
American Journal of Applied Sciences 4 (10): 751-758, 2007
ISSN 1546-9239
© 2007 Science Publications

Corresponding Author: Noraziah Ahmad, University Malaysia Pahang, Faculty of Computer System and Software
Engineering, Locked Bag 12, 25000 Kuantan, Pahang, Malaysia

751

Preserving Data Consistency through Neighbor Replication on Grid Daemon

1A.Noraziah, 2M.Mat Deris, 3N.A.Ahmed, 4M.Y.M.Saman, 5R.Norhayati, 6Zeyad M. Alfawaer

1University Malaysia Pahang, Faculty of Computer System and Software Engineering,
Locked Bag 12, 25000 Kuantan, Pahang, Malaysia.

 2University Tun Hussein Onn Malaysia, Faculty of Information and Technology Multimedia,
Parit Raja, 86400 Batu Pahat, Johor, Malaysia.

3Huangzhou University of Science and Technology, College of Elec. & Elect. Engineering, Wuhan, China
4University Malaysia Terengganu, Faculty of Science & Technology,
Mengabang Telipot, 21030 Kuala Terengganu, Terengganu, Malaysia.

5University Malaysia Pahang, Faculty Chemical Engineering & Natural Resources,
Locked Bag 12, 25000 Kuantan, Pahang, Malaysia.

6School of Information Science and Engineering Central South University, Changsha, Hunan, China

Abstract: In modern distributed systems, replication receives particular attention for providing high
data availability, fault tolerance and enhance the performance of the system. It is an important
mechanism because it enables organizations to provide users with access to current data where and
when they need it. However, this way of data organization introduces low data consistency and data
coherency as more than one replicated copies need to be updated. Expensive synchronization
mechanisms are needed to maintain the consistency and integrity of data among replicas when changes
are made by the transactions. In this paper, we present Neighbor Replication on Grid (NRG) daemon
in order to manage replication and transactions in distributed system. NRG Transaction Model has
been implemented in order to preserve the data consistency and availability. Based on experiment and
result, it shows that NRG daemon guarantees consistency and obey serializability through the
synchronization approach.

Key word: Distributed system, replication, consistency, synchronous, transaction, serializability.

INTRODUCTION

In modern distributed systems, replication receives
particular attention for providing high data availability,
fault tolerance and enhance the performance of the
system[1, 2, 3]. It is an important mechanism because it
enables organizations to provide users with access to
current data where and when they need it. The failure of
system can be transparent from users and applications if
they can obtain data from an identical replica.
Replication can improve performance by scaling the
number of replicas with demand and by offering nearby
copies to services distributed over the network.
An ideal distributed file system provides applications
strict consistency, i.e., a guarantee that all I/O
operations yield identical results at all nodes at all times
[4, 5]. In a replication system, the value of each logical
item is stored in one or more physical data items,
referred to as its copies[5]. Each read or write operation
on a logical data item must be mapped to corresponding
operations on physical copies. Of course this way of

data organization introduces low data consistency and
data coherency as more than one replicated copies need
to be updated. Expensive synchronization mechanisms
are needed to maintain the consistency and integrity of
data among replicas when changes are made by the
transactions. This suggests that proper strategies are
needed in managing replication and transactions in
distributed systems.
There are many examples of replication schemes in
distributed file and database systems. Among them are
based on synchronous replication[6, 7, 8], which deploy
quorum to execute the operations with high degree of
consistency and ensure serializability. Synchronous
replication can be categorized into several schemes, i.e.,
all -data-to-all-sites (full replication) and some-data-
items-to-all-sites. However, full replication causes high
update propagation, high storage capacity and difficult
to maintain the data consistency[1, 9, 10]. A few studies
have been done on partial replication techniques based
on some data items to all sites using tree structure
technique[11, 12]. This technique will cause high update

