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Abstract: Non-integrability of planar oscillation of a satellite in an elliptic orbit under the influence of 
magnetic torque has been studied. The amplitude of the oscillation remains constant upto the second 
order of approximation. The analysis regarding the stability of the stationary planar oscillation of a 
satellite near the resonance frequency shows that discontinuity occurs in the amplitude of the 
oscillation at a frequency of the external periodic force which is less than the frequency of the natural 
oscillation. 
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INTRODUCTION 

 
 Maciejewski[1], Bhardwaj[2], Schweighart et al.[3] 
discussed the non-integrability of a rotational motion of 
a rigid satellite under different torques. Suli[4], 
Michtchenko et.al.[5], Murray et.al.[6], Kotoulas et al.[7], 
Hadjidemetriou[8], studied the resonance in Solar 
system. 
 

EQUATION OF MOTION 
 
 The Satellite S moving in an elliptic orbit around 
the Earth E such that the orbital plane coincides with 
the equatorial plane of the Earth (Fig.1.) with principal 

moments of inertia A<B<C at its centre of mass. Let r  
be the radius vector of the center of mass of the 
satellite, θ  the angle that the long axis of the satellite 
make with a fixed line EF lying in the orbital plane, v 
true anomaly and qη δ= =  the angle between the 
radius vector and the long axis. The instantaneous 

magnetic disturbance torque, [ N  in N.m] due to the 

spacecraft effective magnetic moment m  (in A.m2) is 

given by N  = m  x B ,  B  is the geocentric 

magnetic flux density (in Wb/m2) and m  is the sum of 
the individual magnetic moments caused by permanent 
and induced magnetism and the spacecraft generated 
current loops. Euler’s dynamical equation of motion in 
elliptic orbit about z-axis is  
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due to magnetic torque, 1Ω  is angular velocity of the 
satellite and e is the eccentricity of the orbit of a 
satellite, 
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total dipole strength, Goα  = right ascension of the 

Greenwich meridian at some reference time,  
dt
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average rotation rate of the earth, mθ ′  = coelevation of 

the dipole, mφ ′ = east longitude of the dipole, 
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=Sm  mass of the satellite. 
Equation (1) is equivalent to the Hamilton’s equation 
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 The hyperbolic equilibrium solution corresponding 
to H0 is given by ,......,0)(,2)( Π== vqvp , The 
unperturbed double asymptotic solutions are given by 
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EVALUATION OF MELNIKOV’S INTEGRAL 



Am. J. Appl. Sci., 3 (6): 1899-1902, 2006 

 1900

 
Melnikov function,  
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 It is easy to observe that for any value of mass 
parameter n and magnetic torque parameters 1ε  and 

1a (0.107125� 1a �0.220081) the above function has a 
simple zero. Thus, both pairs of asymptotic surfaces 
cross transversely and eqn. (1) is non-integrable. 
 

GRAPHICAL REPRESENTATION OF 
MELNIKOV’S FUNCTION 

 
 In Earth-Artificial Satellite System with data as: 

1Ω = srad /
60602430

2
×××

Π , e = 0.0549, ε =0.001, 1ε  

= 0.018214936 (asε =e 1ε ) and b = 2.164264351851. 
1. In Fig. 2, for fixed value of b=2.164264351851, 

1a =0.10916685405 and for 120 0 ≤≤ v  the 
Melnikov’s function behaves almost like sine 
functions with abscissas almost remain same and as 
n vary from 0.1 to 0.12, M+(v0) and M-(v0) elongate 
along the ordinate. 

2. In Fig. 3, for fixed value of b=2.164264351851, 

1a =0.10916685405, v0=0.1 and for 0.1 �n �0.99, 
as mass distribution changes, the value of 
Melnikov’s function ),,( 10 anvM ±  
increases/decreases very slowly for 0.1�n�0.3 and 
after that it increases/decreases exponentially. 

