.4076  0.5952 -0.6315  0.7508  0.3874 -1.0605  0.6052 0.3835 -1.2669  0.5663 0.3120 -1.5905 0.2962  -1.6140 
 Std. Dev.  0.7781  0.2945  0.5007  0.1777  0.1999  0.4773  0.1456 0.3925  0.7090  0.2213 0.3963  0.8769 0.3848   0.8487 
 Skewness  4.3502  2.3162 -1.1662  0.6495  2.1395 -0.2507  0.9277 4.5374  0.2578  1.8261  4.6944 0.3829 5.9270 0.2827 
 Kurtosis  28.3303  17.8137  10.8317  5.6151  11.3014  4.9507  5.2998 35.5703  3.5384  9.4183 34.6527  3.0387 53.5148  3.3209 

               
 JB test 21699* 7286* 2019* 257* 2638* 122* 264* 49023* 16* 1649* 32883* 17.74* 81216* 12.75* 
* denotes 1%   level of significance 
 
Table 3: Hurst’s parameter estimations 

 rt
2 ln 2

, parktσ  ln 2
,GKtσ  RVt,20 ln(RVt,20) 20,tRV  

Variance –Time plot* 0.53 0.62 0.60 0.64 0.71 0.69 
R/S** 0.59 0.73 0.76 0.70 0.74 0.74 

 average 0.560 0.675 0.680 0.660 0.725 0.715 
*For the aggregated time series r(n) of a self-similar process, the variance obeys the following large sample property: 
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where M(L) is the sample mean over the time period L.  The Hurst’s 
parameter is determined by:  R/S ~ (L/2)H, 
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Fig. 1: Q-Q plots for volatility estimators 

 

We have selected three properties of realized 
volatility namely the normality, the long persistence 
behavior and the risk premium to study in this session. 
Table 2 shows the squared-return (rt

2) for daily 
volatility, range-based volatility estimators, 2

, parktσ  and 
2
,GKtσ ,  and 1, 5 and 20-minute interval of scaled 

realized volatility in the form of variance (RVt), 
logarithm (lnRVt) and standard deviation ( tRV ). The 
series exhibit nearest to normality is chosen in the 
models estimations. At a glance, all the series show 
asymmetry, excess kurtosis and the Jarque-Bera 
normality tests are insignificant at 1% level.  The 

2
, parktσ ,  2

,GKtσ  and logarithm 20-minute interval 
indicates the most closely to a Gaussian distribution 
with the kurtosis close to 3 (3.0387, 3.3209, 3.5384 
respectively) and skewness nearly zero (0.3829, 
0.2827,0.2578 accordingly).  We further investigate the 
Q-Q plots for squared-returns and the 20-minute 
interval that are illustrated in Fig 1.  

The lnRVt indicates approximate a linear line 
compare to return-squared which is skewed to the right.  
Our results are different from the work by Andersen 
and Bollerslev[12] which suggested 5-minute interval in 
FX.  In our study, the dissimilar outcome might cause 
by the low trading in the emerging market. In addition, 
[19] shown that 25-minute and 15-minute returns 
provided the optimal sampling frequency in their 
studies.  
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Table 4: estimation results 
Realized volatility model 

Estimation ARFIMAX HARX-GARCH HARFIMAX-GARCH ARFIMAX-FIGARCH 

c0 -0.5721c(0.000) -0.2702 c (0.000) -0.3763 c (0.000) -0.5692 c (0.000) 
dI 0.2647 c (0.000)  0.1293 a (0.094) 0.2648 c (0.000) 
c1 0.0218(0.346) 0.0354(0.129) 0.0308(0.202) 0.0179(0.437) 
c2 -0.0661 b (0.013) -0.0821 c (0.002) -0.0768 c (0.004) -0.0654 b (0.012) 
αI     
α0  0.1253 b (0.014) 0.1290 b (0.011) 0.1120 c (0.009) 
dII  -0.1182(0.121) -0.1216(0.100) -0.0952(0.183) 
αII  0.3389 a (0.055) 0.3343 a (0.070) 0.3132(0.185) 
βII  0.1199(0.399) 0.1134(0.450) 0.1233(0.542) 
     

ch,day  0.2318 c (0.000) 0.1043(0.207)  
ch,week  0.2492 c (0.000) 0.1703 b (0.011)  
ch,month  0.0173(0.810) 0.0486(0.622)  
υ 10.4735 b (0.012) 13.5236 b (0.046) 12.0320 b (0.027) 10.9210 b (0.032) 
L -111.37 -106.33 -104.78 -107.90 

AIC 0.3508 0.3507 0.3491 0.3494 
SIC 0.3913 0.4248 0.4299 0.4101 

(1) Q-(12) on  at 15.1091(0.235)    
      Q-(120) on at 111.13(0.706)    
(2) Q-(12) on at