Am. J. Applied Sci., 4 (10): 751-758, 2007

 752

propagation overhead. Thus, some-data-items-to-all-
sites scheme is not realistic. Furthermore, in many
applications, there is update-intensive data, which
should be replicated to very few sites. The European
DataGrid Project[13] implemented this model to manage
the file-based replica. It is based on the sites that have
previously been registered for replication. This will
cause the inconsistence number of replication occurs in
the model. Also, the data availability has very high
overhead as all registered replicas must be updated
simultaneously.
In this paper, we present Neighbor Replication on Grid
(NRG) daemon to manage replication and transactions
in order to preserve data consistency and maintain data
availability in distributed system. NRG daemon
guarantees data consistency and obey serializability
through the synchronize replication. The mechanisms
for locating and managing replicas, as well as
performance details can be found in our previous
work[2, 8].

NRG Transaction Model: In this section, we recall the
NRG Transaction Model. The following notations are
defined:
a) T is a transaction.
b) α and β are groups for the transaction T.
c) α=γ or β where it represents different group for the

transaction T (before and until get quorum).
d) Tα is a set of transactions that comes beforeTβ ,

while Tβ is a set of transactions that comes after Tα .
e) D is the union of all data objects managed by all

transactions T of NRG and x represents one data
object (or data file) in D to be modified by an
element of Tα and Tβ .

f) Target set = {-1, 0, 1} is the result of transaction T
(see Table 1).

g) NRG transaction elements }...,,2,1|{
,

krTT
rqx

== αα
where T

rqxα , is a queued element of Tα transaction.
h) NRG transaction elements }...,,2,1|{

,
krTT

rqx
== ββ

where T
rqxβ ,

is a queued element of Tβ transaction.
i) NRG transaction elements

}|{ ...,,2,1
,

krTT
rqx

=γγ = where T
rqxγ ,

 is a queued
element either in different set of transactions
Tα orTβ .

j) '
1,T qxγ is a transaction that is transformed

fromT qxγ
1,

.
k) T qxµ

1,
 represents the transaction feedback from a

neighbor site. T qxµ
1,
exists if either

T qxγ
1,

or '
1,T qxγ exists.

l) Successful transaction at primary site 0)(
1, =γ qxT ,

where Dqx ∈γ
1, (i.e., the transaction locked a data

x at primary). Meanwhile, successful transaction at
neighbor site 0)(

1, =µ qxT , where Dqx ∈µ
1, (i.e.,

the transaction locked a data x at neighbor).

Table 1: Meaning of Target Set.
Target
set

Meaning

0 This means that no failure occurred during NRG
transaction’s execution. By 0)(

1, =γ qxT , where
Dqx ∈γ

1, is the data object processed by the
transaction at primary site and βα=γ , .The
transaction was successful (i.e., the transaction
locked the data file x at primary). Write counter
track this value. For neighbor site,

0)(
1, =µ qxT where Dqx ∈µ

1, .
1 This means accessing failure. By 1)(

1, =γ qxT , we
mean that the destination server could not perform
the job. Data file x managed by the primary site is
already locked. The transaction has not executed.
For neighbor site, 1)(

1, =µ qxT , where
Dqx ∈µ

1, .
-1 This means unknown status. By 1)(

1, −=µ qxT ,
we mean that the neighbor site cannot tell if the
NRG transaction has or has not been executed yet.
This could happen when the destination host is
down, or the link between primary and neighbor site
is down, or both of the situations. In that case, the
NRG request transaction or the message may be lost.
So we do not know if the transaction has been
executed or not at neighbor site. This will be tracked
by unknown status counter.

Four phases involve in NRG transaction semantic,
which are initiate lock; propagate lock and obtain a
quorum; release lock, update and commit data; and
handling failure (unknown status). Fig. 1 shows the
framework of semantics of NRG Transaction Model.

Fig. 1: Framework of semantics of NRG Transaction.