3. In Fig. 4 for fixed value of b=2.164264351851, 
v0=0.1, n=0.1 and for 0.107125 � 1a �0.220081,as 

1a  due to magnetic torque effect changes, the 

value of Melnikov’s function ),,( 0 anvM +  
remains almost constant to 0.00000132343. These 
values of 1a  are tabulated in Table 1.  

 
NON RESONANT MOTION OF SATELLITE 

 
 Taking n2=αe and 1εε e= , eqn. (1) becomes 
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Fig. 1: Satellite planar oscillation in elliptic orbit with 

magnetic perturbation 
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Fig. 2: Melnikov’s function ),,( 10 anvM ± for 

120 0 ≤≤ v , 1a =0.10916685405, n=0.11, 0.12 
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Fig. 3: Melnikov’s function ),,( 10 anvM ±  for 0.1 

�n �0.99 v0=0.1, 1a =0.10916685405 
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Fig. 4: Melnikov’s function ),,( 10 anvM ±  for 

v0=0.1, n=0.1, 0.107125� 1a �0.220081 
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Table 1: Values of a  from 2001 to 2050 at 0hUT December 31 

S.No. Year αG0 (in deg) ϕm′(in deg) 1a (in Radians) 

1 2001 98.9429 107.988 0.10712 
2 2009 98.9829 107.472 0.12374 
3 2017 99.0229 106.936 0.14103 
4 2025 99.0629 106.381 0.15900 
5 2033 99.1029 105.805 0.17771 
6 2041 99.1429 105.207 0.19719 
7 2050 99.1879 104.507 0.22008 

 
 The dynamical system described by eqn. (3) moves 
under forced vibrations due to the presence of the 
periodic sine forces on the right hand side of the 
equation.  
 In the first approximation, thus, using BKM 
method (Bhardwaj[1]), the solution is given by  

,cosψη a= where the amplitude a  and the phase 
ψ  are given by =�= a

dv
da
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where the amplitude a  and the phase ψ  are given 

by =�= a
dv
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The amplitude of the oscillation remains constant upto 
the second order of approximation and the main 
resonance occurs at 1≅≅ nandbn and the 

parametric resonance occurs for
2
1≅n . 

 
RESONANT PLANAR OSCILLATIONS  

OF A SATELLITE 
 
 Using BKM method for resonances at n =1, 
equating the coefficients of e and using Fourier 
expansion in terms of Bessel’s function in eqn (3), we 
get  
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Comparing the coefficients of like powers of )cos(ψ  

and )sin(ψ  to zero and solving, we get 
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 Thus the solution in the first approximation is 
given by )cos( θη += va , where the amplitude 

θphaseanda  are the solutions of the equations:  
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 Equations (4) cannot be integrated in a closed form 
due to dependence of the right hand side on 

θanda . However, qualitative aspects of the 
solution can be examined. Taking 
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from the stationary regimes, we get, 
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)8(
32

22

1 22 −−±−= an
a

e
nδ . For instability (jump 

and fall), 0=
da
dδ 03168 222 =++� nanδδ . The 

two values of δ  represented by the equation are both 
negative, so that the effect occurs only at a frequency of 
external periodic force which is less than the frequency 
of the natural oscillation of the system. Maximum value 
of the amplitude is obtained by the condition 0=

δd
da , 

which gives 0)(16 =+ na δ . 
 

CONCLUSION 
 
 The non-linear rotational equations of motion of 
the planar oscillation of a satellite in an elliptic orbit 
under the influence of magnetic torque are non-
integrable, as Melnikov’s function has simple zeros. 
The amplitude of the oscillation remains constant up to 
the second order of approximation. The main 
resonances occur at 1≅≅ nandbn and the 

parametric resonance appears only for 
2
1≅n . The 

stability of the stationary planar oscillation of the 
satellite near the resonance frequency shows that 
discontinuity occurs in the amplitude of the oscillation 
at a frequency of the external periodic force which is 
less than the frequency of the natural oscillation. The 
jump in the amplitude at the critical point in the 
resonance curves increases with the increase in the 
magnetic torque and the eccentricity.  
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