2 16.9897(0.149)    
     Q-(120) on at

2 142.905(0.0754)    
(3) LM(12) ARCH test 1.4117(0.155) 0.9796(0.466) 0.9206(0.525) 0.9442(0.501) 

(4) Q-(12) on ta~   21.3861(0.045) 17.7972(0.121) 16.6550(0.163) 

(5) Q-(12) on
2

ta~  
 12.1478(0.275) 11.3642(0.329) 11.6916(0.306) 

(6)BDS test     
m=2 p pb p pb p pb p pb 
0.5σ 0.023 b 0.042 b 0.241 0.296 0.239 0.290 0.121 0.168 
1.00σ 0.025 b 0.030 b 0.111 0.116 0.186 0.178 0.078 0.082 
1.50σ 0.013 b 0.026 b 0.087 a 0.102 0.098 0.104 0.047 0.04 
m=5         
0.5σ 0.290 0.392 0.582 0.736 0.506 0.632 0.271 0.416 
1.00σ 0.387 0.372 0.144 0.168 0.172 0.158 0.335 0.398 
1.50σ 0.291 0.258 0.090 0.106 0.164 0.182 0.296 0.332 
(7)Engle and Ng test     
Sign-bias  1.9072(0.056) a 1.4825(0.138) 1.2410(0.214) 
Negative size-bias  1.0753(0.282) 0.9785(0.327) 0.9555(0.339) 
Positive size-bias  0.5464(0.584) 0.3757(0.707) 0.2815(0.778) 

Notes: a, b and c denote 10%, 5% and 1% level of significance.  The values in the parentheses represent the p-value. ta~ represents the 
standardized residual. 
 
Table 5: Forecasting Evaluations 

 Realized volatility  Range-based volatility ARCH-type model 
 ARFIMAX HARX-GARCH HARFIMAX-GARCH ARFIMAX-FIGARCH ARFIMAX-FIGARCH AR-GARCH ARFIMA-FIGARCH 

MSE 0.0345 0.0368 0.0352 0.0343 0.5751 0.0073 0.0072 
ME -0.0515 0.0676 -0.0564 -0.0532 -0.1363 0.0071 -0.0017 

MAE 0.1445 0.1465 0.1450 0.1436 0.6117   0.0656 0.0658 
Theil 0.1328 0.1388 0.1346   0.1322 0.1821 0.2031 0.1967 

Mincer-Zarnowitz        
a -0.1690(0.482) -0.1531(0.557) -0.1478(0.563) -0.1777(0.461) -0.1202(0.531) 0.0105 (0.945) 0.0199 (0.873) 
b 0.8243(0.026)b 0.8673(0.034) b 0.8640(0.029) b 0.8116(0.028) b 0.3052(0.002) c 0.9828 (0.214) 0.8950 (0.145) 

R2 0.0987 0.0896 0.0944 0.0957 0.1699 0.0321 0.0460 

The observable volatility is represented by the realized volatility with 20-minute interval. Notes: a, b and c denote 10%, 5% and 1% level of 
significance.  The values in the parentheses represent the p-value 
 

Next, we exercise the variance-time plot and 
rescaled-range analysis to examine the Hurst’s 
parameter. In Table 3, the lnRVt series shows the 
strongest persistency with the value 0.725, follows by  

the tRV (0.715), RVt (0.670), follows by the 
ln 2

,GKtσ (0.680), ln 2
, parktσ (0.675) and finally the 

squared-return (0.560). The long persistence behaviour 
encourages us to model the realized volatility using a 
fractionally integrated model.   
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Fig. 2: News impact  

 
Finally, the ARCH-Mean effect and news impact 

are examined by investigating the scatter plots with 
regression line for the realized volatility and current and 
lagged returns respectively. In Fig. 2, the scatters plots 
display an ordinary least squares(OLS) regression line 
with a constant and lnRVt. From the plot of 20-minute 
realized volatility and current return, the R2 shows 
insignificant linear relation between the lnRVt and 
current return which suggests the absence of ARCH-
mean effect. However, for lnRVt and lagged return, the 
lagged positive and negative returns yield significant 
occurrences of high volatility as indicated in Fig.  2. 
This implied that the news impact may be significant in 
model estimation. The formal test for risk premium and 
relation between the news and realized volatility are 
carried out in the next session.   
 