NRG Daemon: NRG daemon has been developed in
order to give a better intuition on how to manage
replication and transactions through NRG Transaction
Model. A daemon is defined as a computer program
that runs in the background and ready to perform
without user input[14]. Usually, it provides some
services either for the system as a whole or for the user
applications. NRG daemon is started (and stopped)

Abort

Handling
Failure

Release lock,
Update & Commit

Initiate lock

Propagate lock & obtain quorum

Am. J. Applied Sci., 4 (10): 751-758, 2007

 753

when a system changes the run levels. It is ordinarily
starts when a system boots and runs until system
shutdown, unless it forcibly terminated. In particular, it
has three system components:

a) NRG Transaction Manager (NTM): Each primary
or neighbor replica has its own NRG Transaction
Manager (NTM). Every transaction goes through the
NTM before it will be processed. The NTM functions
include:
• Accepting a set of transactions from clients either

}...,,2,1|{
,

krTT
rqx

== αα

or }...,,2,1|{
,

krTT
rqx

== ββ . When T qxγ
1,

, βα=γ ,

come concurrently, queue them based on the small
arrival rate.

• Receiving all types of transaction T qxγ
1,

, βα=γ ,

from clients, '
1,T qxγ from primary and neighbor

replica. Each transaction goes through the NTM for
the purpose of the determination of type of replica
(either to be as primary or neighbor replica
processing).

• Performing synchronous commit '
1,T qxγ after user

has finished update the data. After that, it unlock
data file x.

• If a replica is required to release a lock from another
primary replica, it aborts T qxγ

1,
at its replica and

rollbacks all the transactions.

b) Receiving Agent: It functioning as listed below:
• Monitoring the users’ status access for a particular

data file. If any transactions request that particular
data, then it automatically redirect output from the
command line editing (by using ps aux command) to
user_act log files.

• Data manipulation. The awk utility has been used for
filtering the data.

• Recognizes the transaction that obtains a lock.
• Initiates the server status.
• Handles an access permission mode of the particular

requested data file x.
• Detects the transactions that must be aborted. Kernel

aborts those transactions.
• Compress and decompress the data files.
• Handles job control.

c) Sending Agent: It functioning as follow:
• Requests the neighbor replicas status.
• Propagates a lock synchronously to neighbor replicas.
• Checks the current write and unknown status

counters to detect whether the transaction must
perform or still require obtaining a quorum.

• Sends the updated counters to replicas.
• If the transaction gets a quorum, releases neighbor’s

locks for the neighbors that already in other
quorum(s).

• Replicate data to neighbors for particular data item x.

NRG daemon runs with the superuser privilege. This is
because it must access to some sort of the privilege
resources such as the configuration files. The daemon
runs in the background and does not have a controlling
terminal. In particular, it has been configured to be
automatically functioning without human intervention.

RESULTS AND DISCUSSION

In this experiment, we will consider no failures during
the transaction execution. In remainder of this section,
the experiment involves phases in NRG transaction
semantic. Without lost of generality, this experiment
shows how to preserve the consistency of the same
particular data file. As long as the same data is used,
one-copy-serializability must be obeyed for all the
transaction executions. In addition, it also shows that
the data always available and reliable.
To demonstrate NRG Transaction Model, 3 replication
servers are deployed. Each server or node is connected
to one another through a fast Ethernet switch hub.
Replica A with IP 192.168.100.21, replica B with IP
192.168.100.36 and replica D with IP 192.168.100.39
locate data a. Table 2 shows the Primary-Neighbors
Grid Coordination (PNGC) for replica A, B and D,
which will be used by NRG daemon.

Table 2: Primary-Neighbors Grid Coordination
PRIMARY NEIGHBOURS

A: 192.168.100.21 B: 192.168.100.36 D: 192.168.100.39
B: 192.168.100.36 D: 192.168.100.39 A: 192.168.100.21
D: 192.168.100.39 A: 192.168.100.21 B: 192.168.100.36

The experiment of NRG daemon program was done in
shell programming and Perl integrated with File
Transfer Protocol (FTP) for the communications agent.
Bourne Again Shell is selected since it riches with
command-line editing facilities and jobs control
capabilities. The job control provides greater flexibility
in dealing with background processes. Meanwhile, an
automated FTP is used in shell programming for
sending agent. Red Hat Linux Kernel release 9 and
Linux Slackware 2.4.2 are used as a platform to the
replicated servers. All applications for users are
available to these particular Linux platforms. As such,
the applications for users include mcedit, vi and vim
editor.
To simplify a clearer presentation of these experiments,
assume that the transactions come to access particular
data file a. Neighbor binary voting assignment [2] is
initiated where S(Ba) = {i| Ba(i) = 1, 1≤i ≤n} and Ba(i) is
the vote assign to site i, which has a particular data a.
Hence, Ba(A) = Ba(B) = Ba(D) = 1 with S(Ba) =

Am. J. Applied Sci., 4 (10): 751-758, 2007

 754

{A,B,D}. In particular, the clients can also request the
data file a at any other replica of S(Ba)’ but use the
transparent remote shell (i.e., secure shell) to the replica
of S(Ba). The smallest total number to be replicated, d =
3 has been chosen because it easy to manage the
transactions with a small pre-emptive lock, in order to
get the write quorum. In particular, the write quorum
must be more than a majority quorum. Since the
transaction is proportional to the quorum size [8], less
synchronization time is required for the transaction
execution with a small pre-emptive lock. The
transactions execution for any data on other servers is
evaluated in the same manner. In particular with NRG
Transaction Model, T qxγ

1,
representsT qaγ

1,
. Two

different sets of transactions, }|{ ...,,2,1
,

krTT
rqa

=αα =
and }|{ ...,,2,1

,
krTT

rqa
=ββ = request to update data

file a at replica A and B in the absence of system
failures. Users concurrently request to update the data
file a (namely as dds) from primary replica A and B.

(a) User “azie” requests to update data

 file dds from replica A

 (b) User “noraziah” requests to update
data file dds from replica B

Fig. 2: Users concurrently request data file dds

NRG daemon for primary replica A and B monitor all
users current status that access particular data a. If any
user accesses that data, then it redirects the user’s
information such as the pid, user name, tty, log time and
access editor to the log information. NRG daemon
manipulates its log information by using awk utility.
The user’s information that access the data file dds at
the primary replica A and B are showed in Fig. 3a and
3b respectively. In particular, each primary replica has
the user_act log file.

Fig. 3: User’s information at primary replica A

NTM of primary replica A and B pass to their
primary_replica_processing function for recognizing
which transaction gets the lock. T qxγ

1,
is recognized

based on its login time. Since several transactions come
to access the data file dds (data a), the first queued
element obtains the lock. At primary replica A, T qaα 1,

with pid 24909 gets the lock (refer Fig. 3). The server
status is initiated to 1 for its Target Set as shows in Fig.
4a. Fig. 4a and Fig. 4b show T qaα 1, performs during an

initialization and propagation lock phases.

(a) T qaα 1, gets and propagates the lock to its neighbors.

(b) T qaα 1, keeps propagating its lock to get a quorum

Fig. 4: T qaα 1, performs during an initialization and

propagation lock phases.

Am. J. Applied Sci., 4 (10): 751-758, 2007

 755

Next, NRG daemon kills pid ofT qaα 2, . Kernel

broadcasts message to acknowledge. Server status is
initiated to 1 for its Target Set as depicts in Fig. 5a.
Fig. 5 show T qaβ

1,
performs from an initialization lock

phase until wait user finishes updating data file dds.

(a) T qaβ

1,
gets and propagates lock until obtains a

quorum

(b) T qaβ

1,
obtains quorum and releases lockT qaα 1, .

Fig. 5: T qaβ
1,

 performs during initiates lock until wait

user finishes update data.

Next, NRG daemon kills pid of T qaβ
2,

, which is the

pid 24897. After that, kernel broadcasts the messages to
user “suryani”, as depicts in Fig. 6. Since T qaα 1, at

replica A and T qaβ
1,

 at replica B obtain the locks, NRG

daemon controls the access permission mode of the data
file dds. Hence, other transactions cannot read or update
it at that time as shows in Fig. 7. The error message is
generated automatically by the kernel.