Maximum likelihood estimation results: Table 4 
reports the estimation results of realized volatility, 
range-based and ARCH-type models with the student-t 
distributed innovation, εt.  For all the realized volatility 
and range based models only the coefficient, c2, is 
significantly different from zero which indicated that 
only the lagged negative returns yield great volatility. 
 (1), (2), (4) and (5):  Ljung Box Serial Correlation Test( Q-statistics) 
on ta~  and 2

ta~ : Null hypothesis – No serial correlation; (3):  LM 
ARCH test: Null hypothesis - No ARCH effect; (6): This table reports 
the descriptive statistics for all the residual and standardized residual 
series. All the series exhibit leptokurtic with kurtosis around 3.500 
which is biased from normal distribution. Due to this, we calculated 
both the normality assumption and bootstrapped p-values for the BDS 
test statistics.  Both the p-values show similar results and this is 
acceptable because our series do not differ a lot from the normal 
distribution.  p and pb denote the p-value for the BDS test statistic for 
assumption of asymptotic normal distribution and bootstrapped p-
value respectively. (7): Engle and Ng[21] news impact test based on the 
regression 

ttttttt aSaaSaSaaa ε++++= −
−

−
−− 2

141321
2~  

This leverage effect implied that downward 
movement (shock) in the stock market is followed by a 
greater volatility than upward movement of the same 
magnitude.  In addition, the negative value of c2 
implied that the market participants are mostly in the 
precaution condition or only observed the market 
movement instead of taking part in the stock market.  In 

another word, the market participants are preferred to 
save their money than taking the risk.  This may be due 
to the bad experience or lack of confidence to the 
volatile market. 

All the models fitted well in a heavy-tailed student-
t distribution with degree of freedom (υ) approximately 
12 except for range-based model.  This stylized fact is 
commonly seen in almost all the financial asset pricing.  
The four long memory models indicated long memory 
parameters, ds with the 0.2674, 0.1293, 0.2648 (for the 
three former realized volatility models) and 0.2842 for 
the range-based model respectively. For the proposed 
HARFIMAX-GARCH model, the reduction of the long 
persistence behaviour is due to the inclusion of weekly 
volatility information as compare to the original HAR-
GARCH with news impact model.  This implied that 
the contemporaneous variables, for some extent but not 
fully explained the initial volatility model specification.   

Overall, the highest log-likelihood value is -104.78 
(HARFIMAX-GARCH) with the smallest AIC (0.3491) 
as compare to others. However, the BIC value for 
HARFIMAX-GARCH is suffered for greater BIC value 
0.4299 as compare to others due to the additional 
parameters. For ARCH-type models, we have selected 
AR-GARCH and ARFIMA-FIGARCH models to 
compare the in-sample estimations as a whole.  Both 
the models show almost similar results in log-likelihood 
function and estimation performance evaluations.  The 
ARCH-type model indicated better in-sample 
estimation as compare to range-based model, however, 
inferior if compare to the realized volatility models. 
 
 
Diagnostic results: In Table 4, the ARFIMAX’s 
exhibits possibility of conditional heteroscedascity in 
their squared-residuals and LM-ARCH test and BDS 
test[20] as well. This implied that the most parsimony 
ARFIMAX model is not adequately specified with the 
existence of conditional heteroscedastic effect. On the 
other hand, the HARX-GARCH suffered from the 
misspecification in the standardized residual as well as 
the sign bias test under 5% and 10% significant levels 
respectively.  Except the above mentioned models, 
Table 3 shown that all the volatility models are not 
significant at 1% level for the Ljung-Box test, serial 
correlation and ARCH effect test respectively. The 
further discussion of the BDS test is illustrated in the 
footnote of Table 4. On the other hand, the sign-bias 
and negative/positive tests for all the squared-
standardized residual o the studied models show no 
evidence of unexplained non-linearity, sign or size bias 
in the negative/positive side at 1% significance level. 
As a result, the asymmetric models with news effect are 
adequately estimating the conditional standard 
deviations. 
 
One-step-ahead forecasting evaluations: The in-
sample estimations sometimes do not guarantee 
outperforms forecasting results.  In order to verify this, 
we conducted a 50 one-step-ahead daily forecast for the 
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KLSE stock index.  The one-day horizon forecast 
comparisons are based on MSE, ME, MAE and Mincer-
Zarnowitz Regression.  As indicated in Table 5, the 
ARCH-type models show smallest MSE, ME and MAE 
results.  This followed by the realized-volatility models 
and finally the range-based models.  However, the 
Mincer-Zarnowitz regression analysis indicates that the 
estimated parameter (b) for ARCH-type models is not 
significantly different from zero.  This implied that the 
ARCH-type models could not be used to predict future 
volatility.  On the other hand, the realized volatility and 
range-based models show strong rejection of the b 
parameter and the coefficients of determination, R2, can 
be ranked based on the nearest to unity.  The  
HARFIMAX-GARCH shows the highest b and R2 

(0.8690 and 0.0984) as compare to the other models.  
This implied that the out-of-sample forecasting for 
HARFIMAX-GARCH is superior as compare to the ran 
 

CONCLUSION 
 
In this paper, we constructed a generalized model 

which is able to account for time-varying 
heteroskedasticity, long-persistence and leverage 
effects in a specific case of Malaysian stock market 
volatility for low and high frequency data. Our 
empirical result found that the contemporaneous 
different time horizons realized volatilities have 
substantial reduced but not fully eliminated the 
volatility persistence which may cause by other 
unknown sources of volatility.  In future work, the 
Value-at-risk (VaR) for long and short trading positions 
can be determined based on the estimated volatility 
model. 
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