Fig. 6: NRG daemon kills pid of T qaβ

2,
 at replica B.

Fig. 7: The data file dds is locked by NRG daemon

Primary replica A and B propagate lock synchronously
to its neighbor replicas based on the PNGC (refer Table
2). Primary replica processing for T qaα 1, propagates the

locks to its neighbor replicas B and D as depicts in Fig.
4a. It keeps propagates the lock as shows in Fig. 4b.
This is because, T qaα 1, still not get a quorum.

Meanwhile, the primary replica processing for
T qaβ

1,
propagates the locks to its neighbor replicas D

and A as depicts in Fig. 5a. Each NTM of neighbor
replica calls neighbor_replica_processing function to
check its feasibility lock and sends feedback to the
primary.
The first transaction that obtains a quorum denoted as

'
1,T qaγ released other T qaγ

1,
. In this experiment,

T qaβ
1,

obtains a majority quorum when the write

counter is equal to two, as depicts in Fig. 5a. Therefore,
T qaβ

1,
becomes '

1,T qaγ . Next, '
1,T qaγ at primary replica

B releases the lock of T qaα 1, at primary replica A.

Am. J. Applied Sci., 4 (10): 751-758, 2007

 756

Hence, T qaα 1, is aborted as shows in Fig. 8.

Consequently, '
1,T qaγ gets all locks from S(Ba) at

primary replica B, as depict in Fig. 5a and Fig. 5b.

Fig. 8: T qaα 1, is aborted at primary replica A.

The previous primary replica processing for
T qaα 1, becomes as neighbor replica processing

forT qaβ
1,

. Primary replica B obtains lock from

neighbor replica D and A as show in Fig. 9a and Fig. 9b
respectively.

(a) Primary replica B obtains lock from neighbor

replica D

(b) Primary replica B obtains lock from neighbor

replica A
Fig. 9: Primary replica B obtains lock from neighbor

replica D and A

Next, NRG daemon changes an access permission
mode of data file dds at primary replica B. Therefore,
user “noraziah” can start modifying the contents of data
file dds as depicts in Fig. 10.

Fig. 10: User “noraziah” updates the data file dds

When user finished updating data, all replicas of S(Ba)
commit βγ ∈TT qa

'
1,

 synchronously. Fig. 11a, Fig. 11b

and Fig. 11c show '
1,T qaγ change is committed at

primary replica B, neighbor replicas D and A
respectively.

(a) '

1,T qaγ change is committed at primary replica B

(b) '

1,T qaγ change is committed at neighbor replica D.

Am. J. Applied Sci., 4 (10): 751-758, 2007

 757

(c) '

1,T qaγ change is committed at neighbor replica A.

Fig. 11: '
1,T qaγ change is committed at replicas of S(Ba).

Finally, NRG daemon changes an access permission
mode to unlock data file dds. Hence, users can read or
request to update it at any replica of S(Ba). Table 3
simplifies the result of how NRG handle concurrent
transactions T qaα 1, and T qaβ

1,
at all replica of S(Ba).

Table 3: The experiment result of how NRG handle

concurrent transactions
REPLICA A B D

TIME
t1 unlock(a) unlock(a) unlock(a)
t2 begin_transaction begin_transaction
t3 write lock(a)

counter_w(a)=1
write lock(a)

counter_w(a)=1

t4 wait wait
t5 propagate lock:B propagate lock:D
t6 propagate lock:D lock(a)

from B
t7 propagate lock:B get lock:D

counter_w(a)=2

t8 propagate lock:D obtain quorum
release lock: A

t9

abort T qaα 1,

& rollback,
lock(a) from B

t10 update a
t11 commit

βγ ∈TT qa
'

1,

commit

βγ ∈TT qa
'

1,

commit

βγ ∈TT qa
'

1,

t12 unlock(a) unlock(a) unlock(a)

CONCLUSION

A fundamental challenge with replication is to maintain
data consistency among replicas in distributed systems.
The data organization through replication introduces
low data consistency and coherency as more than one
replicated copies need to be updated. Expensive
synchronization mechanisms are needed to maintain the
consistency and integrity of data among replicas when
updates are made by the transactions. Furthermore,
timeliness in synchronization has become show stopper
to maximize the usage of system but at the same time
contribute to the consistent and reliable computing.
NRG Transaction Model resolves this challenge by
alleviates lock with small quorum size before capturing
update and commit transaction synchronously to the
sites that require the same update data item. In
particular, we have developed NRG daemon to manage
replication and transactions in distributed system. We
focus on NRG daemon that guarantees consistency and
obey serializability through the synchronize replication.
Based on experiment and result, it shows that NRG
daemon solves the distributed concurrency transactions
and guarantees the data consistency in distributed
systems. This is due to the transaction execution is
equivalent to one-copy-serializability.

REFERENCES

1. L. Gao, M. Dahlin, A. Nayate, J. Zheng and A.
Iyengar, 2005. Improving Availability and
Performance with Application-Specific Data
Replication: IEEE Trans. Knowledge and Data
Engineering, 17(1): 106-200.

2. M. Mat Deris, D. J. Evans, M. Y. Saman, A.
Noraziah, 2003. Binary Vote Assignment on Grid
For Efficient Access of Replicated Data: Intl.
Journal of Computer Mathematics, Taylor and
Francis, 80(12): 1489-1498.

3. M. Tang, B. S. Lee, X. Tang and C. K. Yeo, 2006.
The impact on data replication on Job Scheduling
Performance in the Data Grid: Intl. Journal of
Future Generation of Computer Systems, Elsevier,
22: 254-268.

4. P.Bernstein, N.Goodman, 1984. The failure and
recovery problem for replicated distributed
databases: ACM TODS.

5. J. Zhang and P. Honeyman, 2004. Replication
Control in Distributed File Systems: CITI
Technical Report 04-01, University of Michigan.

Am. J. Applied Sci., 4 (10): 751-758, 2007

 758

6. J. Holliday, R. Steinke, D. Agrawal and A. El-
Abbadi, 2003. Apidemic Algorithms for Replicated
Databases: IEEE Trans. On Know. and Data
Engineering, 15(3): 1-21.

7. H. Stockinger, 2001. Distributed Database
Management Systems and The Data Grid: IEEE-
NASA Symposium, 1: 1-12.

8. A. Noraziah, M. Mat Deris, R. Norhayati, M.Y.M.
Saman, M. Rabiei, W.N. Shuhadah, 2006.
Managing Neighbour Replication Transactions in
Distributed System: Intl. Symposium on
Distributed Computing and Applications Business
Engineering and Science, 1: 95-101.

9. Budiarto, S. Noshio, M. Tsukamoto, 2002. Data
Management Issues in Mobile and Peer-to-Peer
Environment: Data and Knowledge Engineering,
Elsevier, 41:183-204.

10. M. Mat Deris, J.H. Abawajy, H.M. Suzuri, 2004.
An Efficient Replicated Data Access Approach for
Large Scale Distributed Systems: IEEE/ACM
Conf. On Cluster Computing and Grid
(CCGRID2004).

11. Nicola and M. Jarke, 2000. Performance Modeling
of Distributed and Replicated Databases: IEEE
Trans. On Knowledge and Data Engineering,
12(4): 645-671.

12. J.Huang, Qingfeng Fan, Qiongli Wu and
YangXiang He, 2005. Improved Grid Information
Service Using The Idea of File-Parted Replication:
Lecture Notes in Computer Science Springer,
3584: 704-711.

13. P. Kunszt, Erwin Laure, Heinz Stockinger, Kurt
Stockinger, 2005. File-based Replica Management,
Intl. Journal of Future Generation of Computer
Systems, Elsevier, 21: 115-123.

14. J.J.Tackett, D.Gunter, L.Brown, 1995. Special
Edition Using Linux. Que Corporation USA.

